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Abstract: The asymptotic stability of boundary controlled port-Hamiltonian systems defined
on a 1D spatial domain interconnected to a class of non-linear boundary damping is addressed.
It is shown that if the port-Hamiltonian system is approximately observable, then any boundary
damping which behaves linear for small velocities asymptotically stabilizes the system.
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1. INTRODUCTION

Many physical distributed parameter systems can be con-
trolled through their boundaries. This is for instance the
case for transmission lines, flexible beams and plates, tubu-
lar and nuclear fusion reactors and so on. This class of
systems is called Boundary Controlled Systems (BCS).
In the linear case the control design for such system
can be tackled using the semigroup theory and the as-
sociated abstract formulation based on unbounded in-
put/output mappings (Curtain and Zwart, 1995; Staffans,
2005). When asymptotic or exponential stability by non-
linear control is concerned, the main difficulty remains in
finding the appropriate Lyapunov function candidate to
prove the stability. It is usually done on a case by case basis
using physical considerations depending on the application
field.

In the last decade, an alternative approach has been
developed in order to deal with a large class of physical
systems. This approach is based on the extension of the
Hamiltonian formulation to open distributed parameter
systems (van der Schaft and Maschke, 2002). In the 1D
linear case it gave rise to the definition of boundary
controlled port Hamiltonian systems (Le Gorrec et al.,
2004) and allowed to parametrize all the possible boundary
conditions that define a boundary control system (Le
Gorrec et al., 2005) by using simple matrix conditions.
Many variations around these primary works can be found
in (Villegas, 2007) and in (Jacob and Zwart, 2012). Well
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possessedness and stability have been investigated in open-
loop and in the case of static boundary feedback control
in (Zwart et al., 2010) and (Villegas et al., 2005; Villegas
et al., 2009), respectively, and in the case of dynamic linear
control in (Ramirez et al., 2014; Augner and Jacob, 2014).

This paper is restricted to the analysis of the asymptotic
stability of a port-Hamiltonian system connected to a
non-linear damper. It is show that asymptotic stability
can be proved whenever the port-Hamiltonian system is
approximately observable. In the next section we introduce
our class of port-Hamiltonian systems and our class of
dampers. In Section 3 we formulate and prove our main
theorem.

2. PORT-HAMILTONIAN SYSTEMS

The systems under study are described by the following
1D partial differential equation (PDE):

∂x

∂t
= P1

∂

∂ζ
(H(ζ)x(t, ζ)) + P0H(ζ)x(t, ζ), (1)

ζ ∈ (a, b), where P1 ∈Mn(R) 1 is a non-singular symmet-
ric matrix, P0 = −P>0 ∈Mn(R), and x takes values in Rn.
Furthermore, H(·) ∈ L2((a, b);Mn(R)) is a bounded and
measurable, matrix-valued function satisfying for almost
all ζ ∈ (a, b), H(ζ) = H(ζ)> and H(ζ) > mI, with m
independent from ζ.

For simplicity H(ζ)x(t, ζ) will be denoted by (Hx)(t, ζ).
For the above pde we assume that some boundary con-
ditions are homogeneous, whereas others are controlled.
Thus there are matrices of appropriate sizes such that

1 Mn(R) denote the space of real n× n matrices



u(t) = WB,1

[
(Hx)(t, b)
(Hx)(t, a)

]
(2)

and

0 = WB,2

[
(Hx)(t, b)
(Hx)(t, a)

]
. (3)

Furthermore, there is a boundary output given by

y(t) = WC

[
(Hx)(t, b)
(Hx)(t, a)

]
. (4)

To study the existence and uniqueness of solution to the
above controlled pde, we follow the semigroup theory, see
also Le Gorrec et al. (2005); Jacob and Zwart (2012).
Therefor we define the state space X as X = L2((a, b);Rn)
with inner product 〈x1, x2〉H = 〈x1,Hx2〉 and norm
‖x‖2H = 〈x, x〉H. Note that the norm on X and the L2

norm are equivalent. Hence X is a Hilbert space. The
reason for selecting this space is that ‖ · ‖2H is related to
the energy function of the system, i.e., the total energy of
the system equals E(t) = 1

2‖x‖
2
H. The Sobolev space of

order k is denoted by Hk((a, b),Rn).

Associated to the (homogeneous) pde we define the oper-
ator Ax = P1(∂/∂ζ)(Hx) + P0Hx with domain

D(A) =

{
Hx ∈ H1((a, b);Rn)

∣∣∣ [(Hx)(b)
(Hx)(a)

]
∈ kerWB

}
where WB =

[
WB,1

WB,2

]
. For the rest of the paper we make

the following hypothesis

Hypothesis 1. For the operator A and the pde (1)–(4) the
following hold:

(1) The matrix WB is an n× 2n matrix of full rank;
(2) For x0 ∈ D(A) we have 〈Ax0, x0〉H ≤ 0.
(3) The number of inputs and outputs are the same,

k, and for classical solutions of (1)–(4) there holds

Ė(t) = u(t)>y(t).

We remark that from hypothesis (1) and (2) it follows
that the system (1)–(4) is a boundary control system (see
Le Gorrec et al. (2005); Jacob and Zwart (2012); Jacob
et al. (2015)), and so for u ∈ C2([0,∞);Rk), Hx(0) ∈
H1((a, b);Rn), satisfying (2) and (3) (for t = 0), there
exists a unique classical solution to (1)–(4). Thus for these
dense sets of initial conditions and inputs hypothesis (3)
makes sense.

Since, we regard the above port-Hamiltonian system to
describe a mechanical system in which u represents (gen-
eralized) boundary velocities, and y are the (generalized)
boundary forces, the controller is regarded as a general-
ized mass-damper system. The associated momenta and
velocities are denoted by p and v, respectively, and they
are related via the mass matrix M , i.e., p = Mv. Using
Newtons second law, we find

ṗ = fpH + fd, (5)

where fph is the force felt from the port-Hamiltonian
system, and fd is the reactive damping force. Based on the
interconnecting as discussed above we have the following
interconnection relation between the two systems

fpH = −y, v = u. (6)

The state space for the closed loop system equals the direct
sum of the separate state spaces, i.e. Xext = X ⊕Rk. The

norm is given by∥∥∥∥[xv
]∥∥∥∥2

= ‖x‖2H + v>Mv. (7)

Hence we have that the norm equals twice the total energy.

The closed loop system now becomes[
ẋ
v̇

]
=

 P1
∂

∂ζ
(Hx) + P0Hx

−M−1WC

[
(Hx)(t, b)
(Hx)(t, a)

]
+

[
0

M−1fd

]
. (8)

Furthermore, (3) holds together with

v(t) = WB,1

[
(Hx)(t, b)
(Hx)(t, a)

]
. (9)

We see that we can write the above as the abstract system[
ẋ(t)
v̇(t)

]
= Aext

[
x(t)
v(t)

]
+

[
0

M−1

]
fd(t) (10)

with Aext given by the corresponding expression in (8)
with domain

D(Aext) =
{
Hx ∈ H1((a, b);Rn), v ∈ Rk

∣∣∣
v = WB,1

[
(Hx)(b)
(Hx)(a)

]
, 0 = WB,2

[
(Hx)(b)
(Hx)(a)

]}
.

By using similar arguments as in Ramirez et al. (2014)
it can be shown that Aext with its domain generates a
contraction semigroup on Xext. Moreover, since H1 is
compactly embedded into L2, we have that Aext has a
compact resolvent.

The following energy balance equation will be useful in the
next section. Along classical solutions of (8) there holds

Ėtot(t) = Ė(t) + v(t)>Mv̇(t)

= u(t)>y(t) + v(t)>M(−M−1y(t) +M−1fd(t))

= v(t)>fd(t). (11)

From this equality we see two things. Firstly, when we
want to damp the system the damping force needs to be
opposite to the velocity. Secondly, when we associate to
the system (10) the output operator

Cext = [0 1] ,

then Ėtot(t) is again output times input and C∗ext =
Bext :=

[
0

M−1

]
. Note that the adjoint is calculated with

respect to the inner product of Xext.

3. ASYMPTOTIC STABILITY

As we have seen in the previous section, if we want that
the energy decays, then we have to inject damping into the
system. For the (generalized) damping force we assume the
following.

Hypothesis 2. The damping force is a function of the
velocity only, i.e., fd = −F (v). It is opposite the velocity,
i.e.,

v>F (v) ≥ 0, v ∈ Rk.
Furthermore, the F is a locally Lipschitz continuous func-
tion, and there exist positive constants δ, α, γ such that
v>F (v) ≥ α‖v‖2 when ‖v‖ < δ and v>F (v) ≥ γ when
‖v‖ ≥ δ.



We shall show that when this damping force is applied
the closed loop system is asymptotically stable, provided
the system (1)–(4) is approximately observable. For the
proof of this result, the following theorem from Oostveen
(Oostveen, 2000, Chapter 2) is extremely useful.

Theorem 3. Let Z, U be Hilbert spaces, B ∈ L(U,Z)
and A the infinitesimal generator of a contraction C0-
semigroup. Assume thatA has compact resolvent, and that
the state linear system Σ(A,B,B∗, 0) is approximately
controllable on infinite time. Then

(a) for all κ > 0, the operator A − κBB∗ generates a
strongly stable semigroup, T−κBB∗(t);

(b) the closed-loop system Σ(A−κBB∗, B,B∗, 0) is input
stable, i.e., for u ∈ L2((0,∞);U)

‖
∫ ∞

0

T−κBB∗(s)Bu(s)ds‖2 ≤ 1
2‖u‖

2
L2((0,∞);U).

(c) for all u ∈ L2((0,∞);U) we have∫ t

0

T−κBB∗(t− s)Bu(s)ds→ 0 as t→∞.

In the following corollary we show that the results remain
valid when Σ(A,B,B∗, 0) is approximately observable on
infinite time.

Corollary 4. Let Z, U be Hilbert spaces, B ∈ L(U,Z)
and A the infinitesimal generator of a contraction C0-
semigroup. Assume that A has compact resolvent, and the
state linear system Σ(A,B,B∗, 0) is approximately observ-
able on infinite time, then the three items as formulated
in Theorem 3 hold.

Proof. If Σ(A,B,B∗, 0) is approximately observable on
infinite time, then Σ(A∗, B,B∗, 0) is approximately con-
trollable on infinite time. Since A∗ has also a compact
resolvent and is the infinitesimal generator of a contraction
semigroup, we have by the above theorem that the opera-
tor A∗−κBB∗ generates a strongly stable semigroup. This
implies that its dual generates a weakly stable semigroup.
However, since the resolvent of A−κBB∗ is compact, this
semigroup is strongly stable as well. Now the other two
assertions follow as in (Oostveen, 2000, Chapter 2).

Our main result is presented next.

Theorem 5. Consider the system (9) satisfying Hypothesis
1, with the non-linear feedback fd = −F (v) with F
satisfying Hypothesis 2. This closed-loop system is globally
asymptotically stable if and only if the system (1)–(4) is
approximately observable.

For the proof of this result we need a couple of lemmas.
The first lemma gives that the closed loop system possesses
a unique global solution for all initial conditions.

Lemma 6. The system (9) satisfying Hypothesis 1 with
the non-linear feedback fd = −F (v) with F satisfying
Hypothesis 2 possesses for every initial condition a unique
mild solution. Furthermore,

Etot(t) = Etot(0)−
∫ t

0

v(τ)>F (v(τ))dτ. (12)

Proof. Since F is is a Lipschitz continuous function on
Rk, and since Bext and Cext are bounded linear mappings,
it follows from e.g. (Pazy, 1983, Theorem 6.1.5)) that for

every initial condition, the closed loop equation possesses
a unique mild solution on some time interval [0, tmax). By
(11), we have that for classical solutions

Ėtot(t) = v(t)fd(t) = −v(t)>F (v(t)).

Thus

Etot(t)− Etot(0) = −
∫ t

0

v(τ)>F (v(τ))dτ. (13)

Since classical solutions form a dense set, we see that the
above equality holds for all initial conditions. So (12) is
shown. Since 2Etot(t) equals the norm, we conclude from
(13) that the norm of the state is uniformly bounded by the
norm of the initial state. Now (Pazy, 1983, Theorem 6.1.4)
gives that tmax =∞, and so we have global existence.

The second lemma concerns observability. Recall that a
system is approximately observable on infinite time, when
for the system with zero input the following holds; if the
output is identically zero on [0,∞), then so is the initial
state.

Lemma 7. The system (8) with output (9) is approxi-
mately observable on infinite time if and only if the system
(1)–(3) with output (4) is approximately observable on
infinite time.

Proof. if : Assume that the output (9) is identically zero.
By definition this gives that v ≡ 0, and thus by (8) we find

that WC

[
(Hx)(t,b)
(Hx)(t,a)

]
≡ 0 (fd ≡ 0 by assumption). So we

have that

0 = WB,1

[
(Hx)(t, b)
(Hx)(t, a)

]
and 0 = WC

[
(Hx)(t, b)
(Hx)(t, a)

]
.

By the approximate observability on infinite time of the
system (1)–(3) with output (4), this implies that x(0) = 0.
We already had that v(0) = 0, and thus the system (8)
with output (9) is approximately observable on infinite
time.

only if : Assume that the system (1)–(3) has its output (4)
identically equal to zero. Choosing now as initial condition
for (8) the same x and v(0) = 0, it is not hard to see that

xext(t) =

[
x(t)

0

]
is a solution of (8). Furthermore, the corresponding output
is identically zero. By the approximate observability of (8),
(9) we see that x(0) = 0, and thus the system (1)–(3) with
output (4) is approximately observable on infinite time.

Proof of Theorem 5

Let us first assume that the system (1)–(3) with output
(4) is approximately observable on infinite time. Then by
Lemma 7 the same holds for the system (8) with output
(9).

Since Etot(t) is always positive, we conclude from (12) and
Hypothesis 2 that∫ ∞

0

v(t)>F (v(t))dt <∞. (14)

Let Ω1 := {t ∈ [0,∞) : ‖v(t)‖ > δ} and Ω2 := {t ∈ [0,∞) |
‖v(t)‖ ≤ δ}. So by the assumptions of F , see Hypothesis
2, we obtain ∫

Ω1

v(t)>F (v(t))dt ≥ γµ(Ω1),



and (14) implies that Ω1 has finite measure. Moreover,

∞ >

∫
Ω2

v(t)>F (v(t))dt ≥ α
∫

Ω2

‖v(t)‖2dt.

Thus ∫ ∞
0

‖v(t)‖2dt =

(∫
Ω1

+

∫
Ω2

)
‖v(t)‖2dt <∞.

Since Cext = B∗ext, and since v = B∗ext [ xv ] = B∗extxext, we
can reformulate the closed-loop system as

ẋext(t) = (Aext −BextB
∗
ext)xext(t)+

[BextB
∗
extxext(t)−BextF (B∗extxext(t))] ,

xext(0) = [ x0
v0 ] .

So the closed-loop solution is also given by

xext(t) = T−BB∗(t)xext(0)+∫ t

0

T−BB∗(t− s)Bext [B∗extxext(s)

−F (B∗extxext(s)] ds

= T−BB∗(t)xext(0)+∫ t

0

T−BB∗(t− s)Bext [v(s)− F (v(s))] ds, (15)

where T−BB∗(t) is the semigroup generated by Aext −
BextB

∗
ext. By Corollary 4 the semigroup T−BB∗(t) is

strongly stable.

Since v(t) is bounded (see (12)) and F is (locally) Lip-
schitz, we find that F (v(t)) is bounded. Combining this
with the fact that the measure of Ω1 is finite, we have∫

Ω1

‖F (v(s))‖2ds <∞.

For s ∈ Ω2 we have ‖v(s)‖ ≤ δ and so∫
Ω2

‖F (v(s))‖2ds ≤ L(δ)2

∫
Ω2

‖v(s)‖2ds <∞,

where L(δ) is the Lipschitz contant for elements in the ball
with radius δ. Using the expression (15) and Corollary 4
completes the proof.

Hence it remains to show that if the system (1)–(3) with
output (4) is not approximately observable on infinite
time, then the closed loop system is not asymptotically
stable. If the system (1)–(4) is not approximately observ-
able in infinite time, then there exists an initial condition
x(0) such that the solution, x(t) of (1)–(3) with this initial
conditions has output identically zero. Now it is not hard
to see that

[
x(t)

0

]
, t ≥ 0 is a solution of the closed loop

system. It remains only to show that this solution does
not converge to zero. By (12), we have that the energy
stays constant, and thus the solution cannot converge to
zero.

4. CONCLUSIONS

For a (generalized) mechanical, undamped, distributed
parameter system we show that any damper will asymp-
totically stabilize it, provided the damper acts linearly for
small velocities, and the distributed parameter system is
approximately observable. Furthermore, we showed that
asymptotic stability is impossible when this observability
condition does not hold.
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