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Abstract

This paper addresses the reservoir design problem in the context of delay-based reservoir comput-
ers for multidimensional input signals, parallel architectures, and real-time multitasking. First, an
approximating reservoir model is presented in those frameworks that provides an explicit functional
link between the reservoir parameters and architecture and its performance in the execution of a
specific task. Second, the inference properties of the ridge regression estimator in the multivariate
context is used to assess the impact of finite sample training on the decrease of the reservoir capac-
ity. Finally, an empirical study is conducted that shows the adequacy of the theoretical results with
the empirical performances exhibited by various reservoir architectures in the execution of several
nonlinear tasks with multidimensional inputs. Our results confirm the robustness properties of the
parallel reservoir architecture with respect to task misspecification and parameter choice that had
already been documented in the literature.
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1 Introduction

The recent and fast development of numerous massive data acquisition technologies results in a con-
siderable growth of the data volumes that are stored and that need to be processed in the context of
many human activities. The variability, complexity, and volume of this information have motivated
the appearance of the generic term Big Data, which is mainly used to refer to datasets whose features
make the traditional data processing approaches inadequate. This relatively new concept calls for the
development of specialized tools for data preprocessing, analysis, transferring, and visualization, as well
as for novel data mining and machine learning techniques in order to tackle specific computational tasks.

In this context, there is a recent but already well established paradigm for neural computation known
by the name of reservoir computing (RC) [Jaeg 01, Jaeg 04, Maas 02, Maas 11, Croo 07, Vers 07,
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Luko 09] (also referred to as Echo State Networks and Liquid State Machines), that has already shown
a significant potential in successfully confronting some of the challenges that we just described.

This brain-inspired machine learning methodology exhibits several competitive advantages with re-
spect to more traditional approaches. First, the supervised learning scheme associated to it is extremely
simple. Second, some implementations of the RC paradigm are based on the computational capacities
of certain dynamical systems [Crut 10] that open the door to physical realizations that have already
been built using dedicated hardware (see, for instance, [Jaeg 07, Atiy 00, Appe 11, Roda 11, Larg 12,
Paqu 12]) and that, recently, have shown unprecedented information processing speeds [Brun 13]. Our
work takes place in the context of this specific type of RCs and, more explicitly, in the so called time-
delay reservoirs (TDRs) that use the sampling of the solutions of time-delay differential equations
in the construction of the RC.

Despite the outstanding empirical performances of TDRs described in the above listed references and
the convenience of the learning scheme associated to them, a well-known important drawback is that
these devices show a certain lack of structural task universality. More specifically, each task presented
to a TDR requires that the TDR parameters and, more generally, its architecture are tuned in order to
achieve optimal performance or, equivalently, small deviations from the optimal parameter values can
seriously degrade the reservoir performance. The optimal parameters have been traditionally found by
trial and error or by running costly numerical scannings for each task. More recently, in [Grig 15a] we
introduced a method to overcome this difficulty by providing a functional link between the RC param-
eters and its performance with respect to a given task and that can be used to accurately determine
the optimal reservoir architecture by solving a well structured optimization problem; this feature sim-
plifies enormously the implementation effort and sheds new light on the mechanisms that govern this
information processing technique.

This paper builds on the techniques introduced in [Grig 15a] and extends those results in the following
directions:

(i) The memory capacity formulas in [Grig 15a] are generalized to multidimensional input signals
and we provide capacity estimations for the simultaneous execution of several memory tasks. This
feature, sometimes referred to as real-time multitasking [Maas 11] is usually presented as one
of the most prominent computational advantages of RC.

(ii) We provide memory capacity estimations for parallel arrays of reservoir computers. This
reservoir architecture has been introduced in [Orti 12, Grig 14] and has been empirically shown
to exhibit improved robustness properties with respect to the dependence of the optimal reservoir
parameters on the task presented to the device and also with respect to task misspecification.

(iii) We carry out an in-depth study of the ridge regression estimator in the multivariate context in order
to assess the impact of finite sample training on the decrease of reservoir capacity. More
specifically, when the teaching signal used to train the RC has finite size, the faulty estimation of
the RC readout layer (see Section 2.2) introduces an error that is cumulated with the characteristic
error associated to the RC scheme and that we explicitly quantify.

(iv) We conduct an empirical study that shows the adequacy of our theoretical results with the empirical
performances exhibited by TDRs in the execution of various nonlinear tasks with multidimensional
inputs. Additionally, we confirmed using the approximating model, the robustness properties of
the parallel reservoir architecture with respect to task misspecification and parameter choice that
had already been documented in [Grig 14].

The paper is organized as follows: Section 2 recalls the general setup for time-delay reservoir com-
puting, as well as the notions of characteristic error and memory capacity in the multitasking setup.
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Section 3 constitutes the core of the paper and addresses the points (i) through (iii) listed in the
previous paragraphs. The empirical study described in point (iv) is contained in Section 4.

Acknowledgments: We acknowledge partial financial support of the Région de Franche-Comté (Con-
vention 2013C-5493), the European project PHOCUS (FP7 Grant No. 240763), the ANR “BIPHO-
PROC” project (ANR-14-OHRI-0002-02), and Deployment S.L. LG acknowledges financial support
from the Faculty for the Future Program of the Schlumberger Foundation.

2 Notation and preliminaries

In this section we introduce the notation that we use in the paper, we briefly recall the general setup for
time-delay reservoirs (TDRs), and provide various preliminary concepts that are needed in the following
sections.

2.1 Notation

Column vectors are denoted by bold lower or upper case symbol like v or V. We write v> to indicate
the transpose of v. Given a vector v ∈ Rn, we denote its entries by vi, with i ∈ {1, . . . , n}; we also
write v = (vi)i∈{1,...,n}. The symbols in and 0n stand for the vectors of length n consisting of ones and
zeros, respectively. We denote by Mn,m the space of real n×m matrices with m,n ∈ N. When n = m,
we use the symbol Mn to refer to the space of square matrices of order n. Given a matrix A ∈ Mn,m,
we denote its components by Aij and we write A = (Aij), with i ∈ {1, . . . , n}, j ∈ {1, . . .m}. We write
In and On to denote the identity matrix and the zero matrix of dimension n, respectively. We use Sn
to indicate the subspace Sn ⊂ Mn of symmetric matrices, that is, Sn =

{
A ∈Mn | A> = A

}
. Given

a matrix A ∈ Mn,m, we denote by vec the operator that transforms A into a vector of length nm by
stacking all its columns, namely,

vec : Mn,m −→ Rnm, vec (A) = (A11, . . . , An1, . . . , A1m, . . . , Anm)
>
, A ∈Mn,m.

When A is symmetric, we denote by vech the operator that stacks the elements on and below the main
diagonal of A into a vector of length N := 1

2n (n+ 1), that is,

vech : Sn −→ RN , vech (A) = (A11, . . . , An1, A22, . . . , An2, . . . , Ann)
>
, A ∈ Sn.

Let N := 1
2n (n+ 1). We denote by Ln ∈MN,n2 and by Dn ∈Mn2,N the elimination and the duplication

matrices [Lutk 05], respectively. These matrices satisfy that:

vech (A) = Lnvec (A) , and vec (A) = Dnvech (A) . (2.1)

Consider A ∈ Sn, v = vech (A) ∈ RN , and S = {(i, j) |i, j ∈ {1, . . . , n} , i ≥ j}. Let σ : S −→ {1, . . . , N}
be the operator that assigns to the position of the entry (i, j), i ≥ j, of the matrix A the position of
the corresponding element of v in the vech representation. We refer to the inverse of this operator as
σ−1 : {1, . . . , N} −→ S. The symbol ||A||Frob denotes the Frobenius norm of A ∈ Mm,n defined as
‖A‖2Frob := trace

(
ATA

)
[Meye 00]. Finally, the symbols E[·], var(·), and Cov(·, ·) denote the mathe-

matical expectation, the variance, and the covariance, respectively.

2.2 The general setup for time-delay reservoir (TDR) computing

The functional time-delay differential equations used for TDR computing. The time-delay
reservoirs studied in this paper are constructed by sampling the solutions of time-delay differential
equations of the form

ẋ(t) = −x(t) + f(x(t− τ), I(t),θ), (2.2)
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where f is a nonlinear smooth function that will be referred to as nonlinear kernel, θ ∈ RK is a
vector that contains the parameters of the nonlinear kernel, τ > 0 is the delay, x(t) ∈ R, and I(t) ∈ R
is an external forcing that makes (2.2) non-autonomous and that in our construction will be used as an
inlet into the system for the signal that needs to be processed. We emphasize that the solution space of
equation (2.2) is infinite dimensional since an entire function x ∈ C1([−τ, 0],R) needs to be specified in
order to initialize it. The nonlinear kernel f is chosen based on the concrete physical implementation of
the computing system that is envisioned. We consider two specific parametric sets of kernels that have
already been explored in the literature, namely:

(i) The Mackey-Glass [Mack 77] nonlinear kernel:

f(x, I,θ) =
η (x+ γI)

1 + (x+ γI)
p , θ := (γ, η, p) ∈ R3, (2.3)

which is used in electronics-based RC implementations [Appe 11].

(ii) The Ikeda [Iked 79] nonlinear kernel

f(x, I,θ) = η sin2 (x+ γI + φ) , θ := (η, γ, φ) ∈ R3, (2.4)

associated to the optical RC implementations [Larg 12].

For these specific choices of nonlinear kernel, the parameters γ and η are usually referred to as the
input and feedback gains, respectively.

Continuous and discrete-time approaches to multidimensional TDR computing. We briefly
recall the design of a TDR using the solutions of (2.2). The following constructions are discussed in
detail in [Grig 15a]. TDRs are based on the sampling of the solutions of (2.2) when driven by an input
forcing obtained out of the signal that needs to be processed. More specifically, let z(t) ∈ Rn, t ∈ Z, be
an n-dimensional discrete-time input signal. This signal is, first, time and dimensionally multiplexed
over a delay period by using an input mask C ∈MN,n and by setting I(t) := Cz(t), t ∈ Z, where N is a
design parameter called the number of neurons of each reservoir layer. The resulting discrete-time
N -dimensional signal I(t) ∈ RN is called input forcing.

We now consider two different constructions of the TDR depending on the way in which the solutions
of the time-delay differential equation (2.2) are handled. The continuous time TDR is constructed
as a collection of neuron values xi(t) organized in layers x(t) ∈ RN of N ∈ N of virtual neurons
each, parameterized by t ∈ Z. The value xi(t), referred to as the ith neuron value of the tth layer
x(t) of the reservoir, is obtained by sampling a solution x(t) of (2.2) by setting

xi(t) := x(tτ − (N − i)d), i ∈ {1, . . . , N}, t ∈ Z, (2.5)

where d := τ/N is referred to as the separation between neurons. The solution x(t) has been
obtained by using an external forcing I(s) in (2.2) constructed out of the input forcing I(t) as follows:
given s ∈ R, let t ∈ Z and i ∈ {2, . . . , N} be the unique values such that s ∈ (tτ−(N−i−1)d, tτ−(N−i)d]
and that we use to define the external forcing as I(s) := (I(t))i.

The discrete-time TDR is constructed via the Euler time-discretization of (2.2) with an integration
step of d := τ/N . In this case, the neuron values are determined by the following recursions:

xi(t) := e−ξxi−1(t) + (1− e−ξ)f(xi(t− 1), (I(t))i,θ), (2.6)

with x0(t) := xN (t− 1), ξ := log(1 + d), and i ∈ {1, . . . , N}. In this case, the recursions (2.6) uniquely
determine a smooth map F : RN × RN × RK → RN referred to as the reservoir map that specifies
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the neuron values of a given tth layer as a recursion on the neuron values of the preceding layer t − 1
via an expression of the form

x(t) = F (x(t− 1), I(t),θ). (2.7)

The TDR memory capacity for real-time multitasking. In this paper we study the performance
of TDRs at the time of simultaneously performing several memory tasks (see Figure 1). This means that
we will evaluate the ability of the TDR to reproduce a prescribed multidimensional nonlinear function
of the input signal

H : R(h+1)n −→ Rq
vec(z(t), . . . , z(t− h)) 7−→ y(t),

(2.8)

that we will call q-dimensional h-lag memory task for the n-dimensional input signal {z(t)}t∈Z.
In the RC context, this task is performed by using a finite size realization of the input signal

{z(−h + 1), . . . , z(T )} that is used to construct a q-dimensional teaching signal {y(1), . . . ,y(T )} by
setting y(t) := H (vec(z(t), . . . , z(t− h))). The teaching signal is subsequently used to determine a
pair (Wout,aout) ∈MN,q ×Rq that performs the memory task as an affine combination of the reservoir
outputs. The optimal pair (Wout,aout) is obtained with a ridge regression that minimizes the regularized
square error, that is,

(Wout,aout) = arg min
W∈MN,q,a∈Rq

(
trace

(
E
[
(W> · x(t) + a− y(t))>(W> · x(t) + a− y(t))

])
+ λ‖W‖2Frob

)
(2.9)

=: arg min
W∈MN,q,a∈Rq

(
MSE(W,a) + λ‖W‖2Frob

)
. (2.10)

The optimal pair (Wout,aout) that solves the ridge regression problem (2.10) is referred to as the
readout layer. The ridge regularization parameter λ ∈ R is usually tuned during the training phase
via cross-validation. The explicit solution of the optimization problem (2.10) (see [Grig 15a] for the
details) is given by

Wout =(Γ(0) + λIN )−1Cov(x(t),y(t)), (2.11)

aout =µy −W>outµx, (2.12)

where µx := E[x(t)] ∈ RN , µy := E[y(t)] ∈ Rq, Γ(0) := Cov(x(t),x(t)) ∈ SN , and Cov(x(t),y(t)) ∈
MN,q. Stationarity hypotheses are assumed on the teaching signal and the reservoir output so that
the first and second order moments that we just listed are time-independent. The error committed
by the reservoir when accomplishing the task H with the optimal readout will be referred to as its
characteristic error and is given by the expression

MSE(Wout,aout) = trace(Cov (y(t),y(t))−W>out(Γ(0) + 2λIN )Wout), (2.13)

that can be encoded under the form of a memory capacity CH(θ, C, λ) with values between zero and
one that depends on the task H that is being tackled, the input mask C, the reservoir parameters θ
and the regularization constant λ:

CH(θ, C, λ) :=1− MSE(Wout,aout)

trace (Cov(y(t),y(t)))
=

trace(W>out(Γ(0) + 2λIN )Wout)

trace (Cov(y(t),y(t)))
, (2.14)

where Wout is provided by the solution in (2.11). In order to evaluate (2.14) for a specific memory
task, the expressions of Γ(0), Cov(x(t),y(t)), and Cov(y(t),y(t)) need to be computed. The matrix
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Γ(0) depends exclusively on the input signal and the reservoir architecture but Cov(y(t),y(t)) and
Cov(x(t),y(t)) are related to the specific memory task H at hand. The computation of (2.14) is in
general very complicated and that is why in [Grig 15a] we introduced a simplified reservoir model
that allowed us to efficiently evaluate it for one-dimensional statistically independent input signals
and memory tasks. The extension of this theoretical tool to a multidimensional setup and to parallel
architectures is one of the main goals of this paper.

Finally, there are situations in which the moments µx, µy, Γ(0), and Cov(x(t),y(t)), necessary to
compute the readout layer (Wout,aout) using the equations (2.11)-(2.12), are obtained directly out of
finite sample realizations of the teaching signal and of the reservoir output. The use in that context of
finite sample empirical estimators carries in its wake an additional error that adds up to the characteristic
error (2.13) and that we study later on in Section 3.4.

Figure 1: Diagram representing the architecture of a TDR reservoir with a multitask readout. The module A is the input
layer, B is a neural diagram representing the discrete-time reservoir dynamics implied by equation (2.6), and C
is the multitask readout layer in which each column of the matrix Wout accomplishes a different task based on
the same reservoir output.

3 Reservoir memory capacities for parallel architectures and
for multidimensional input signals and tasks

In this section we generalize the reservoir model proposed in [Grig 15a] in order to accommodate the
treatment of multidimensional input signals and the computation of memory capacities associated to
the execution of several simultaneous memory tasks, as well as the performance evaluation of parallel
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reservoir architectures. The main virtue of the reservoir model is that it allows for the explicit compu-
tation of the different elements that constitute the capacity formula (2.14) making hence accessible its
evaluation.

In the last section we study the dependence of the reservoir performance on the length of the teaching
signal and the regularization regression parameter. In particular we formulate asymptotic expressions
that provide an estimation of the added error that is commited in memory tasks when the training is
incomplete due to the finiteness of the training sample.

The reservoir model introduced in [Grig 15a] is based on the observation that optimal reservoir per-
formance is frequently attained when the reservoir is functioning in a neighborhood of an asymptotically
stable equilibrium of the autonomous system associated to (2.2). This feature suggests the possibility
of approximating the reservoir by its partial linearization at that stable fixed point with respect to
the delayed self feedback but keeping the nonlinearity at the level of the input signal injection. This
observation motivated in [Grig 15a] an in-depth study of the stability properties of the equilibria x0 of
the time-delay differential equation (2.2) and of the corresponding fixed points x0 = x0iN ∈ RN of the
discrete-time approximation (2.7), both considered in the autonomous regime, that is, when I(t) = 0
in (2.2) and I(t) = 0N in (2.7), respectively. In particular, it was shown that (see Corollary D.5 and
Theorem D.10 in the Supplementary Material in [Grig 15a]) that |∂xf(x0, 0,θ)| < 1 is a sufficient con-
dition for the asymptotic stability of x0 ∈ R and x0 = x0iN ∈ RN in the continuous and discrete-time
cases, respectively, which given a particular kernel f allows for the identification of specific regions in
parameter space in which stability is guaranteed (see Corollaries D.6 and D.7 of the Supplementary
Material in [Grig 15a] for the Mackey-Glass and Ikeda kernel cases).

3.1 The reservoir model for multidimensional input signals

Consider a discrete-time TDR described by a reservoir map F : RN × RN × RK → RN as in (2.7). Let
x0 ∈ RN be a stable fixed point of the autonomous systems associated to (2.7), that is, F (x0,0N ,θ) =
x0. In order to write down the approximate reservoir model as in [Grig 15a] we start by approximating
(2.7) by its partial linearization at x0 with respect to the delayed self feedback and by the Rth-order
Taylor series expansion on the input forcing I(t) ∈ RN . We obtain the following expression:

x(t) = F (x0,0N ,θ) +A(x0,θ)(x(t− 1)− x0) + ε(t), (3.1)

where F (x0,0N ,θ) is the reservoir map evaluated at the point (x0,0N ,θ) andA(x0,θ) := DxF (x0,0N ,θ)
is the first derivative of F with respect to its first argument, computed at the point (x0,0N ,θ). The
vector ε(t) ∈ RN , t ∈ Z, in (3.1) is obtained out of the Taylor series expansion of F (x(t), I(t),θ) in (2.7)
on I(t) up to some fixed order R ∈ N. For each r ∈ {1, . . . , N} its rth component can be written as

εr(t) = (1− e−ξ)
R∑
i=1

1

i!
(∂

(i)
I f)(x0, 0,θ)

r∑
j=1

e−(r−j)ξIj(t)
i, (3.2)

where (∂
(i)
I f)(x0, 0,θ) is the ith order partial derivative of the nonlinear reservoir kernel map f in (2.2)

with respect to the second argument I(t) computed at the point (x0, 0,θ). Finally, A(x0,θ) is called
the connectivity matrix of the reservoir at the point x0 and has the following explicit form

A(x0,θ) =


Φ 0 . . . 0 e−ξ

e−ξΦ Φ . . . 0 e−2ξ

e−2ξΦ e−ξΦ . . . 0 e−3ξ

...
...

. . .
...

...

e−(N−1)ξΦ e−(N−2)ξΦ . . . e−ξΦ Φ + e−Nξ

, (3.3)
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where Φ := (1 − e−ξ)∂xf(x0, 0,θ) and ∂xf(x0, 0,θ) is the first derivative of the nonlinear kernel f in
(2.2) with respect to the first argument and computed at the point (x0, 0,θ).

Suppose now that the input signal is a collection of n-dimensional independent and identically
distributed random variables {z(t)}t∈Z ∼ IID(0n,Σz), Σz ∈ S+n , and that we take as input mask the
matrix C ∈ MN,n. Since for each t ∈ Z the input forcing I(t) ∈ RN is constructed via the assignment
I(t) := Cz(t) we have that {I(t)}t∈Z ∼ IID(0N ,ΣI), with ΣI := CΣzC

>. It follows then that Ij(t) =∑n
k=1 Cjkzk(t) which substituted in (3.2) yields that

ε(t) = (1− e−ξ)


VR (z(t), {C1,·} , x0,θ)

VR

(
z(t), {Cj,·}j∈{1,2} , x0,θ

)
...

VR

(
z(t), {Cj,·}j∈{1,...,N} , x0,θ

)

 , (3.4)

with the polynomials

VR

(
z(t), {Cj,·}j∈{1,...,r} , x0,θ

)
:=

R∑
i=1

(∂
(i)
I f)(x0, 0,θ)

r∑
j=1

e−(r−j)ξ
∑

k1+···+kn=i

1

k1! . . . kn!

n∏
s=1

Cksjs ·
n∏
s=1

zs(t)
ks .

(3.5)

The symbol {Cj,·}, j ∈ {1, . . . N}, denotes the set of all the entries in the jth row of the input mask
matrix C. The assumption {z(t)}t∈Z ∼ IID(0n,Σz) implies that {ε(t)}t∈Z is also a family of N -
dimensional independent and identically distributed random variables with mean µε and covariance
matrix Σε given by

(µε)r = (1− e−ξ)
R∑
i=1

(∂
(i)
I f)(x0, 0,θ)

r∑
j=1

e−(r−j)ξ
∑

k1+···+kn=i

1

k1! . . . kn!

n∏
s=1

Cksjs · µk1,...,kn(z), (3.6)

where

µk1,...,kn(z(t)) := E

[
n∏
s=1

zs(t)
ks

]
(3.7)

denotes a higher-order moment of z(t) ∈ Rn whose existence we assume for values k1, . . . , kn such that
k1 + · · · + kn ≤ 2R. Additionally, Σε := E

[
(ε(t)− µε)(ε(t)− µε)>

]
has entries determined by the

relation:

(Σε)rs = (1− e−ξ)2E
[
VR

(
z(t), {Cj,·}j∈{1,...,r} , x0,θ

)
· VR

(
z(t), {Cj,·}j∈{1,...,s} , x0,θ

)]
− (µε)r(µε)s, r, s ∈ {1, . . . , N} , (3.8)

where the first summand is computed by first multiplying the polynomials VR

(
z, {Cj,·}j∈{1,...,r} , x0,θ

)
and VR

(
z, {Cj,·}j∈{1,...,s} , x0,θ

)
on the variable z ∈ Rn and subsequently evaluating the resulting

polynomial according to the following convention: any monomial of the form azk11 · · · zknn is replaced by
aµk1,...,kn(z).

A particular case in which the higher-order moments (3.7) can be readily computed is when {z(t)}t∈Z ∼
IN(0n,Σz), that is, {z(t)}t∈Z follows an n-dimensional multivariate normal distribution. Indeed, follow-
ing [Holm 88, Tria 03], let k1, . . . , kn ∈ N be n nonzero natural numbers such that K := k1+k2+· · ·+kn
and let zK :=

(
z1i
>
k1
, z2i

>
k2
, . . . , zni>kn

)> ∈ RK . The vector zK ∈ RK is Gaussian with zero mean
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and covariance matrix ΣKz ∈ SK given by (ΣKz )ij = Cov(zKi , z
K
j ), for any i, j ∈ {1, . . . ,K}, that is,

zK ∼ IN(0K ,Σ
K
z ). Then, using Theorem 1 in [Tria 03], we can write that

µk1,...,kn(z) =

 Hf(ΣKz ), when K = 2l, l ∈ N,

0, otherwise,
(3.9)

where the symbol Hf(ΣKz ) denotes the hafnian of the covariance matrix ΣKz of order 2l, l ∈ N, defined
by

Hf(ΣKz ) :=
∑
I,J

(ΣKz )i′1j′1(ΣKz )i′2j′2 · · · (Σ
K
z )i′lj′l , (3.10)

where the sum is running over all the possible decompositions of {1, 2, . . . , 2l = K} into disjoint subsets
I, J of the form I = {i′1, . . . , i′l}, J = {j′1, . . . , j′l}, such that i′1 < · · · < i′l, j

′
1 < · · · < j′l , and i′w < j′w, for

each w ∈ {1, . . . , l}.
We now proceed as in [Grig 15a] and consider (3.1) as a VAR(1) model [Lutk 05] driven by the

independent noise {ε(t)}t∈Z. If we assume that the nonlinear kernel f satisfies the stability condi-
tion |∂xf(x0, 0,θ)| < 1, then the proof of Theorem D.10 in [Grig 15a] shows that the spectral radius
ρ(A(x0,θ)) < 1, which implies in turn that (3.1) has a unique causal and second order stationary
solution [Lutk 05, Proposition 2.1] {x(t)}t∈Z with time-independent mean

µx = (IN −A(x0,θ))−1(F (x0,0N ,θ)−A(x0,θ)x0 + µε). (3.11)

The model (3.1) can hence be rewritten in mean-adjusted form as

x(t)− µx = A(x0,θ)(x(t− 1)− µx) + (ε(t)− µε). (3.12)

Additionally, the autocovariance function Γ(k) := E
[
(x(t)− µx) (x(t− k)− µx)

>
]

at lag k ∈ Z is

determined by the Yule-Walker equations [Lutk 05], which have the following solutions in vectorized
form:

vech(Γ(0)) = (IN ′ − LN (A(x0,θ)⊗A(x0,θ)))−1vech(Σε), (3.13)

Γ(k) = A(x0,θ)Γ(k − 1) with Γ(−k) = Γ(k)>, (3.14)

where N ′ :=
1

2
N(N + 1) and LN ∈ MN ′,N2 , DN ∈ MN2,N ′ are the elimination and the duplication

matrices, respectively. We recall that the autocovariance function Γ(0) is one of the key components of
the capacity formula (2.14) that we intend to explicitly evaluate.

3.2 The reservoir model for parallel TDRs with multidimensional input sig-
nals

In this section we generalize the reservoir model that we just developed to the parallel time-delay reser-
voir architecture that introduced in [Orti 12, Grig 14]. This reservoir design has shown very satisfactory
robustness properties with respect to model misspecification and parameter choice. The basic idea on
which this approach is built consists of presenting the input signal to a parallel array of reservoirs, each
of them running with different parameter values. The concatenation of the outputs of these reservoirs
is then used to construct a single readout layer via a ridge regression. Figure 2 provides a diagram
representing the parallel reservoir computing architecture.

Discrete-time description of the parallel TDRs. Consider a parallel array of p time-delay
reservoirs as in Figure 2. For each j ∈ {1, . . . , p}, the jth time-delay reservoir is based on a time-delay
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Figure 2: Diagram representing the architecture of a parallel reservoir computer.

differential equation like (2.2), has an associated nonlinear kernel f (j) that depends on the parameters

vector θ(j) ∈ RKj and the time-delay τj > 0, namely

ẋ(t) = −x(t) + f (j)(x(t− τj), I(t),θ(j)). (3.15)

Let Nj ∈ N be the number of the virtual neurons of the jth reservoir and let dj := τj/Nj be the
corresponding separation between neurons. Let N∗ :=

∑p
j=1Nj and K∗ :=

∑p
j=1Kj be the total

number of virtual neurons and the total number of parameters of the parallel array, respectively. The
discrete-time description of the parallel array of p TDRs with total number of neurons N∗ is obtained
by Euler time-discretizing each of the differential equations (3.15) with integration step dj and by
organizing the solutions in neural layers described by the following recursions

x
(j)
i (t) := e−ξ

(j)

x
(j)
i−1(t) + (1− e−ξ

(j)

)f (j)(x
(j)
i (t− 1), (I(j)(t))i,θ

(j)), i ∈ {1, . . . , Nj}, j ∈ {1, . . . , p}
(3.16)

with ξ(j) := log(1 + dj) and using the convention x
(j)
0 (t) := x

(j)
Nj

(t − 1). The different p input forcings

I(j)(t) ∈ RNj , j ∈ {1, . . . , p}, are created out of the n-dimensional input signal {z(t)}t∈Z by using p
input masks C(j) ∈MNj ,n and by setting I(j)(t) := C(j)z(t).

Consider now X(t) =
(
x(1)(t), . . . ,x(p)(t)

)
∈ RN∗ , where x(j)(t) ∈ RNj , j ∈ {1, . . . , p}, is the

neuron layer at time t corresponding to the jth individual TDR. As in the case of the individually
operating time-delay reservoir in Section 3.1, the recursions (3.16) uniquely determine reservoir maps
F (j) : RNj ×RNj ×RKj → RNj , constructed out of the associated nonlinear kernels f (j), j ∈ {1, . . . , p}
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that can be put together to determine the map
x(1)(t)
x(2)(t)

...
x(p)(t)

 =


F (1)(x(1)(t− 1), I(1)(t),θ(1))

F (2)(x(2)(t− 1), I(2)(t),θ(2))
...

F (p)(x(p)(t− 1), I(p)(t),θ(p))

 . (3.17)

that can be rewritten as
X(t) = F (X(t− 1), I(t),Θ), (3.18)

where F : RN∗×RN∗×RK∗ → RN∗ is referred to as the parallel reservoir map, I(t) :=
(
I(1)(t), . . . , I(p)(t)

)
,

and Θ := (θ(1), . . . ,θ(p)) ∈ RK∗ is the vector containing all the parameters of the parallel array of TDRs.
Parallel TDRs based on the recursion (3.18) are referred to in the sequel as discrete-time parallel
TDRs.

We now generalize to the parallel context the reservoir model that we introduced in Section 3.1. We

start by choosing p stable equibria x
(j)
0 of the dynamical systems (3.15) or, equivalently, p fixed points

of the form x
(j)
0 := x

(j)
0 iNj

of each of the reservoir maps in (3.17). These fixed points determine a fixed

point X0 := (x
(1)
0 , . . . ,x

(p)
0 ) ∈ RN∗ of the parallel array in (3.18). Now, as in Section 3.1 we partially

linearize (3.18) at X0 and use a higher Rth-order Taylor series expansion on the forcing I(t) ∈ RN∗ .
Analogously to the single reservoir case, we obtain that

X(t) = F (X0,0N∗ ,Θ) +A(X0,Θ)(X(t− 1)−X0) + ε(X0,Θ)(t), (3.19)

where A(X0,Θ) := DXF (X0,0N∗ ,Θ) is the parallel reservoir connectivity matrix, which is the
first derivative of F with respect to its first argument and evaluated at the point (X0,Θ), and

ε(t)(X0,Θ) :=


ε(t)(x

(1)
0 ,θ(1))

ε(t)(x
(2)
0 ,θ(2))

...

ε(t)(x
(p)
0 ,θ(p))

 ∈ RN
∗

(3.20)

with

ε(t)(x
(j)
0 ,θ(j)) := (1− e−ξ

(j)

)



V
(j)
R

(
z(t),

{
C

(j)
1,·

}
, x

(j)
0 ,θ(j)

)
V

(j)
R

(
z(t),

{
C

(j)
i,·

}
i∈{1,2}

, x
(j)
0 ,θ(j)

)
...

V
(j)
R

(
z(t),

{
C

(j)
i,·

}
i∈{1,...,Nj}

, x
(j)
0 ,θ(j)

)


∈ RNj , j ∈ {1, . . . , p} ,

(3.21)

where the polynomials V
(j)
R are defined as in (3.5). The assumption that the input signal {z(t)}t∈Z is a

family of n-dimensional independent and identically distributed random variables implies that the same
property holds for the family

{
ε(X0,Θ)(t)

}
t∈Z of N∗-dimensional random variables in (3.19), namely,

that
{
ε(X0,Θ)(t)

}
t∈Z ∼ IID(µ

(X0,Θ)
ε ,Σ

(X0,Θ)
ε ). The mean µ

(X0,Θ)
ε can be written as

µ(X0,Θ)
ε =


µ

(x
(1)
0 ,θ(1))

ε

µ
(x

(2)
0 ,θ(2))

ε

...

µ
(x

(p)
0 ,θ(p))

ε

 , (3.22)
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where µ
(x

(j)
0 ,θ(j))

ε := E
[
ε(t)(x

(j)
0 ,θ(j))

]
∈ RNj , j ∈ {1, . . . , p}, whose components are determined by an

expression of the form (3.6), that is,(
µ

(x
(j)
0 ,θ(j))

ε

)
r

=(1− e−ξ
(j)

)

R∑
i=1

(∂
(i)
I f (j))(x

(j)
0 , 0,θ(j))

r∑
j′=1

e−(r−j
′)ξ(j)

×
∑

k1+···+kn=i

1

k1! . . . kn!

n∏
s=1

(C
(j)
j′s)

ks · µk1,...,kn(z), r ∈ {1, . . . , Nj} . (3.23)

Additionally, the covariance matrix Σ
(X0,Θ)
ε := E

[
(ε(X0,Θ)(t)− µ(X0,Θ)

ε )(ε(X0,Θ)(t)− µ(X0,Θ)
ε )>

]
can

be written as

Σ(X0,Θ)
ε =


Σ

(x
(1)
0 ,θ(1)),(x

(1)
0 ,θ(1))

ε . . . Σ
(x

(1)
0 ,θ(1)),(x

(p)
0 ,θ(p))

ε

...
. . .

...

Σ
(x

(p)
0 ,θ(p)),(x

(1)
0 ,θ(1))

ε . . . Σ
(x

(p)
0 ,θ(p)),(x

(p)
0 ,θ(p))

ε

 , (3.24)

where each block Σ
(x

(i)
0 ,θ(i)),(x

(j)
0 ,θ(j))

ε ∈ MNi,Nj
, i, j ∈ {1, . . . , p} represents the covariance between the

innovation components that drive the ith and the jth time-delay reservoirs, respectively, and which has
entries determined by:

(Σ
(x

(i)
0 ,θ(i)),(x

(j)
0 ,θ(j))

ε )rs =(1− e−ξ
(i)

)(1− e−ξ
(j)

)E
[
V

(i)
R

(
z(t),

{
C

(i)
j′,·

}
j′∈{1,...,r}

, x
(i)
0 ,θ(i)

)
× V (i)

R

(
z(t),

{
C

(j)
j′,·

}
j′∈{1,...,s}

, x
(j)
0 ,θ(j)

)]
− (µ

(x
(i)
0 ,θ(i))

ε )r(µ
(x

(j)
0 ,θ(j))

ε )s, r ∈ {1, . . . , Ni} , s ∈ {1, . . . , Nj} , (3.25)

where the first summand is computed using the same approach that we described in expression (3.8).
The connectivity matrix can be easily written in terms of the connectivity matrices of each of the

reservoirs that make up the parallel pool as

A(X0,Θ) := DXF (X0,0N∗Θ) =


A(1)(x

(1)
0 ,θ(1)) ON1,N2 · · · ON1,Np

ON2,N1 A(2)(x
(2)
0 ,θ(2)) · · · ON2,Np

...
...

. . .
...

ONp,N1
ONp,N2

· · · A(p)(x
(p)
0 ,θ(p))

 , (3.26)

where for each j ∈ {1, . . . , p} the matrix A(j)(x
(j)
0 ,θ(j)) := DxF

(j)(x
(j)
0 ,0Nj

,θ(j)) is the connectivity

matrix of the jth TDR, determined as the first derivative of the corresponding jth reservoir map F (j)

with respect to its first argument, evaluated at the point (x
(j)
0 ,0Nj

,θ(j)). Each of those individual

connectivity matrices A(j)(x
(j)
0 ,θ(j)) has the explicit form provided in (3.3). Moreover, if for each of the

individual equilibria x
(j)
0 used in the construction we require the stability condition |∂xf (j)(x(j)0 , 0,θ)| <

1, then by the proof of Theorem D.10 in [Grig 15a] we have that the spectral radii ρ(A(j)(x
(j)
0 ,θ(j))) < 1

and, consequently
ρ(A(X0,Θ)) < 1. (3.27)

In these conditions, (3.19) determines a VAR(1) model driven by the noise
{
ε(X0,Θ)(t)

}
t∈Z ∼

IID(µ
(X0,Θ)
ε ,Σ

(X0,Θ)
ε ) and that has a unique causal and second order stationary solution {X(t)}t∈Z
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with time-independent mean

µ
(X0,Θ)
X =


µ

(x
(1)
0 ,θ(1))

x

µ
(x

(2)
0 ,θ(2))

x

...

µ
(x

(p)
0 ,θ(p))

x

 , (3.28)

with

µ
(x

(j)
0 ,θ(j))

x = (INj −A(j)(x
(j)
0 ,θ(j)))−1(F (j)(x

(j)
0 ,0Nj ,θ

(j))−A(j)(x
(j)
0 ,θ(j))x

(j)
0 + µ

(x
(j)
0 ,θ(j))

ε ). (3.29)

This allows us to write the parallel reservoir model (3.19) in mean-adjusted form as

X(t)− µ(X0,Θ)
X = A(X0,Θ)(X(t− 1)− µ(X0,Θ)

X ) + (ε(t)(X0,Θ) − µ(X0,Θ)
ε ). (3.30)

Finally, the autocovariance function Γ(k) := E[(X(t)−µ(X0,Θ)
X )(X(t− k)−µ(X0,Θ)

X )>] of {X(t)}t∈Z at
lag k ∈ Z is determined by the Yule-Walker equations [Lutk 05] whose solutions in vectorized form are:

vech(Γ(0)) = (IN∗′ − LN∗(A(X0,Θ)⊗A(X0,Θ))DN∗)
−1

vech(Σ(X0,Θ)
ε ), (3.31)

Γ(k) = A(X0,Θ)Γ(k − 1) with Γ(−k) = Γ(k)>, (3.32)

where N∗
′

:=
1

2
N∗(N∗ + 1) and LN∗ ∈ MN∗′ ,N∗2 , DN∗ ∈ MN∗2,N∗′ are the elimination and the

duplication matrices, respectively.

3.3 Memory capacity estimations for multidimensional memory tasks

In what follows we explain how to use the reservoir models (3.12) and (3.30) presented in the previous two
sections as well as their dynamical features in order to explicitly compute the reservoir capacities (2.14)
associated to different memory tasks. As we explained in (2.8), a memory task is determined by a map

H : R(h+1)n −→ Rq
vec(z(t), . . . , z(t− h)) 7→ y(t),

(3.33)

with q, h ∈ N, that is made out of q different real valued functions of the input signal, h time steps
into the past. The reservoir memory capacity CH(θ, C, λ) associated to H measures the ability of the
reservoir with parameters θ to recover that function after being trained using a teaching signal.

In the next paragraphs we place ourselves in the context of a parallel array of p time delay reservoirs
as in Figure 2, with collective nonlinear kernel parameters Θ ∈ RK∗ and operating in the neighbourhood
of a stable fixed point X0 ∈ RN∗ , with N∗ and K∗ the total number of neurons and the total number
of parameters of the array, respectively. In order to estimate in this context the formula (2.14), we
first use the parallel TDR model (3.30) in order to determine the autocovariance Γ(0) ∈ SN∗ out of the
solutions (3.31) of the Yule-Walker equation. The input signal {z(t)}t∈Z is assumed to be a family of
n-dimensional independent and identically distributed random variables with mean zero and covariance
matrix Σz ∈ S+n , that is {z(t)}t∈Z ∼ IID(0n,Σz). In these conditions, once a specific memory task
of interest has been determined, all that is needed in order to complete the evaluation of the capacity
formula (2.14) is the expressions for Cov(X(t),y(t)) and trace (Cov(y(t),y(t))) that we now explicitly
derive for the particular cases of the linear and quadratic memory tasks, respectively.

Linear memory task. Consider the linear q-dimensional h-lag memory task function H : R(h+1)n −→
Rq determined by the assignment H(zh(t)) := L>zh(t) =: y(t), where zh(t) = vec(z(t), z(t−1), . . . , z(t−
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h)) ∈ R(h+1)n and L ∈M(h+1)n,q. We now compute in this case Cov(X(t),y(t)) and trace (Cov(y(t),y(t))) =

Cov(y(t)>,y(t)>), that are required for the memory capacity evaluation.
(i) We start with Cov(y(t)>,y(t)>) and write

Cov(y(t)>,y(t)>) = E
[
y(t)>y(t)

]
− E

[
y(t)>

]
E [y(t)]

= E
[
zh(t)>LL>zh(t)

]
= trace

(
LL>E[zh(t)zh(t)>]

)
= trace(LL>Σzh), (3.34)

where the covariance matrix Σzh ∈ S(h+1)n×(h+1)n has the form

Σzh =

 Σz · · · On
...

. . .
...

On · · · Σz

 .

(ii) We now compute Cov(X(t),y(t)). As we already pointed out, the stability condition on the fixed
point X0 implies that the unique stationary solution of the VAR(1) model (3.30) admits a MA(∞)
representation of the form:

X(t)− µ(X0,Θ)
X =

∞∑
j=0

Ψjρ(t− j), (3.35)

with Ψj ∈ MN∗ and ρ(t) := ε(t)(X0,Θ) − µ(X0,Θ)
ε . Then, for any i ∈ {1, . . . , N∗} and j ∈ {1, . . . , q} we

write

Cov(Xi(t), yj(t)) =

∞∑
k=0

Cov((Ψkρ(t− k))i, (L
> · zh(t))j) =

∞∑
k=0

N∗∑
u=1

(h+1)n∑
v=1

(Ψk)iuLvjE[ρu(t− k)(zh(t))v]

=

∞∑
k=0

N∗∑
u=1

n∑
v=1

h+1∑
s=1

(Ψk)iuLv·s,jE[(εu(t− k)(X0,Θ) − (µ(X0,Θ)
ε )u)zv(t− s+ 1)]

=

N∗∑
u=1

n∑
v=1

h∑
s=0

(Ψs)iuLv·s,jE[εu(t− s)(X0,Θ)zv(t− s)], (3.36)

where the vector ε(t)(X0,Θ) is provided in (3.20)-(3.21) and the expectations E[εu(t− s)(X0,Θ)zv(t− s)]
are computed by multiplying the VR polynomial corresponding to εu(t)(X0,Θ) by the monomial zv(t);
the resulting polynomial is the evaluated on the higher order moments of {z(t)}t∈Z using the same rule
that we stated after (3.8).

Quadratic memory task. Consider now the quadratic q-dimensional h-lag memory task function
H : R(h+1)n −→ Rq determined by the assignment H(zh(t)) := Q · vech(zh(t) · zh(t)>) =: y(t), where

zh(t) = vec(z(t), z(t−1), . . . , z(t−h)) ∈ R(h+1)n, Q ∈Mq,q∗ and q∗ :=
1

2
(h+1)n((h+1)n+1). We now

provide explicit expressions for Cov(X(t),y(t)) and Cov(y(t)>,y(t)>) in this case, that are required in
order to evaluate the corresponding memory capacity.
(i) We start with Cov(y(t)>,y(t)>). Let Mh := zh(t)zh(t)> and write

Cov(y(t)>,y(t)>) = E
[
y(t)>y(t)

]
− E

[
y(t)>

]
E [y(t)]

= E[(vech(zh(t)zh(t)>))>Q>Q(vech(zh(t)zh(t)>))]− E
[
y(t)>

]
E [y(t)]

= trace(Q>Q · E[vech(Mh)(vech(Mh))>])− E
[
y(t)>

]
E [y(t)] . (3.37)
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Notice now that for any i, j ∈ {1, . . . , (h+ 1)n} there exist li, lj ∈ {0, . . . , h} and mi,mj ∈ {0, . . . , n}
such that i = lip+mi, j = ljp+mj and hence

Mh
ij = (zh(t)zh(t)>)ij = zmi(t− li)zmj (t− lj). (3.38)

Consequently, for any i, j ∈ {1, . . . , (h+ 1)n}

E[vech(Mh)vech(Mh)>ij ] = E[vech(Mh)ivech(Mh)j ] = E[Mh
σ−1(i)M

h
σ−1(j)]

= E[zmr(i)
(t− lr(i))zms(i)

(t− ls(i))zmu(j)
(t− lu(j))zmv(j)

(t− lv(j))], (3.39)

where the operator σ−1 assigns to the index of the position of an element in vech(Mh) the two in-
dices corresponding to its position in the matrix Mh ∈ Sq∗ . In this expression (r(i), s(i)) := σ−1(i),
(u(j), v(j)) := σ−1(j) and r(i) = lr(i)p + mr(i), s(i) = ls(i)p + ms(i), u(j) = lu(j)p + mu(j), v(j) =
lv(j)p+mv(j) with lr(i), ls(i), lu(j), lv(j) ∈ {0, . . . , h} and mr(i),ms(i),mu(j),mv(j) ∈ {1, . . . , p}. Addition-
ally, using this notation the following relation holds true

E [yk(t)] =

q∗∑
i=1

QkjE[(vech(Mh))i] =

q∗∑
j=1

QkjE[zmr(i)
(t− lr(i))zms(i)

(t− ls(i))]. (3.40)

We hence now can derive the expression for (3.37) as

Cov(y(t)>,y(t)>) =

q∗∑
i=1

q∑
k=1

Qki

( q∗∑
j=1

Qkj · E[zmr(i)
(t− lr(i))zms(i)

(t− ls(i))zmu(j)
(t− lu(j))zmv(j)

(t− lv(j))]

−QkiE[zmr(i)
(t− lr(i))zms(i)

(t− ls(i))]2
)
, (3.41)

where we used the same notation as in (3.39) and (3.40).
(ii) Cov(X(t),y(t)): for any i ∈ {1, . . . , N∗}, j ∈ {1, . . . , q} we have

Cov(Xi(t), yj(t)) =

∞∑
k=0

Cov((Ψkρ(t− k))i, (Q · vech(Mh))j)

=

∞∑
k=0

N∗∑
u=1

q∗∑
v=1

(Ψk)iuQjvE[ρu(t− k)(vech(Mh))v]

=

∞∑
k=0

N∗∑
u=1

q∗∑
v=1

(Ψk)iuQjvE[(εu(t− k)(X0,Θ) − (µ(X0,Θ)
ε )u)(vech(Mh))v]

=

∞∑
k=0

N∗∑
u=1

q∗∑
v=1

(Ψk)iuQjv{E[(εu(t− k)(X0,Θ) − (µ(X0,Θ)
ε )u)zmr(v)

(t− lmr(v)
)zms(v)

(t− lms(v)
)]}

=

h∑
k=0

N∗∑
u=1

q∗∑
v=1

(Ψk)iuQjv{E[εu(t− k)(X0,Θ) · zmr(v)
(t− lmr(v)

)zms(v)
(t− lms(v)

)]

− (µ(X0,Θ)
ε )uE[zmr(v)

(t− lmr(v)
)zms(v)

(t− lms(v)
)]}, (3.42)

where the vector ε(t)(X0,Θ) is provided in (3.20)-(3.21) and where we used the same notation as in (3.39)
and (3.40).
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3.4 The impact of the teaching signal size in the reservoir performance

In the preceding sections we evaluated the reservoir characteristic error or, equivalently, its capacity, in
terms of various second order moments of the input signal and the reservoir output that in turn can be
explicitly written in terms of the reservoir parameters. There are situations in which those moments are
obtained directly out of finite sample realizations of the teaching signal and of the reservoir output using
empirical estimators. That approach introduces an estimation error in the readout layer (Wout,aout)
that that adds to the characteristic error (2.13). The quantification of that error is the main goal of
this section. Since this error depends on the value of the regularizing constant λ, the pair (Wλ,aλ) will
denote in what follows the optimal readout layer (Wout,aout) given by (2.11)-(2.12) for a fixed value of
the parameter λ.

Properties of the ridge estimator. Consider now {x(1),x(2), . . . ,x(T )} and {y(1),y(2), . . . ,y(T )}
samples of size T of the reservoir output {x(t)}t∈N and the teaching signal {y(t)}t∈N processes. We
concatenate horizontally these observations and we obtain the matrices X := (x(1)|x(2)| . . . |x(T )) ∈
MN,T and Y := (y(1)|y(2)| . . . |y(T )) ∈Mq,T . We now quantify the cost in terms of memory capacity or,
equivalently, increased error, of using in the RC not the optimal readout layer (Wλ,aλ) given by (2.11)-

(2.12) but an estimation (Ŵλ, âλ) of it based on estimators of the different moments present in those
expressions using X and Y . More specifically, for a fixed λ and samples X and Y , we produce an
estimation (Ŵλ, âλ) of (Wλ,aλ) by using in (2.11)-(2.12) the empirical estimators

µ̂x :=
1

T
XiT , µ̂y :=

1

T
Y iT , Γ̂(0) :=

1

T
XX> − µ̂xµ̂

>
x =

1

T
XAX>, (3.43)

Cov (y(t),y(t))
∧

=
1

T
Y Y > − µ̂yµ̂

>
y =

1

T
Y AY >, (3.44)

Cov (x(t),y(t))
∧

=
1

T
XY > − µ̂xµ̂

>
y =

1

T
XAY >, (3.45)

where A := IT −
1

T
iT i>T . These expressions substituted in (2.11)-(2.12) yield

Ŵλ =(Γ̂(0) + λIN )−1Cov (x(t),y(t))
∧

= (XAX> + λT IN )−1XAY >, (3.46)

âλ =µ̂y − Ŵ>λ µ̂x =
1

T
(Y − Ŵ>λ X)iT , (3.47)

and determine a finite sample ridge regression estimator. The error associated to its use can be read
out of its statistical properties that have been studied in the literature under various hypotheses. In the
sequel we follow [Grig 15b], where (Ŵλ, âλ) is considered as a ridge estimator of the regression model

y(t) = a+W>x(t) + ε(t), (3.48)

with a ∈ Rq a constant vector-intercept, W ∈MN,q, and where the different random variables in (3.48)
are assumed to satisfy the following hypotheses:

(H1) The error terms {ε(t)}t∈Z constitute a family of q-dimensional independent normally distributed
vectors with mean 0q and covariance matrix Σqε ∈ Sq, that is, {ε(t)}t∈Z ∼ IN(0q,Σ

q
ε).

(H2) {x(t)}t∈Z is a stochastic process such that x(t) ∈ RN is a random vector independent of ε(s) ∈ Rq
for any t, s ∈ Z.

(H3) The processes {x(t)}t∈Z, {y(t)}t∈Z, and the joint process {(x(t),y(t))}t∈Z are second-order er-
godic. This implies that the estimators in (3.43)-(3.45) converge to the corresponding moments
when T → ∞ and also that these are second-order stationary (their means and autocovariances
are time-independent).
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Under those hypotheses, it can be shown that the estimator (Ŵλ, âλ) has the properties described in
the following result whose proof can be found in [Grig 15b]. In the statement we use the notation
Z ∼ MNm,n(MZ , UZ , VZ) to indicate that Z ∈Mm,n is a matrix random variable distributed according
to the matrix normal distribution with mean matrix MZ ∈Mm,n and scale matrices UZ ∈ Sm, VZ ∈ Sn.
Details on these distributions can be found in [Gupt 00], and references therein.

Proposition 3.1 Consider the regression problem in (3.48) subjected to the hypotheses (H1)-(H3) and

let Ŵλ ∈ MN,q and âλ ∈ Rq be the ridge estimators given by (3.46) and (3.47), respectively, based on
the samples of length T contained in the matrices X ∈MN,T and Y ∈Mq,T . Then,

(i) The distribution of the ridge estimator Ŵλ|X of Wλ conditioned by X is given by

(Ŵλ −Wλ)|X ∼ MNN,q(−λTRWλ,Σ
r
W ,Σ

c
W ), (3.49)

or, equivalently,

vec(Ŵλ −Wλ)|X ∼ N(−λTvec(RWλ),ΣcW ⊗ ΣrW ), (3.50)

where the symbol ⊗ stands for the Kronecker product and where the row and column covariance
matrices ΣrW ∈ SN and ΣcW ∈ ST , respectively, are given by

ΣrW = (IN − λTR)R and ΣcW = Σqε, (3.51)

where R := (XAX> + λT IN )−1 and A := IT −
1

T
iT i>T .

(ii) The distribution of the ridge estimator âλ|X of aλ conditioned by X is given by

(âλ − aλ)|X ∼ N(λW>λ RXiT ,Σa), (3.52)

where the covariance matrix Σa ∈ Sq is given by

Σa :=
1

T

(
1 +

1

T
trace((IN − λTR)RXiT i>TX

>)

)
Σqε, (3.53)

and where R is defined as in (i).

(iii) The covariance ΣWa ∈ MNq,q between the conditioned ridge estimators vec(Ŵλ|X) ∈ RNq and
âλ|X ∈ Rq is given by

ΣWa :=
1

T
(vec((IN − λTR)Wλ)i>TX

>((IN − λTR)Wλ)− Σqε ⊗ ((IN − λTR)RXiT )). (3.54)

The regression error with estimated regression parameters. The reservoir error and the corre-
sponding memory capacity in relations (2.13) and (2.14), respectively, were computed assuming that the
optimal ridge parameters (Wλ,aλ) are known. This error, that is exclusively associated to the ability of
the reservoir to perform or not the memory task in question, will be referred to as the characteristic
error and will be denoted as

MSEchar,λ := trace
(

E
[
(Wλ

> · x(t) + aλ − y(t))(Wλ
> · x(t) + aλ − y(t))>

])
= trace(Cov (y(t),y(t))−Cov(x(t),y(t))>(Γ(0)+λIN )−1(Γ(0)+2λIN )(Γ(0)+λIN )−1Cov(x(t),y(t))).

(3.55)
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When the reservoir is put to work using instead a readout layer (Ŵλ, âλ) that has been estimated
using finite sample realizations of the processes {x(t)}t∈Z and {y(t)}t∈Z, the estimation error piles up
with the characteristic one. The resulting error will be called total error and denoted MSEtotal,λ. It
can computed using the distribution properties of the ridge estimator spelled out in Proposition 3.1
under the assumption that the samples (X,Y ) that have been used to obtain the estimate (Ŵλ, âλ)
of the output layer and those to evaluate the RC performance are independent. Indeed, under those
hypotheses, the total reservoir error MSEtotal,λ|X conditional on X is

MSEtotal,λ|X := trace
(

E
[
((Wλ +Mλ)

> · x(t) + aλ + vλ − y(t))((Wλ +Mλ)
> · x(t) + aλ + vλ − y(t))>|X

])
,

where the conditional random variables (Mλ,vλ)|X ∈ MN,q × Rq are independent from the processes
{x(t)}t∈Z and {y(t)}t∈Z and have the same distribution properties than those spelled out in Proposi-

tion 3.1 for (Ŵλ −Wλ, âλ − aλ)|X. The main result in [Grig 15b] shows that, under those hypotheses,
the total error conditional on X is given by

MSEtotal,λ|X = MSEchar,λ +
1

T
trace(Σqε) + trace(Σqε)trace ((IN − λTR)RQ)

+ λ2T 2trace
(
W>λ RQRWλ

)
+ 2λ2T trace(W>λ RWλ), (3.56)

where

Q :=Γ(0) + µxµ
>
x +

1

T 2
XiT i>TX

> − 2

T
µxi
>
TX
> (3.57)

and MSEchar,λ is given by (3.55), Wλ = (Γ(0) + λIN )−1Cov(x(t),y(t)), and where

R = (TΓ(0) + λT IN )−1, R = (XAX> + λT IN )−1, and A = IT −
1

T
iT i>T . (3.58)

In empirical applications, the moments µx and Γ(0) are in practice estimated with the same sample
X,Y used to evaluate the reservoir performance. Therefore, if we replace µx, Γ(0), Cov (y(t),y(t)),

and Cov (x(t),y(t)) in (3.56) by
1

T
XiT ,

1

T
XAX>,

1

T
Y AY > and

1

T
XAY >, respectively, we obtain the

approximated but simpler expression MSEapprox
total,λ(λ)|X for the total error:

MSEapprox
total,λ|X = MSEapprox

char,λ

+
1

T
trace(Σqε)

[
1 + trace((IN − λTR)RXAX>)

]
+ λ2T trace

(
W>λ R(3IN − λTR)Wλ

)
, (3.59)

with

MSEapprox
char,λ =

1

T
trace

(
Y AY > − Y AX>(IN + λTR)RXAY >

)
. (3.60)

This approximation can be taken one step further by replacing in (3.59)Wλ = (Γ(0)+λIN )−1Cov(x(t),y(t))

by its estimator Ŵλ = (XAX> + λT IN )−1XAY > and Σqε by its natural estimator in terms of X and
Y for which

trace(Σ̂qε) = MSEapprox
char,λ .

With these two additional substitutions, the equality (3.59) yields the following approximated expression
for the total error:

MSEapprox
total,λ|X = MSEapprox

char,λ +

+
1

T
MSEapprox

char,λ

[
1 + trace((IN − λTR)RXAX>)

]
+ λ2T trace

(
Y AX>R2(3IN − λTR)RXAY >

)
.
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4 Empirical study

The goal of this section is twofold. First, we will assess the ability of the reservoir model in the
multidimensional setup introduced in Section 3.1 to produce in that context good estimates of the
memory capacity of the original reservoir, both in the continuous and the discrete-time setups. Our
study shows that there is a good match between the performances of the model and of the actual
reservoir and hence shows that the explicit expression of the reservoir capacity coming from the model
can be used to find, for a given multidimensional task with multidimensional input signal, parameters
and input masks for the original system that optimize its performance.

Second, we will use the parallel reservoir model in Section 3.2 and the memory capacity formulas
that can be explicitly written with it, in order to verify various robustness properties of this reservoir
architecture that were already documented in [Grig 14]. These properties have to do mainly with task
misspecification and sensitivity to the parameter choice.

Evaluation of the TDR performance in the processing of multidimensional signals.

In the first empirical experiment we present a quadratic memory task to an individually operating
TDR. More explicitly, we inject in the reservoir a three dimensional independent input signal {z(t)}t∈Z,
z(t) ∈ R3 with mean zero and covariance matrix Σz, and we study its ability to reconstruct the signal

y(t) =
∑3
h=0

∑3
i,j=1 zi(t − h)zj(t − h) ∈ R. In the terminology introduced in Section 3.3, this exercise

amounts to a quadratic task characterized by the vector Q ∈ R78 defined by Q := (vec(Q∗))>D12,
with D12 the duplication matrix in dimension twelve and Q∗ ∈ S12 a block diagonal matrix with four
matrices i3i

>
3 as its diagonal blocks. Indeed, if z3(t) := (z(t), z(t− 1), z(t− 2), z(t− 3)), it is clear that

y(t) = z3(t)>Q∗z3(t) = trace
(
z3(t)>Q∗z3(t)

)
= (vec(Q∗>))>

(
z3(t)⊗ I12

)
vec
(
z3(t)

)
= (vec(Q∗))>vec

(
z3(t)z3(t)>

)
= (vec(Q∗))>D12vech

(
z3(t)z3(t)>

)
= Q · vech

(
z3(t)z3(t)>

)
.

In order to tackle this multidimensional task we use two twenty neuron TDRs constructed using the
Mackey-Glass (2.3) and the Ikeda (2.4) nonlinear kernels. In Figures 3 and 4 we depict the error surfaces
exhibited by both RCs in discrete and continuous time as a function of the distance between neurons
and the feedback gain η and using fixed input gains γ whose values are indicated in the legends. Those
error surfaces are computed using Monte Carlo simulations. At the same time we compute the error
surfaces produced by the corresponding reservoir model and by evaluating the explicit capacity formula
that can be written down in that case. The resulting figures exhibit a remarkable similarity that had
already been observed for scalar input signals in [Grig 15a]. More importantly, the figures show the
ability of the theoretical formula based on the reservoir model to locate the regions in parameter space
for which the reservoir performance is optimal.

Robustness properties of the parallel reservoir architecture.

We now study using the parallel reservoir model introduced in Section 3.2 the robustness properties of
the parallel architecture with respect to parameter choice and misspecification task.

(i) Parallel TDR configurations and robustness with respect to the choice of reservoir
parameters. An interesting feature of parallel TDR architectures that was observed in [Grig 14] is that
optimal performance has a reduced sensitivity with respect to the choice of reservoir parameters when
compared to that of individually operating reservoirs. In order to provide additional evidence of this fact,
we have constructed parallel pools of 2, 5, 10, and 20 parallel Mackey-Glass-based TDRs and we present
to them a nine-lag quadratic memory task is y(t) =

∑9
i=0 z(t− i)2 that, in the terminology introduced

in Section 3.3 corresponds to the quadratic task characterized by the vector Q = (vec(I10))
>
D10, with

D10 the duplication matrix in dimension ten. For each of these parallel TDR architectures, as well as
for an individually operating TDR, we will vary the number of the constituting neurons from 20 to
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Figure 3: Normalized mean square error surfaces exhibited by an individually operating TDR constructed using a nonlinear
Mackey-Glass kernel (2.3) performing a quadratic 3-lags memory task on a 3-dimensional independent mean
zero input signal with covariance matrix Σz given by vech(Σz) = (0.0016, 0.0012, 0.0008, 0.0017, 0.0002, 0.0018).
In these figures the input gain γ = 0.6163 is kept constant. The values of the input mask C ∈ M20,3 are chosen
randomly using a uniform distribution in the interval [−1; 1]. The left and middle panels show the error surfaces
exhibited by the discrete and continuous time reservoirs computed via Monte Carlo simulations. The right panel
shows the error produced by the reservoir model and computed evaluating the explicit capacity formula that
can be written down in that case.

100. For each of these resulting configurations we randomly draw 1000 sets of input masks with entries
uniformly distributed in the interval [−3, 3] and reservoir parameters and distance between neurons d,
also uniformly distributed in the intervals η ∈ [1, 3], γ ∈ [−3, 3], and d ∈ (0, 1).

Figure 5 provides the box plots corresponding to the distributions of normalized mean squared errors
obtained with each configuration by making the input masks and reservoir parameter values randomly
vary, all of them computed using the capacity formulas associated to the parallel reservoir model (3.30).
This figure provides striking evidence of the facts that first, the parallel architecture performs on average
better and second, that this performance is not sensitive to the choice of reservoir parameters and input
mask.

(ii) Parallel TDR configurations and robustness with respect to memory task misspecifi-
cation. The goal of the next experience is to see how, given a specific memory task and given a parallel
array of TDRs or an individually operating one that have been optimized for that particular task, the
performance of the different configurations degrades when the task is modified but not the reservoir
parameters. We use again parallel pools of 1, 2, 5, 10, and 20 Mackey-Glass-based TDRs with neurons
ranging from 10 to 100. For each of those configurations, we choose parameters that optimize their per-
formance with respect to the 3-lag quadratic memory task specified by the matrix Q = (vec(I4))

>
D4 and

with respect to a one-dimensional independent input signal with mean zero and variance 0.0001. Once
the optimal parameters for each configuration have been found using the nonlinear capacity function
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Figure 4: Normalized mean square error surfaces exhibited by an individually operating TDR constructed using a nonlinear
Ikeda kernel (2.4) performing a quadratic 3-lags memory task on a 3-dimensional independent mean zero input
signal with covariance matrix Σz given by vech(Σz) = (0.005, 0.0046, 0.0041, 0.0042, 0.0037, 0.004). In these
figures the input gain γ = 0.3724 and the phase shift φ = 0.7356 are kept constant. The values of the input
mask C ∈ M20,3 are chosen randomly using a uniform distribution on the interval [−1, 1]. The left and middle
panels show the error surfaces exhibited by the discrete and continuous time reservoirs computed via Monte
Carlo simulations. The right panel shows the error produced by the reservoir model and computed evaluating
the explicit capacity formula that can be written down in that case.

based on the reservoir model (3.30), we fix them we subsequently expose the corresponding reservoirs
to different randomly specified memory tasks of a different specification, namely, 1000 different 9-lag
quadratic tasks of the form Q = (vec(Q∗10))

>
D10, where Q∗ ∈ M10 is a randomly generated diagonal

matrix with entries drawn from the uniform distribution on the interval [−10; 10]. Figure 6 contains the
box plots corresponding to the performance distributions of the different configurations. In this case,
parallel architectures offer an improvement on performance and robustness when compared to the single
reservoir design. The most visible improvement is obtained in this case when using a parallel pool of
two reservoirs.
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