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Abstract

This paper presents a method for under-approximating behavioural models with the guarantee that
the abstract paths can be instantiated as executions of the models. This allows a model-based testing
approach to operate on an abstraction of an infinite or very large behavioural model. We characterize
the abstract transitions as may, must+ or must-. This allows us to benefit from Thomas Ball’s result
that any abstract sequence in the shape of must-*.may.must+* (a Ball chain) can be instantiated as a
sequence of connected concrete transitions. We adapt Ball’s work aiming at abstracting C programs to
the case of event systems, where the instantiated Ball chains might not be reachable from a model’s
initial state because our method can abstract the control structure. We propose as a solution to this
problem to symbolically explore the set of states reachable after a finite number of steps. The Ball chains
that start in any of these states are reachable and instantiable. By keeping track of the paths that lead
to these starting states, we are able to instantiate with certainty the sequences made of the reached Ball
chains with their prefix. This method improves the usual methods that often look for instantiations
even though they don’t exist for some sequences. We also propose in this paper a way to compute the
abstraction w.r.t. predicates that are automatically extracted out of a dynamic property expressed in
the Dwyer et al. language. We give experimental results obtained via a proof-of-concept prototype that
we have implemented. They show that many Ball chains are exhibited, reached and concretized by our
method, and that despite the complexity of symbolic exploration, the Ball chains can be reached within
a small number of exploration steps.
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1 Motivations

Model-based testing [BJK+05, UL06] provides a valuable means of revealing inconsistencies between a speci-
fication and an implementation early during the development process. On the one hand, a formal behavioural
model of a system is designed from which a set of tests is computed that ensure a given coverage of the
model. The implementation is developed on the other hand by a different team. The explicit state space of
the model can be very large or even infinite, which makes it hard to select all the paths in it that conform
to a given criterion. Abstraction provides a means to control the size of the state space by gathering the
explicit states into symbolic ones.

This paper presents a model-based testing approach that generates tests from an abstraction of a sys-
tem’s behavioural model, to respond to the challenging problem of dealing with state space explosion. But
generating tests from an abstraction raises two problems, namely: selecting paths of the abstraction that
indeed exist in the model (as it may be over-approximated), and concretizing them so as to obtain executions
of the model.
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Predicate abstraction [GS97] is usually used for verifying programs as in [FQ02, BHT08]. Its principle is
to map the (potentially infinite) set of concrete states onto a finite number of abstract ones, by means of a
set of predicates that characterizes each abstract state. This leads to over-approximations when an abstract
transition between two abstract states only expresses that there are concrete instances of the transition that
go from the source state to the other ; these are called may transitions. A path of may transitions cannot
always be concretized as a path (thus connected) of concrete transitions, because the concrete instances
might be disconnected from each other. For test generation, under-approximations are preferable to over-
approximations since only feasible paths are considered, though maybe not all of them. This is adequate
with the testing paradigm: check some judicious paths though not all of them. This paper focuses on
computing paths of abstract transitions that are guaranteed to be instantiable as connected concrete paths.
This requires more knowledge on the abstract transitions than their may modality.

We consider the tri-modal systems of Thomas Ball [Bal04], which have two additional must+ and must−
modalities for the abstract transitions. The must+ transitions can leave any of the concrete instances of
their abstract source state, while the must− ones can reach any of the concrete instances of their abstract
target state. It is proved in [Bal04] that a sequence in the shape of (must−)∗ ·may · (must+)∗ (henceforth
called a Ball chain) is guaranteed to be concretizable as a connected chain of concrete transitions.

We adapt [Bal04] to perform model-based testing from models in the shape of an event system, whose
semantics is a transition system. Ball aims in [Bal04] at performing control flow coverage of C programs.
In event systems, contrarily to programs, the control structure is implicit and becomes abstracted by the
predicate abstraction process. In this context w.r.t. [Bal04], transforming a Ball chain into a model execution
requires additional guarantee that it is reachable by a prefix that links it to an initial concrete state of the
model. We had proposed in [BJM11] a first step towards an adaptation of Ball’s work to the case of event
systems. The present paper is a revised and extended version of a SAC 2015 conference paper [BJM15] on
the problem of reaching the Ball chains. The main contribution is to compute Ball chains whose reachability
is guaranteed. We propose to perform a few steps of symbolic exploration (through must− transitions) of
the reachable states, as a prefix to the Ball chains eventually reached. This gives a symbolic state that is
added and used as the initial state of our abstraction. We use SMT solvers to concretize the prefixed Ball
chains. The result is a set of instantiated executions of the model, that can be used as model-based tests.

W.r.t. the SAC 2015 paper [BJM15], we present here four main additional contributions: (1) we com-
pletely formally define the transition modalities characterization; (2) we introduce a new illustrative example
(a car alarm system) which is a realistic reactive system; (3) we dedicate a section to a proposition for au-
tomatically extracting a set of abstraction predicates out of a requirement, expressed as a dynamic property
in the Dwyer et al. [DAC99] style; (4) we enrich the experimental evaluation of our method, in a dedicated
section, thanks to a set of now six case studies, some of which issued from industrial collaborations.

The number of tests computed by our method, as well as the behaviours that they exercise, strongly
depend on the predicates chosen to perform the abstraction. A method is proposed in [BBJM10] for au-
tomatically computing abstraction predicates from a given test purpose. It is based on a partition of the
variables domains, which is not well suited for the present work where our intention is to make Ball chains
appear. The new method that we propose here relies on collecting the guards or the postconditions, in a
purpose of fostering the presence of transitions of the must+ or must− type in the abstraction.

The background regarding event systems, their semantics as concrete transition systems, predicate ab-
straction, tri-modal systems and Ball chains is given in Sec. 2. Two illustrative examples, one of a com-
putation model and the other of a realistic reactive system, are specified in Sec. 3. Our proposition of a
method for extracting a set of abstraction predicates from a test purpose is presented in Sec. 4. The main
contribution is described in Sec. 5, where we present the method to compute by symbolic exploration some
reachable Ball chains and their prefix, and to concretize them as model executions. We also discuss the
soundness of the method in this section. In Sec. 6, we briefly describe the proof-of-concept type tool that
we have developed on purpose, we illustrate the application of our method on an example, and show its
practical feasibility through experimental results. Section 7 positions our approach w.r.t. related work. We
conclude the paper in Sec. 8 and indicate further research directions.
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2 Background

Our behavioural models are described as Event Systems (ES) whose semantics is defined by means of Concrete
labelled Transition Systems (CTS). In this paper we describe the ES in the B syntax [Abr96, Abr10] but our
results are generic since they are based on transition systems. We first briefly present the syntax and the
semantics of the B event systems. Then we present the concept of predicate abstraction and formalize the
abstraction of event systems by means of Tri-modal Transition Systems (3MTS).

2.1 Model Syntax and Semantics

We define B event systems in Def. 1. The events are defined by means of an equation e =̂ a where e is
the name of the event and a is a generalized substitution that defines a guarded action [Dij75] using five
primitive substitutions:

• skip that is the substitution with no effect,

• x, y := E,F that is a multiple assignment,

• P ⇒ a that is a guarded substitution,

• a1[]a2 that is a bounded non-deterministic choice,

• @z.P ⇒ a that is an unbounded non-deterministic choice az1 []az2 [] . . . for all the values of z satisfying
the condition P .

The guard of a substitution a is denoted as grd(a). It is defined on the primitive substitutions as:

• grd(skip)
def
= true,

• grd(x := E)
def
= true,

• grd(P ′ ⇒ a)
def
= P ′ ∧ grd(a),

• grd(a1[]a2)
def
= grd(a1) ∨ grd(a2)

• grd(@z.a)
def
= ∃z · grd(a).

By extension, the guard of an event is defined as the guard of its generalized substitution: let e =̂ a be an

event, then grd(e)
def
= grd(a).

Figure 5 and Fig. 7 (see the whole model in Fig. 12 in appendix A) are examples of event systems
illustrating Def. 1.

Definition 1 (Event System) Let Ev be a set of event names. A B event system is a tuple 〈X, I, Init,
EvDef〉 where:

• X is a set of state variables;

• I is the invariant: it is a predicate that defines the domain of each variable x of X, and possibly
describes invariant properties of the system,

• Init is a substitution called initialization, such that the invariant holds in any initial state,

• EvDef is a set of event definitions, each in the shape of e =̂ a for any e ∈ Ev, and such that every
event preserves the invariant.
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Remark. In Def. 1, according to [Abr10], the events as well as the initialization of a B event system
preserve the invariant. In practice the specifier is in charge of carrying the proof of it thanks to a theorem
prover in the B method.

The semantics of an event system is defined in [BC00] as a concrete labelled transition system (CTS).
Classically, in the rest of the paper, the variables or set of variables are primed to denote their value after a
substitution, whereas the unprimed versions stand for their before value.

Let e =̂ a be an event. It has a weakest precondition w.r.t. a set of target states Q′: it is the largest set of
states from which applying a, when applicable, always leads to a state of Q′. We denote it as wp(a,Q′). An
event also has a strongest postcondition [Dij76] w.r.t. a set of source states Q: it is the smallest set of states
that are guaranteed to be reached after a has been applied from a state of Q. We denote it as sp(a,Q).

As in [BC00], and in order to formally express the strongest postcondition computation, we also introduce
the weakest conjugate precondition of an event e =̂ a w.r.t. a set of target states Q′: it is defined in [BC00]
as the weakest precondition which asserts that it is possible for a to establish Q′. Thus it is always possible
to reach Q′ by applying a, even if non deterministically a state outside of Q′ can also be reached. We denote
it as wcp(a,Q′). Notice that wp and wcp differ for the guarded and the nondeterministic events. For the
latter, wcp captures in addition to wp the states from which applying a leads non-deterministically to a state
of Q′.

Let us now formally define wp, wcp and sp. Classically, we directly consider the set of states Q and Q′

as predicates of the same name: a set of states Q defines a predicate Q that holds in any state of Q but does
not holds in any state not in Q.

We define the weakest precondition w.r.t. the five primitive substitutions:

• wp(skip,Q′) def
= Q′,

• wp(x := E,Q′) is the usual substitution of all the free occurrences of x in Q′ by E,

• wp(P ⇒ a,Q′)
def
= P ⇒ wp(a,Q′),

• wp(a1[]a2, Q
′)

def
= wp(a1, Q

′) ∧ wp(a2, Q
′)

• wp(@z.a,Q′) def
= ∀z.wp(a,Q′) where z is not free in Q′.

The weakest conjugate precondition is defined as:

wcp(a,Q′)
def
= ¬wp(a,¬Q′).

As for the strongest postcondition, it is defined as:

sp(a,Q)
def
= ∃X.(Q ∧ wcp(a, x′1 = x1 ∧ . . . ∧ x′n = xn))

where X = {x1, . . . , xn} is the set of state variables in the source states of Q and X ′ = {x′1, . . . , x′n} is the
set of state variables in the target states of Q′.

2.2 Predicate Abstraction

Predicate abstraction [GS97] is a special instance of the framework of abstract interpretation [CC92] that
maps the potentially infinite state space C of a transition system onto the finite state space A of a symbolic

transition system via a set of n predicates P def
= {p1, p2, . . . , pn} over the state variables. The set of abstract

states A contains 2n states. Each state is a tuple q
def
= (q1, q2, . . . , qn) with qi being equal either to pi or to

¬pi, and we also consider q as the predicate
∧n

i=1 qi. We define a total abstraction function αP : C → A
such that αP(c) is an abstract state q where c satisfies qi for all i ∈ 1..n. By a misuse of language, we say
that c is in q, or that c is a state of q.

Let us now define the abstract transitions as may-ones. Consider two abstract states q and q′ and an
event e. There exists a may transition from q to q′ by e, denoted by q

e→ q′, if and only if there exists at
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e

Figure 1: A may Transi-
tion

e(+)

Figure 2: A must+ Transi-
tion

e(−)

Figure 3: A must− Transi-
tion

least one concrete transition c
e→ c′ where c and c′ are concrete states with αP(c) = q and αP(c′) = q′ (see

Fig. 1).
As in [Bal04], we define must+ and must− transitions in addition to may ones. The must+ transitions

are may transitions that are triggerable from any concrete state of the abstract source state (see Fig. 2),
i.e. they define a total relation between the concrete states of two abstract states. The must− transitions
are may transitions that can reach any concrete state of the abstract target state (see Fig. 3), i.e. they
define an onto relation between the concrete states of two abstract states. We do not need to enumerate
all the concrete states (there might be an infinity of them) to decide if a transition is of the may, must+
and/or the must− type: we characterize these modalities by means of SAT formulas entrusted to SMT

solvers. Let e =̂ a be an event definition, q
e→ q′ is a may transition iff SAT (wcp(a, q′) ∧ q); it is a must+

transition iff q ⇒ wcp(a, q′) is valid, i.e. ¬SAT (¬wcp(a, q′) ∧ q); it is a must− transition iff q′ ⇒ sp(a, q) is
valid, i.e. ¬SAT (¬sp(a, q) ∧ q′). Due to the large expressive power of B event systems, different underlying
theories may be needed to express the above first-order formula. Indeed, the examples presented in the
paper include only integer and enumerated variables which predicates can be expressed within the theory
of Arithmetic. However B event systems allow the use of sets and set operations which predicates could
efficiently be expressed within the theory of Bitvectors. Likewise B event systems allow the use of functions,
the predicates involving functions of finite domains and co-domains could efficiently be expressed within the
theory of Arrays while functions of infinite domains and co-domains could be expressed within the theory
Uninterpreted functions. Let us note that depending on the underlying theories used, the characterization
of the modalities by means of SAT formulas may be undecidable.

2.3 Tri-modal Transition Systems

We define a Tri-modal Transition System (3MTS) in Def. 2. It is a transition system with abstract states,
and abstract transitions characterized as may, must+ or must−.

Definition 2 (Tri-modal Transition System ) Let Ev be a finite set of event names and P def
= {p1, p2,

. . . , pn} be a set of predicates. Let A be a finite set of abstract states defined by {p1,¬p1}× {p2,¬p2}× . . .×
{pn,¬pn}. A tuple 〈Q,Q0,∆,∆

+,∆−〉 is a 3MTS if it satisfies the following conditions:

• Q(⊆ A) is a finite set of states,

• Q0(⊆ Q) is a set of abstract initial states,

• ∆(⊆ Q× Ev ×Q) is a may labelled transition relation,

• ∆+(⊆ ∆) is a must+ labelled transition relation,

• ∆−(⊆ ∆) is a must− labelled transition relation.

The 3MTS that we define are defined by Ball in [Bal04]. They come from the Modal Transition Systems
defined in [LT88, GHJ01]. Now, Def. 3 associates an abstraction defined by a 3MTS to an event system.

Definition 3 (3MTS associated to an ES) Let ES
def
= 〈X, I, Init, EvDef〉 be an event system and P def

=

{p1, p2, ..., pn} be a set of n predicates over variables of X defining a set of 2n abstract states A
def
= {p1,¬p1}×
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{p2,¬p2} × ...× {pn,¬pn}. A tuple 〈Q,Q0,∆,∆
+,∆−〉 is a 3MTS associated to ES and P if it satisfies the

following conditions:

• Q def
= {q ∈ A|∃(q′, e).(q e→ q′ ∈ ∆ ∨ q′ e→ q ∈ ∆)},

• Q0
def
= {q|q ∈ A ∧ SAT (sp(Init, I) ∧ q)} ,

• ∆
def
= {q e→ q′|q ∈ A ∧ q′ ∈ A ∧ e =̂ a ∈ EvDef ∧ SAT (wcp(a, q′) ∧ q)},

• ∆+ def
= {q e→ q′|q ∈ A ∧ q′ ∈ A ∧ e =̂ a ∈ EvDef ∧ ¬SAT (¬wcp(a, q′) ∧ q)},

• ∆−
def
= {q e→ q′|q ∈ A ∧ q′ ∈ A ∧ e =̂ a ∈ EvDef ∧ ¬SAT (¬sp(a, q) ∧ q′)}.

An example of a 3MTS, whose ES is described in Fig. 5, can be seen in Fig. 6. The four abstract states
named q0 to q3 appear as rounded rectangular boxes. The predicates p0 and p1 from which they are defined
are given explicitly in Sec. 3. The abstract transitions of ∆ are represented as dashed arrows labelled by an
event name, with the possible mentions + and/or − indicating respectively when they are in ∆+ or ∆−.

2.4 Over and Under Approximations Based on 3MTS

An execution of a CTS or of a 3MTS is a finite or infinite sequence of transitions that begins in an initial state.
We denote by q0

e0→ q1
e1→ . . . where qi

ei→ qi+1 ∈ ∆ for i ≥ 0 an abstract execution, and by c0
e0→ c1

e1→ . . . a

concrete execution. We say that q0
e0→ q1

e1→ . . . and c0
e0→ c1

e1→ . . . are similar when for all i, ci is a state of
qi.

An abstraction is an over-approximation of a model when, for every execution of the model, there is
a similar execution of the abstraction. In other words, the abstraction may define more and/or longer
executions than the model but not less. Any safety property that holds on such an abstraction also holds
on the model, which allows for verifying any safety properties on the abstraction rather than on the model.
But for testing, since an over-approximation may define more executions than the model, a test extracted
as an execution path of the abstraction may possibly not be instantiable as a model execution.

So testing can take advantage of considering under-approximations rather than over-approximations. An
abstraction is an under-approximation of a model when for every execution of the abstraction, there is a
similar execution of the model. In other words, the abstraction may define less and/or smaller executions
than the model but not more. Thus every test extracted from such an abstraction is guaranteed to be
instantiable on the model, to give a concrete test.

The ∆ transition relation of Def. 3 defines an over-approximation. Indeed, the existence of a concrete
transition gives birth to a may abstract transition. But an execution of two consecutive may transitions

q
e→ q′ and q′

e′→ q′′ may not always have a similar connected concrete counterpart. Think for example of
the case where no concrete target state of e is a concrete source state of e′.

T. Ball defines in [Bal04] a method to compute an under-approximation by means of the ∆, ∆+ and ∆−

abstract transition relations of a 3MTS.

2.5 Ball’s Universal Under-Approximation

Thomas Ball proves in [Bal04] that a sequence of must− transitions, followed by at most one may transition,
followed by a sequence of must+ transitions, is guaranteed to be instantiable as a connected sequence of
concrete transitions. Indeed, as illustrated by the bold sequence in Fig. 4, any concrete state of a must−
target is reached from some concrete source state, while whatever concrete state is reached by a must+
transition is possible to leave from. A may transition in between joins a necessarily reached state to a
necessarily left one. We call such a sequence a Ball chain and we write it as a regular expression1 by means
of (must−)∗ ·may · (must+)∗. In [Bal04], Ball defines an under-approximation called L as the set of abstract
states reachable from an abstract initial state by a Ball chain.

1Since a must transition is also may, we see the central may transition as mandatory.
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e4(+)e1(−) e2(−) e5(+)e3

Figure 4: A Concretization of a (must−)∗ ·may · (must+)∗ Sequence of Abstract Transitions

In order to formalize L, Ball defines a reachability function for a 3MTS. Let Q be a set of states and
∆ (⊆ Q × Ev × Q) be a transition relation. The reachability function on ∆ and Q′ ⊆ Q is defined by

R[∆](Q′)
def
= µZ.(Q′ ∪∆(Z,Ev)) where µ is the least fix-point and ∆(Z,Ev) is the relational image of the

sets Z and Ev by ∆. L is defined by Ball from the set of initial states Q0 as:

L
def
= {q′′ | ∃ (q, e, q′) · (q ∈ R[∆−] (Q0) ∧ (q′ = q ∨ q e−→ q′ ∈ ∆) ∧ q′′ ∈ R[∆+]({q′})}.

Thus an abstract state q′′ is in L if there is: a (possibly empty) sequence of must− transitions leading
from an initial abstract state to q; one or zero may transition from q to q′; a (possibly empty) sequence of
must+ transitions from q′ to q′′.

3 Illustrative Example

We illustrate our approach in this paper by means of two examples whose descriptions follow in this section.
The first one is a simple computational model. Although its state space is infinite, the abstraction size is
small enough to be entirely drawn graphically, when we apply our method to it in Sec. 6.1. The second one
is more realistic. It is a reactive system with which we illustrate our method of Sec. 4, for computing sets of
abstraction predicates according to dynamic properties expressed in a practical language. Its state space is
finite, but the size of the produced abstractions is greater than the size of the abstractions produced from
the first example.

3.1 Small Computational Model

The specification is given in Fig. 5. It models a conditional computation over three variables x, y, z. Its
semantics is an infinite CTS for unbounded integers. Our abstraction method computes the finite 3MTS of

Fig. 6 from the set of predicates P0 = {p0, p1} where p0
def
= z = 1 and p1

def
= x > y.

X =̂ {x, y, z}
I =̂ x ∈ N ∧ y ∈ N ∧ z ∈ 0..1
Init =̂ x, y, z := 0, 0, 0
e1 =̂ z = 1 ∧ x > y ⇒

@a.(@b.(a ∈ N ∧ b ∈ N ∧ b ≥ a⇒ x, y := a, b))
e2 =̂ z = 1 ∧ y ≥ x⇒ x := y + 1
e3 =̂ z = 1 ∧ x = 7 ∧ y = 11⇒ x := 17
e4 =̂ z = 0⇒

@a.(@b.(a ∈ N ∧ b ∈ N ∧ b < a⇒ x, y, z := a, b + 5, 1))
e5 =̂ z = 0⇒

@a.(@b.(a ∈ N ∧ b ∈ N ∧ b < a ∧ b ≤ 5⇒ x, y, z := a, b, 1))

Figure 5: A Small Illustrative Model
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e4(+), e5(+)

e4(+)

e2(+), e3

e1(+,−)

e4(+)

e4(+), e5(+)

q0

{¬p0,¬p1}

q1

q2 q3

{¬p0, p1}

{p0,¬p1} {p0, p1}

Figure 6: An Abstraction for the Small Model of Fig. 5

3.2 Reactive System - Car Alarm System Model

This case study, issued from [ABJK11], is a protection system for cars. The system triggers an alarm sound
and turns on the warning lights in case of a person trying to open the doors illegally. The model fragment
shown in Fig. 7 specifies the properties and behaviours of the vehicle parts that are concerned with the car
alarm system: Bell (Be), Alarm Controller (AC), Doors (Do), Lock of doors (Lo), Warning lights (Wa),
Glasses (Gl), Children Security System (CS), other Lights (than warning ones) (Li), Movement of the car
(Mv) and a chronometer that counts the delay between the locking of the doors and the activation of the
alarm. The chronometer is represented by means of two variables: Tr models if the chronometer is triggered
or not, and De models the delay from the release of the chronometer. This model describes events that modify
the state of the car alarm system: closing or opening the doors and the glasses, locking and unlocking the
doors, triggering or deactivating the bell and the children security system, switching on or off the warnings
and the lights, engaging or stopping the alarm, making the car move or stop, triggering or stopping the
chronometer, etc. We specify a User (Us) to be either authorized or unauthorized, for modelling that the
doors are opened either legally (with the keys of the car) or in an illegal way. The behaviour of this system
has to meet the following requirements:

• the alarm is automatically engaged in a delay of five to ten seconds once the authorized user locks the
doors,

• the bell and the warning lights are activated if an unauthorized user opens a door when the alarm is
engaged,

• the alarm is automatically disengaged when an authorized user unlocks the doors,

• the user cannot lock the doors if a glass is opened,

• to put the car in movement, the doors must be unlocked and closed,

• to switch on or off the children security, the doors must be opened, for accessing the manual lever
allowing to do it,

A fragment of the specification is given in Fig. 7. It is modelled by an event system whose semantics is
a finite CTS. It potentially has a maximum of 211 × 11 (=22528) states. There are fewer reachable states
because of the constraints between variables that are formalized by the invariant properties I in Fig. 7.

4 Automatic Computation of Abstraction Predicates From a Test
Purpose

The 3MTS computed from an event system depends on a set of predicates chosen to perform the abstraction.
This section contains a proposition for automatically computing a set of abstraction predicates for an event
system according to a test purpose.
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X =̂ {Be,AC,Do, Lo,Wa, Us,Gl, CS, Li,Mv, Tr,De}
I =̂ Be,AC,Do, Lo,Wa, Us,Gl, CS, Li,Mv, Tr ∈ 0..1 ∧De ∈ 0..11 ∧

(AC = 1 ∧ Us = 1)⇒ Do = 0 ∧
/* if alarm engaged and user authorized, then doors closed */

Be = 1⇒ AC = 1 ∧
/* if bell noisy, then alarm controller activated */

AC = 0⇒ Be = 0 ∧
/* if alarm controller deactivated, then bell silent */

Wa = 1⇔ Be = 1 ∧
/* warning lights iff bell noisy */

Wa = 0⇔ Be = 0 ∧
/* warning lights switched off iff bell silent */

Lo = 1⇒ (Do = 0 ∨ Us = 0) ∧
/* if doors locked, then doors closed and user authorized */

Us = 1⇒ Be = 0 ∧
/* if user authorized, then bell silent */

Lo = 1⇒ Gl = 0 ∧
/* if doors locked, then glasses closed */

. . .

Init =̂ Be,AC,Do, Lo,Wa, Us,Gl, CS, Li,Mv, Tr,De :=

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

Doors Opening =̂ Tr = 0 ∧Mv = 0 ∧Do = 0 ∧
(Us = 0 ∨ (Us = 1 ∧ Lo = 0 ∧ AC = 0))⇒ Do := 1

Bell Activation =̂ Tr = 0 ∧Mv = 0 ∧ AC = 1 ∧Do = 1⇒ Wa,Be := 1, 1

Bell Stop =̂ Tr = 0 ∧Mv = 0 ∧ Be = 1 ∧ AC = 0⇒ Wa,Be := 0, 0

Children Security Activation =̂ Tr = 0 ∧Mv = 0 ∧ Lo = 0 ∧ CS = 0 ∧Do = 1⇒ CS := 1

Children Security Deactivation =̂ Tr = 0 ∧Mv = 0 ∧ Lo = 0 ∧ CS = 1 ∧Do = 1⇒ CS := 0

Incr Chronometer =̂ Tr = 1 ∧De < 10⇒ De := De + 1

. . .

User Authorized =̂ Tr = 0 ∧Mv = 0 ∧ Us = 0 ∧ Be = 1

⇒ Us,Be,Wa,AC,Lo := 1, 0, 0, 0, 0

User Unauthorized =̂ Tr = 0 ∧Mv = 0 ∧ Us = 1 ∧Do = 0 ∧ AC = 1 ∧ Lo = 1

⇒ Us := 0

Figure 7: Car Alarm System Model

A test purpose (TP) formalizes a test intention expressed by a validation engineer, in the shape of a
scenario that this engineer wishes to exercise. This comes in complement to a pure structural model-based
testing approach, by providing a “selected paths” coverage criterion. This provides a set of tests that target
some particular executions, as can be useful for example in security testing [PMG04, JMT08].

4.1 Test Purpose Language

We propose to make use of the well-known pattern language of Dwyer et al. [DAC99] to express a test
purpose. This language provides an approach for specifying dynamic properties in the shape of a pattern
delimited by a scope. While each combination of a pattern and a scope can be given a semantics into
temporal logics such as LTL or CTL, the language is intended to be more intuitive to use than logics by
specification practitioners. Actually we use the test property specification language of [CCDJT11], with the
compositional automata-based semantics of scopes and patterns of [TJD+14], to express our test purposes.
It is based on the Dwyer et al.’s pattern language.
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Patterns capture recurring temporal properties (e.g., Always A, Never B, B Responds to A, . . . ), while
scopes delimit the execution intervals in which the patterns should hold (e.g., After Q, Between Q and R,
. . . ). The parameters A, B, Q, R referred to in these examples may either stand for event calls or for
state predicates. A detailed technical presentation of the language and its semantics is out of the scope
of our paper, so we refer the reader to [DAC99, CCDJT11] for a more comprehensive presentation of this
pattern/scope language.

As an example, consider the following dynamic requirement, taken from the Car Alarm System case
study (see Section 3.2): The bell and the warning lights are activated if an unauthorized user opens a door
when the alarm is engaged. It can be formalized as the TP “Bell Activation Responds to Doors Opening
Between User Unauthorized and User Authorized”. Here the pattern “Bell Activation Responds to
Doors Opening” occurs within the scope “Between User Unauthorized and User Authorized”. Such a
property is in the shape of “P ′ Responds to P Between Q and R”. It corresponds (in [DAC99, DAC98])
to the following LTL property: �((Q∧¬R∧♦R)⇒ (P ⇒ (¬R U (P ′ ∧¬R))) U R) when P ′, P,Q and R are
state properties. Using the compositional automata-based semantics of scopes and patterns of [TJD+14], its
semantics is the set of infinite executions accepted by the Büchi automaton represented in Fig. 8.

(P ′ ∨ ¬P ) ∧ ¬R
P ∧ ¬P ′ ∧ ¬R

P ′ ∧ ¬R

¬P ′ ∧ ¬R¬Q ∨ R¬R

¬R
(P ′ ∨ ¬P ) ∧Q ∧ ¬R

P ∧ ¬P ′ ∧Q ∧ ¬R

R

Figure 8: Büchi Automaton for the Property P’ responds to P between Q and R

4.2 Abstraction Predicates Computation

We propose in this section different ways for automatically computing a set of abstraction predicates from a
test purpose and an event system. These computations rely on collecting the predicates that appear in the
test purpose either as explicit state predicates, or as guards of the events called in the test purpose, or as
post-conditions of the events called in the test purpose.

Let TP be a test purpose expressed in the Dwyer et al. pattern/scope shape. We denote by PRTP =
{pr1, . . . , prnp

} the set of all the state predicates explicitly cited in TP. We denote by EvTP = {e1, . . . , ene
}

the set of names of all the events explicitly called in TP.
We first define APPred as the set of abstraction predicates issued from the explicit state predicates of TP.

We simply have that
APPred = PRTP.

Then we propose two methods for completing this set of abstraction predicates with predicates issued
either from the guards of the event called in TP, or from their post-conditions.

4.2.1 Method 1: Collection of the Guards

The idea behind this method is to collect the guards of the events called in TP, expectedly to have abstraction
predicates favouring the appearance of must+ transitions (every concrete state is left by an event whose
guard is true). The set APGuard of the guards of the events called in TP is coarsely defined as:

APGuard =
⋃

e∈EvTP

{grd(e)}.

Notice that it is possible to enhance the granularity of this set by first putting each guard into either
CNF (conjunctive normal form) or DNF (disjunctive normal form), and to collect as abstraction predicates
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every clause (resp. conjunctive clause) of the CNF (resp. DNF). The set of clauses can then be reduced by
removing duplicates, negated forms of previous clauses, and true or false clauses.

For method 1, the final set of abstraction predicates is APg = APPred ∪ APGuard.

4.2.2 Method 2: Collection of the Post-Conditions

The idea behind this method is to collect the post-conditions of the events called in TP, expectedly this
time to have abstraction predicates favouring the appearance of must− transitions (every concrete state on
which the post-condition holds is reached). The set APPost of the post-conditions of the events called in TP
is defined as:

APPost =
⋃

e∈EvTP

{sp(e, I)}

where I is the invariant in the event system.
As explained for APGuard, this set can be applied a CNF or DNF decomposition to enhance its granularity.
For method 2, the final set of abstraction predicates is APp = APPred ∪ APPost.

4.2.3 Application to an example

We consider the test purpose TP given as an example in Sec. 4.1:

TP
def
= Bell Activation Responds to Doors Opening

Between User Unauthorized and User Authorized.

No state predicate is explicitly used in TP so that

APPred = ∅.

Method 1 - collection of the guards This method collects the guards of the events explicitly called in
TP. There are four of them:
Bell Activation, Doors Opening, User Unauthorized and User Authorized. Their guards are respectively (see
Fig. 7):

• Tr = 0 ∧Mv = 0 ∧AC = 1 ∧Do = 1,

• Tr = 0 ∧Mv = 0 ∧Do = 0 ∧ (Us = 0 ∨ (Us = 1 ∧ Lo = 0 ∧AC = 0)),

• Tr = 0 ∧Mv = 0 ∧ Us = 1 ∧Do = 0 ∧AC = 1 ∧ Lo = 1,

• Tr = 0 ∧Mv = 0 ∧ Us = 0 ∧Be = 1.

Once put in DNF and reduced, these guards give the resulting set of five abstraction predicates:

APGuard
def
= {Tr = 0 ∧Mv = 0 ∧AC = 1 ∧Do = 1,

T r = 0 ∧Mv = 0 ∧Do = 0 ∧ Us = 0,

T r = 0 ∧Mv = 0 ∧Do = 0 ∧ Us = 1 ∧ Lo = 0 ∧AC = 0,

T r = 0 ∧Mv = 0 ∧ Us = 1 ∧Do = 0 ∧AC = 1 ∧ Lo = 1,

T r = 0 ∧Mv = 0 ∧ Us = 0 ∧Be = 1}.

In this example APg = APGuard since APPred = ∅.
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Method 2 - collection of the postconditions This method collects the postconditions, from the states
that satisfy the invariant I, of the events explicitly called in TP.

If no DNF decomposition is performed then we simply have that APp = APPost (since APPred is empty)
where the set of postconditions is:

APPost
def
= {Wa = 1 ∧Be = 1 ∧ I,

Do = 1 ∧ I,
Us = 0 ∧ I,
Us = 1 ∧Be = 0 ∧Wa = 0 ∧AC = 0 ∧ Lo = 0 ∧ I}.

5 Instantiation Method for the Tri-Modal Under-Approximations

In [Bal04], Ball performs control flow coverage of C programs, and his abstraction predicates do not abstract
the program counter, that is kept explicit in the abstraction. By contrast in our case, we have no such thing
as a program counter. As the control structure of an event system is implicitly defined by the guards of the
events, it depends on any state variable. Since the tester defines its abstraction predicates from test purposes,
intended at exercising targeted functionalities, he can abstract the control flow. In this framework the Ball
chains, though concretizable, may not be reachable: the initial abstract state may include other concrete
states than the initial ones. This does not occur with programs where the unabstracted program counter
guarantees all executions to begin in an initial abstract state. We propose in this section to symbolically
explore the reachable abstract states, in order to detect those that start a Ball chain. The states reachable
from a set of states Q after a number n of event applications are characterized as an initial abstract state
RQ(n). We add it to the 3MTS with Q being the states reached by initialization. The Ball chains that start
from it are guaranteed to be concretizable as tests. We also describe in this section how we instantiate these
prefixed Ball chains as model executions, and discuss how they can be played as tests. Then we discuss the
soundness of the method and illustrate its application to the example of Sec. 3.

5.1 Symbolic Execution from the Initial States

In order to expand the set of initial states, we use static symbolic execution [Kin76]. For that we define
RQ(n) in Def. 4, where sp(a, q) refers to the strongest postcondition [Dij75] of an action a from a source
state defined by a predicate q. It is the smallest set of states reached by the execution of a from a state that
satisfies q.

Definition 4 Let RQ(n) be the set of states of an Event System reachable from the set of states Q after
applying a maximum of n ≥ 0 event(s). This set is characterized by the following predicate:
RQ(0) = Q,

RQ(i+ 1) = RQ(i) ∨
∨

{a|e=̂a∈EvDef}

sp(a,RQ(i)).

Let ES
def
= 〈X, I, Init, EvDef〉 be an event system and Q0 = sp(Init, I). RQ0

(n) abstractly specifies all
states reachable from the initial states of an event system after applying at most n events. We define in
Def. 5 a data structure called reachable state tree, denoted as RSTn, to store RQ0(n) with the detail of the
symbolic execution paths that lead to any abstract state of RQ0(n).

Fig. 9 shows the RST1 of the ES of Fig. 5. Each node appears as a rounded rectangular box featuring
the node label and its characteristic predicate.

Definition 5 (Reachable State Tree of an ES) A Reachable State Tree of an ES
def
= 〈X, I, Init, {e =̂

a|e ∈ Ev}〉 is a directed acyclic graph 〈L, l0, R, C〉 where:

• L is a non-empty set of nodes,
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• l0 ∈ L is the root node,

• R ∈ L× Ev × L is a labelled transition relation that links a father to its children,

• C ∈ L × F (X) (where F (X) is the set of first order logic formulas over the set of variables X) is a
one-to-one relation that associates every node of L with a predicate characterizing a set of concrete
states of the ES.

By initializing the initial node l0 such that (l0, Q0) ∈ C, the structure RSTn of ES can simply be obtained
by a depth-first application of each event until depth n. The cost of this computation is exponential with
respect to n.

With this structure, the disjunction of all the predicates stored in an RSTn is equivalent to RQ0
(n) (i.e.

RQ0
(n) = ∪{p | ∃l.(l ∈ L ∧ (l, p) ∈ C)}). Also, we can recover the symbolic execution path of any state in

RQ0(n) by traversing the tree from the root node l0 to the abstract state(s) of L containing it.

5.2 Test Computation and Instantiation Method

We now describe how to compute symbolic test sequences (i.e sequences of abstract transitions starting by
the initialization of an ES), and instantiate them.

We characterize RQ0(n) as a predicate pd0 . It characterizes an abstract state qd0 , that we add to the
3MTS of the ES, and make it its unique initial state. We link it to the other states by computing the must−
and may transitions that come out of it and join them. Notice that we do not need to compute the must+
transitions since they will be considered as may ones when they start a Ball chain. This modified 3MTS is
called an n-Derived 3MTS (n-D3MTS). Its definition is given by Def. 6. Figure 10 shows the 1-D3MTS of
the 3MTS of Fig. 6, with the RST1 of Fig. 9.

Definition 6 (n-Derived 3MTS) Let 〈Q,Q0,∆,∆
+,∆−〉 be the 3MTS and 〈L, l0, R, C〉 be the RSTn as-

sociated with an ES provided with a set of events EvDef
def
= {e =̂ a|e ∈ Ev}. An n-Derived Tri-modal

Transition System (n-D3MTS) is a 3MTS 〈Qd, qd0 ,∆d,∆
+,∆−d 〉 where:

• qd0
is a new abstract state characterized by

pd0

def
=

∨
q∈{p|∃l.(l∈L∧(l,p)∈C)}

q,

• Qd
def
= Q ∪ {qd0},

• ∆d
def
= ∆ ∪ {qd0

e→ q′|qd0

e→ q′ is a may transition},

• ∆−d
def
= ∆− ∪ {qd0

e→ q′|qd0

e→ q′ is a must− transition}.

We then compute, using the n-D3MTS, the set of abstract transition sequences in the shape of (must−)∗ ·
may · (must+)∗ that start from qd0

. We perform this path enumeration by means of a Depth-First Search
based exploration algorithm. It first traverses themust− transitions (possibly none), then traverses if possible
a may transition, and finally traverses the must+ transitions (possibly none). As this set can be infinite (e.g.,
when there is a must− or a must+ loop), we use a parameter m that restricts the number of times an abstract
transition appears in the sequence and denote this set Tm. Every abstract transition sequence of Tm can then
be instantiated, which means that there exists at least one corresponding concrete transition sequence starting
in an initial concrete state of the Event System. This concrete sequence is obtained by instantiating first
the may abstract transition by SMT valuation. The must− (resp. must+) transitions are then instantiated
by recursive backward (resp. forward) SMT valuation. Finishing the backward instantiation of the must−
transitions gives a concrete state of qd0(RQ0(n)) that starts this instantiated sequence. Using the RSTn
allows for recovering the abstract transition sequence that led to it. These transitions are also must− ones
(see Sec. 5.4), and are in their turn concretized by recursive backward SMT valuation. This ends in a
concrete initial state of the event system. Finally, this now prefixed instantiated sequence is an execution of
the event system, that exercises the behaviours isolated by the predicate abstraction.
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5.3 Test Execution

These executions can be seen as scenarios that exercise the system according to the purpose emphasized by
the abstraction predicates. The way an execution can be turned into a test depends on the controllability and
observability of the system under test (SUT). To control the SUT, we assume that it can be instrumented
so as to react to the commands as appearing in the execution of the model. We also assume that the non-
deterministic choices that the system could make can be controlled, so that we can reproduce the choices
made by the SMT-solver. For the system’s observability, we assume that we can interpret the outputs
produced by the SUT in terms of model variables values. These assumptions hold in the framework that we
have sketched in Section 1 of this paper, where the testing and development teams work side by side during
the development stage of the system.

Let us make the strong assumption that: (i) the SUT is instrumented so that the state variables are
totally observable (i.e. the internal state is known at any time), (ii) the events fireability as well as the non-
deterministic choices of the events are totally controllable. Under these assumptions, the model executions
can be directly used as a set of off-line tests. Consider a test of the illustrative example where the event e1

is activated, and the values a = 10 and b = 11 have been chosen by the solver. In the real system, there is
no guarantee that these values of a and b will actually be chosen. Playing the test thus requires that these
values will be chosen by the instrumented SUT when this occurrence of e1 is activated. The conformance of
the SUT to the model can be evaluated by comparing the outputs produced by the system with the variable
values predicted by the model for this execution. The test passes if they conform, otherwise it fails.

If the system cannot be completely controlled but that it is still observable, then the executions have
to be played as on-line tests: once a non-deterministic choice has been operated by the SUT, the tests are
adapted dynamically. At first, by checking that the choice conforms to a choice allowed by the model. If not,
the test fails. Otherwise, the solver is forced to operate the same choice, and the end of the test sequence is
re-calculated accordingly. In the end, the test passes if the outputs of the system have conformed to some
variable values predicted by the model, otherwise it fails.

5.4 Soundness of the Method

The soundness of our method is based on the three following properties, used to prove Prop. 7:

(i) Every abstract transition sequence in the shape of
(must−)∗ ·may · (must+)∗ is instantiable (proved in [Bal04] and explained in Sec. 2.5).

(ii) Every transition (l
e→ l′) in an RSTn is a must− transition by definition of the strongest postcondition.

(iii) The node l0 of an RSTn is the set of initial states of an ES by definition.

Property 7 Let A = 〈Q, qd0
,∆,∆+,∆−〉 be an n-D3MTS. Any abstract sequence qd0

e0→ q1 . . .
en−1→ qn of

A that is a Ball chain is instantiable from an initial state of the CTS that is the semantics of the ES from
which the n-D3MTS is derived.

Proof 8 Any abstract sequence qd0

e0→ q1 . . .
en−1→ qn that is a Ball chain can be instantiated as a concrete

sequence cd0

e0→ c1 . . .
en−1→ cn according to (i), but cd0

is not necessarily an initial concrete state.
The initial abstract state qd0 is the union of all the nodes li ∈ L of the RSTn used to construct the

n-D3MTS. So there exists li ∈ L such that cd0 ∈ li.
By definition of an RSTn, for all li ∈ L, there exists a sequence l0

el1→ l1 . . .
eli→ li that is a sequence in the

shape of (must−)∗ according to (ii). According to (i), this sequence can also be instantiated as a concrete

sequence cl0
el1→ cl1 . . .

eli→ cd0
where cl0 is an initial concrete state. By concatenating both these concrete

sequences, we obtain a concrete sequence starting from an initial concrete state of the ES according to (iii).

By property 7 we can define our under-approximation with respect to Ball’s under-approximation noted
L in [Bal04] by replacing the set of initial state Q0 by the previously defined symbolic set of reachable states
{qd0
}. We obtain:

L
def
= {q′′ | ∃ (q, e, q′) · (q ∈ R[∆−] ({qd0}) ∧ (q′ = q ∨ q

e−→ q′ ∈ ∆) ∧ q′′ ∈ R[∆+]({q′})}.
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6 Illustrative Application and Experimentation of the Method

We illustrate in this section our method by applying it to the small computational model of Fig. 5 in Sec. 3.
We also give preliminary experimental results that were obtained by means of an experimental research
prototype, that we have implemented in a proof-of-concept perspective.

6.1 Application to the Example

Suppose we have a TP that calls the events e1 and e2 of the ES of Fig. 5. By collecting the guards of these

events as the set of abstraction predicates, we get the set P0 of Section 3.1: P0 = {p0, p1} where p0
def
= z = 1

and p1
def
= x > y.

We first construct the RSTn for n = 1 that is graphically shown in Fig. 9. Then the 3MTS of Fig. 6 is
computed. Due to the exponential complexity of the construction of RSTn, we have limited n to 1 for the
sake of our illustration’s readability. However, the instantiation step presented hereunder already shows the
benefits of our method with such a small value of n.

l0
z = 0 ∧ x = 0 ∧ y = 0

RQ0
(0)

e5(-)e4(-)

∃a, b ∈ N.a > b ∧ z = 1
l1 l2

∧x = a ∧ y = b+ 5

RQ0
(1)

∧z = 1 ∧ x = a ∧ y = b
∃a, b ∈ N.a > b ∧ b ≤ 5

Figure 9: Graphical Representation of RST1

Finally we construct the 1-D3MTS (see Fig. 10) from the 3MTS of Fig. 6 and the RST1 of Fig. 9.

e4(+), e5(+)

e1(−), e4

e4(+)

e2(+), e3

e1(+,−)

e2, e3

e4, e5e4(+)

e4(+), e5(+)

qd0

pd0

q0

{¬p0,¬p1}

q1

q2 q3

{¬p0, p1}

{p0,¬p1} {p0, p1}

Figure 10: Graphical Representation of the 1-D3MTS Obtained from Fig. 6

Let us now compute the set of abstract transition sequences in the shape of (must−)∗ ·may · (must+)∗

that start by qd0 . With at most two cycles (i.e. m = 2) these sequences are the following:

qd0
e1−−−→ q2

e3−→ q3
e1+−−→ q2

e2+−−→ q3
e1+−−→ q2

e2+−−→ q3,

qd0
e1−−−→ q2

e2−→ q3
e1+−−→ q2

e2+−−→ q3
e1+−−→ q2

e2+−−→ q3,

qd0
e2−→ q3

e1+−−→ q2
e2+−−→ q3

e1+−−→ q2
e2+−−→ q3,

qd0
e3−→ q3

e1+−−→ q2
e2+−−→ q3

e1+−−→ q2
e2+−−→ q3,

qd0
e4−→ q2

e2+−−→ q3
e1+−−→ q2

e2+−−→ q3
e1+−−→ q2,

qd0
e4−→ q3

e1+−−→ q2
e2+−−→ q3

e1+−−→ q2
e2+−−→ q3,

qd0
e5−→ q3

e1+−−→ q2
e2+−−→ q3

e1+−−→ q2
e2+−−→ q3.
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We observe, as expected by the predicates chosen (from the guards of e1 and e2), that each sequence
applies mainly the events e1 and e2 in various contexts. The sequences are finite, and of the maximal length
allowed by the limitation of the number of times a cycle is used.

Any of these sequences can be instantiated as described in Sec. 5.2. We illustrate it by instantiating
(with the models as returned by the SMT solver) the following sequence, that is a reduction of the fourth

sequence of the previous suite, obtained with m = 1: qd0
e3−→ q3

e1+−−→ q2
e2+−−→ q3.

We first instantiate the may abstract transition (i.e. qd0

e3−→ q3): {z=1,x=7,y=11}
e3−→{z=1,x=17,y=11}

e1+−−→
q2

e2+−−→q3.
We then use the last instance previously obtained (i.e. {z = 1, x = 17, y = 11}) to instantiate forwardly

the following must+ transitions (i.e. e1 and e2): {z=1,x=7,y=11}
e3−→{z=1,x=17,y=11}

e1+−−→{z=1,x=28,y=52}
e2+−−→{z=

1,x=53,y=52}.
N.B. The values given here in the application of the event e1 result from the choice of the a and b values
(a = 28 and b = 52) as performed by the solver during our experience.

Then the first instance in the sequence is used to instantiate backwardly the preceding must− transitions
(none here). Finally we need to instantiate the concrete transitions leading from one of the initial states
of the ES to the beginning of our previously obtained transition sequence. Thanks to the RST1 showed in
Fig. 9, we find that the concrete state {z = 1, x = 7, y = 11} belongs to l1 and can be reached through the

following sequence:
init−−→ l0

e4−−−→ l1. This sequence is instantiated backwardly as (with the values a = 7 and
b = 6 chosen by the solver):

init−−→ {z = 0, x = 0, y = 0} e4−−−→ {z = 1, x = 7, y = 11}.

By concatenating the last sequence with the previous one, we have a concrete sequence applying four
events that begins with the initial state of the ES.

6.2 Experimentation

We have questioned the feasibility of our approach by means of some preliminary experiments whose results
we report here. The aim was to assess on some realistic event systems that the modalities of the events
could indeed be evaluated and a 3MTS could be computed, despite the high complexity of the methods
involved. Also, we were seeking answers to the following questions. What depth of symbolic exploration
could be reached in practice? Would this exploration reach Ball chains, so as to produce tests? How would
the method scale? And finally, how would the tests be related to the TP they originate from?

For this purpose we have developed a proof-of-concept prototype software. We have considered a set
of six realistic event systems of increasing size, some of them issued from industrial collaborations. These
event systems were taken back from various previous work without modification so as not to influence the
experiment and threaten the validity of the results. Two intuitive TP have been expressed for each event
system, from which off-line tests intended for a totally controllable and observable SUT have been computed.
We first measured (see Table 3) how many must transitions were produced, and in how much time the
3MTS was computed. Then we measured (see Table 4) until what depth could the symbolic exploration be
performed, how many tests and test steps were produced, how they cover the abstract model and how they
cover the events called in the TP.

6.2.1 Proof-of-Concept Prototype Implementation

Our proof-of-concept prototype software, fully automating the proposed test generation approach, has been
developed in Java. It requires however an external solver (e.g., Z3, CVC4) to carry out the main computa-
tions. Its block diagram is shown in Fig. 11.

The main inputs are: a test purpose (1) as well as the Event B model (2) from which the tests will
be generated. First, according to the method chosen by the user, a set of abstraction predicates (4) is
derived from the test purpose according to Sec. 4.2 (3). Second, the symbolic exploration (7) with depth n
chosen by the user (6) and the Tri-Modal abstraction (5) based on the previously derived predicate set (4)
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Figure 11: Prototype Software Description

are performed with the help of an SMT-solver to produce the corresponding Reachable State Tree (9) and
3MTS (8). Third, according to the proposed method an extended 3MTS (11) is constructed (10) from the
3MTS (8) and the Reachable State Tree (9). Fourth, an abstract test suite (14) with a maximum number m
of cycles set by the user (12), is generated (13). Finally the abstract tests of this suite (14) are instantiated
(15) using an SMT-solver in order to produce a concrete test suite (16).

In order to simplify its use, our tool has been integrated into a friendly user interface and all inputs and
outputs are described by means of XML files with dedicated formats.

6.2.2 Experimental Results

All experimentations and time measurements have been realized on a personal laptop running under an
Intel R© Core i5-2410M CPU @ 2.3 GHz.

We indicate in Table 1 the characteristics of each system studied: its ID, its name, its number of variables
(# Var.) and of events (# Ev.), its origin and its potential maximum number of states (MAX # States).
Notice that this maximal number gives a better idea of the model’s size than simply its number of variables
or events, because the former depends on the domain sizes of the variables.

ID Name # Var. # Ev. Origin MAX # States

ES Electrical System 3 4 [CLE09, BJM11] < 26

QD Qui Donc 3 4 [UL06] < 26

CM Coffee Machine 4 8 Teaching example ∼ 216

CA Car Alarm 12 20 [ABJK11] < 215

CC Credit Card 19 17 Industrial case study ∼ 2120

FW Front Wiper 15 25 Industrial case study ∼ 227

Table 1: System Characteristics
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Table 2 gives for each system two test purposes, each one identified by an acronym in the first column.
They express properties naturally relevant to the examples considered.

TP-ID Test Purpose

ES1 Commute Responds to Tic Globally
ES2 Eventually Repair After Fail

QD1 Always NbTries=0 Between HangUp And Start
QD2 HangUp Responds to Timeout Between NbTries=1 And NbTries=0

CM1 Never serveCoffee Between Balance = 0 And Balance < 60
CM2 Never takeMago Between AutoOut And powerDown

CA1 Bell Activation Responds to Doors Opening
Between User Unauthorized and User Authorized

CA2 Always (S=0) Between Lock Doors And UnLock Doors

CC1 CARD failed pin Responds to CARD process pin After C counter ≥ 2
CC2 Never DB ok Between CARD success pin and DB operation not done

FW1 Never power down Between wash action begin And wash action end
FW2 block FW engine Responds to action commodo down Globally

Table 2: Test Purposes Considered

According to the predicate generation method proposed in Sec. 4.2, Table 3 reports measurements on
the resulting tri-modal abstractions. It indicates the method used to compute the abstraction predicates
(Guard/Post: collection of the guards or of the postconditions), the number of resulting predicates (#Pr.),
abstract states (#St.), and modal transitions (#may: may transitions that are neither must+ nor must−,
#m+: must+ transitions, #m-: must− transitions) in the 3MTS. The %must column shows what proportion
(in %) of the abstract transitions are must ones. Finally the Time column tells the time spent (in seconds)
for computing the 3MTS.

ID TP-ID Method #Pr. #St. #may #m+ #m- %must Time (s)

ES ES1 Guard 2 3 12 1 2 20.0 0.4
Post 2 2 8 1 1 20.0 0.2

ES2 Guard 2 3 9 4 4 47.1 0.9

QD QD1 Guard 3 3 12 3 8 47.8 0.5
Post 3 5 19 15 16 62.0 0.8

QD2 Guard 4 7 33 19 30 59.8 1.6
Post 6 8 62 44 58 62.2 3.2

CM CM1 Guard 3 4 30 7 10 36.2 1.3
Post 3 6 52 12 12 31.6 2.2

CM2 Guard 3 7 33 19 30 59.8 1.6
Post 3 6 24 18 10 53.9 2.4

CA CA1 Guard 9 27 68 23 14 35.2 66.3
Post 6 17 63 8 6 18.2 31.4

CA2 Guard 3 4 34 3 2 12.8 2.4
Post 2 3 23 1 0 4.2 1.7

CC CC1 Guard 3 6 52 2 12 21.2 5.6
Post 4 7 102 3 24 20.9 8.7

CC2 Guard 2 4 24 3 4 22.6 2.7
Post 3 4 28 2 8 26.3 2.9

FW FW1 Guard 3 8 99 22 0 18.2 42.5
FW2 Guard 3 8 139 6 4 6.7 33.5

Table 3: Tri-Modal Abstraction Results

Finally, Table 4 reports the results of the abstract test generation process. We have set the parameter
m (maximum number of repetition of a transition) to 1 in each of our experiments. For each experimental
case, Table 4 gives: the symbolic exploration depth (# Depth), the number of abstract tests generated (#
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Tests), the number of test steps (event activations, including those of the symbolic exploration) achieved by
these tests (# Steps), the abstract states and transitions coverage (State(%) and Trans(%)). The TP (%)
column shows, for the transitions of the D3MTS that are occurrences of the events invoked in the TP, the
ratio of the ones appearing in the test suite to their total number. Otherwise said, it is the proportion of
event calls in the TP that are really activated by the test suite.

TP-ID Method # Depth # Tests # Steps State(%) Trans(%) TP(%)

ES1 Guard 3 8 21 100 100 100
Post 3 7 18 100 100 100

ES2 Guard 3 18 107 100 100 100

QD1 Guard 2 213 1613 100 100 100
Post 2 234780 3080456 100 100 100

QD2 Guard 0 71680 837716 100 100 100
Post 1 100000+ 1000000+ 100 100 100

CM1 Guard 3 44 246 100 26 100
Post 3 66 289 100 16 100

CM2 Guard 3 228 1722 80 24 100
Post 3 1098 13384 100 33 100

CA1 Guard 2 30 162 37 17 100
Post 3 22 72 47 24 100

CA2 Guard 3 34 119 100 40 100
Post 3 17 36 100 66 100

CC1 Guard 6 7 32 50 15 50
Post 3 8 21 42 12 100

CC2 Guard 6 7 43 50 29 66
Post 3 7 19 50 25 33

FW1 Guard 2 3 7 25 3 66
FW2 Guard 2 13 34 100 7 100

Table 4: Abstract Test Generation Results

Table 3 shows computation times that remain practicable on our realistic examples. This table also
shows good proportions of must transitions, around 33% in average, which roughly confirms the ability of
our method to make must transitions appear. However this indicator has to be refined to see if the must
transitions are those that apply the events of the TP. This is what the % TP column in Table 4 is about.

We observe in Table 4 that the abstract states and transitions coverage tends to decrease as the examples
grow in size. This coverage is low for the last three examples (Car Alarm System, Credit Card and Front
Wiper). This is because our test intention is not to cover all the events of the specification, but only those
that are concerned with the TP. Their proportion tends to decrease as the system’s size grows. Indeed, a
TP typically calls 3 or 4 events, which may be all of them for a small size example, but not for a larger one.
As for the relevance of the tests to the TP, our method computes predicates likely to make the transitions
applying the events of the TP be of the must+ or must− type, and thus appearing in the Ball chains. This is
mainly confirmed by the empirical observation (see the TP (%) column), although the Credit Card and Front
Wiper TP appear to be less well covered. The growing number of possible interleavings of the TP event calls
in larger examples may increase the number of Ball chains. Possibly not all of them have been reached in our
experimentation. Also, two of the TP are in the shape of Never e1 Between e2 And e3, which means that the
event e1 should normally not occur between the occurrences of e2 and e3. Thus abstractions favouring the
occurrences of e2 and e3 might, as a side effect, prevent e1 to occur, or vice versa. Our preliminary results
have not permitted to discriminate between these possible factors. This does not contradict the general
observation that the events exercised by the tests are those used in the TP.

Also to be noted, the Qui Donc experiment showed a blow up of the number of tests generated, although
we have purposely driven the test generation towards specific test purposes. A particularity of this model is
that despite its apparent small size (3 variables and 4 events), it specifies a large number of behaviours, with
multiple “if” constructions nested in each other. As a majority of the transitions are of the must type in
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the abstraction (see the % must column in Table 3), our criterion consisting of enumerating all the possible
combinations of must+ and must− transitions provokes that blow up, resulting in an under-approximation
that becomes close to the concrete system. Otherwise said, as the abstraction is not that abstract, the
abstract tests are badly abstracting the concrete paths. In such a case, other test generation criteria may
be used to better select the most relevant tests (i.e. a subset of the Ball’s under-approximation). Also the
model could be re-written so as to split the events into elementary behaviours.

As a general conclusion of these first experiments, and in response to the experimentation questions,
we see that our method remains applicable on realistic size examples: tri-modal transition systems have
successfully been computed in a practicable time, from a TP and an event system. A small number of
symbolic exploration steps have allowed to reach many Ball chains, and thus to compute abstract instantiable
tests. These tests exercise the events that are called in the TP. Nevertheless, our experiments have revealed
limits in the scalability of our approach. For example, exploring more Ball chains in a large size example
could not surprisingly require a deepest symbolic exploration. So the method has to be refined to prove
scalable, but it proves at least for now to be feasible. It can be used in the early steps of the development
process, with relatively small size event systems that specify the system to be implemented.

7 Related Work

In [NK00] as well as in [PPV07], the set of abstraction predicates is iteratively refined in order to compute
a bisimulation of the initial model when it exists. None of these two methods is guaranteed to termi-
nate, because of the refinement step that sometimes needs to be repeated endlessly. SYNERGY [GHK+06]
and DASH [BNR+10] combine under-approximation and over-approximation computations to check safety
properties on programs. As we aim at proposing an efficient MBT [UL06] method, our algorithm always
terminates because it does not refine the approximation.

The method presented in [GGSV02] applies the same two steps: computation of a predicate abstraction
and generation of tests. The abstraction predicates are the guards, reduced in DNF, of all the events, whereas
we define them from the guards or postconditions only of the events invoked in a TP. Their abstraction
generation algorithm computes a concrete instance of a may under-approximation instantiating the abstract
transitions from the initial concrete state. By contrast, we propose an under-approximation that is computed
at the abstract level, thanks to the must+ and must− modalities. Then the concrete test generation is
different: in [GGSV02] a Chinese Postman algorithm is applied to cover the set of concrete transitions,
whereas we concretize the reachable abstract Ball chains.

Other papers present work aiming at generating tests from abstractions. The tools Agatha [RGLG03],
CUTE [SMA05], EXE [CGP+06] and PEX [TdH08] also compute abstractions from models or from programs,
but only by means of symbolic execution [PV09]. This data abstraction approach computes an execution
graph. Its set of abstract states is possibly infinite whereas it is finite with the predicate abstraction method.
The DART [GKS05] tool generates test inputs to a program for driving it along targeted paths. It abstracts
the branch statements by means of symbolic constraints, and generates inputs for activating a given program
branch thanks to a constraint solver. The approach is reinforced in the SMART [God07] tool by computing
function summaries that are re-used whenever the function is called. These summaries are predicates
expressing input preconditions and output postconditions. Similarly to SMART our abstraction predicates
are based on pre (the guards) and post-conditions. But in SMART they are intended to achieve structural
coverage of the control flow of a program that calls the summarized function without enumerating all the
paths of the control structure of this function, whereas our intention is to enforce particular event calls as
formalized in a TP.

The method implemented in STG [JJRZ05] uses abstractions defined by the user and modelled by IOSTS
(Input Output Symbolic Transition System). They use test purposes synchronized with abstractions, both
defined as IOSTS. Then, the synchronized product allows generating tests after an optimization step, which
consists of pruning the unreachable states by abstract interpretation. Our approach is very similar in that we
also use test purposes and abstractions. But there are three differences. First, any abstraction is computed
from a set of predicates defined from a test purpose and a behavioural model, whereas STG uses user-defined
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abstractions. Second, an optimization is performed by the abstraction computation by using the invariant
properties (that do not exist in an IOSTS) specified in the B models used implicitly in our method. It allows,
for the weakest precondition computation, to minimize the symbolic state space and the feasible transitions.
Third, we use SMT-solvers, that combine constraint solving and theories for proof, instead of pure constraint
solving to instantiate the symbolic tests.

Similarly to the concolic execution of [SMA05], we use symbolic execution. But concolic tools do not
use predicate abstraction. Concolic execution performs a concrete execution and at the same time collects
the symbolic path constraints. Moreover, hybrid concolic execution [MS07] combines random generation of
input values.

Finally, we have also used Ball’s chain in [BJM11] for generating tests from a tri-modal abstraction of an
event system. Although Ball’s under-approximation was combined with an existential under-approximation
in order to try to instantiate the abstract tests generated, there was no guarantee that these tests were possible
to instantiate. On the contrary in this paper, all the tests generated are guaranteed to be instantiable.

8 Conclusion and Further Work

We have presented a method for generating model-based tests that deals with the state space explosion
problem. Our approach is based on abstractions of infinite or very large behavioural models. A test is an
execution of the model in this context. The abstraction is a tri-modal transition system for which the Ball
chains are guaranteed to be concretizable as connected sequences of concrete (i.e. of the model) transitions.
Our proposition is to select only those Ball chains that are reachable from concrete initial states. We turn
them into model executions by concretizing them and computing a prefix that links them to a concrete initial
state, adapting Ball’s work for programs to event systems. This is performed by a symbolic exploration of
the set of reachable abstract states. In this way we give solutions to both the problems expressed in Sec. 1:
select some paths of the abstraction and concretize them.

We have defined a predicate that characterizes the set of states reachable in n steps, i.e. after n events
have been applied. We have given a procedure to compute a symbolic execution tree, which records the
successions of abstract states reached by the successive event applications. The predicate that characterizes
the union of all such abstract states defines an abstract initial state that we add to the tri-modal transition
system of the model. This allows us to select the Ball chains that originate from it, and prefix them with
paths computed from the symbolic execution tree. We concretize each prefixed chain by SMT solving, which
results in a set of model executions. They can be played as off-line or on-line model-based tests, according
to the controllability and observability of the system under test.

We have also proposed a method for automatically computing a set of abstraction predicates with respect
to a test purpose. The method relies on collecting either the guards or the postconditions of the events,
in order to enhance the number of must+ or must− transitions, and thus the number of Ball chains,
related to the original test purpose. Our first experimental results on some realistic case studies confirm
that our method allows to discover many Ball chains in the abstraction, and that even small values of n
quickly enhance the number of Ball chains reached and finally concretized as tests. Thus they show the
feasibility of our method on realistic examples, even though these examples are actually of a modest size.
The scalability to huge industrial applications is still to be assessed, which will necessitate a robuster tool
than the experimental prototype that we use at present.

The complexity of symbolic exploration limits our computation of the reachable state space to that
reachable in a few steps. Using heuristics rather than exhaustive enumeration for applying successive events
could lead us much faster towards targeted Ball chains starts. This could improve the coverage of the model
by tests by discovering more reachable Ball chains for such targeted behaviours. Also, we intend to compute
and combine several tri-modal systems rather than one as considered in this paper. This would allow more
behaviours of the system to be tested, with one set of predicates per expected behaviour. The symbolic
exploration of the reachable states would only have to be performed once, and could be added to all the
tri-modal transition systems computed. Another research direction will be to enhance the link between the
abstraction predicates and the test intention formalized in the test purpose TP. By now we measure the
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relevance of our tests in terms of coverage of the events called in the TP. A finer criterion would be to
measure the relevance w.r.t the semantics of the TP in terms of temporal succession of the events. That
could be obtained by measuring the coverage of the paths of the Büchi automaton of the TP. Although our
tests indeed call the events of TP as expected, we could filter the Ball chains that either meet or contradict
the scenario expressed by the TP.
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[JJRZ05] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based on approximate
analysis. In TACAS, volume 3440 of LNCS, pages 349–364, 2005.

[JMT08] J. Julliand, P.-A. Masson, and R. Tissot. Generating security tests in addition to functional
tests. In AST, pages 41–44. ACM Press, 2008.

[Kin76] James C King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

[LT88] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In LICS, pages 203–210,
1988.

[MS07] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In ICSE, pages 416–426, 2007.

[NK00] K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for automatic abstrac-
tion. In CAV, volume 1855 of LNCS, pages 435–449, 2000.

[PMG04] Bruce Potter and Gary Mc Graw. Software security testing. IEEE Security and Privacy,
2(5):32–36, 2004.
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A Car Alarm System

This appendix is intended to the reviewers to provide them with additional technical content regarding the
case study car alarm system. It presents the whole model of the car alarm system. The model is composed
of 12 variables and 19 events. Fig. 7 shows all of the event of the model.
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X =̂ {Be,AC,Do, Lo,Wa, Us,Gl, CS, Li,Mv, Tr,De}
I =̂ Be,AC,Do, Lo,Wa, Us,Gl, CS, Li,Mv, Tr ∈ 0..1 ∧De ∈ 0..11∧

(AC = 1 ∧ Us = 1)⇒ Do = 0∧
/* if the alarm is engaged and the user authorized, the doors are closed */
Be = 1⇒ AC = 1∧ /* if the bell noisy, the alarm controller is activated */
AC = 0⇒ Be = 0∧ /* if the alarm controller is deactivated, the bell is silent */
Wa = 1⇔ Be = 1∧ /* The warning light iff the bell is noisy */
Wa = 0⇔ Be = 0∧ /* Warning is switched off iff the bell is silent */
Lo = 1⇒ (Do = 0 ∨ Us = 0)∧ /* if the doors are locked, the doors are closed
and the user is authorized */
Us = 1⇒ Be = 0∧ /* if the user is authorized, the bell is silent */
Lo = 1⇒ Gl = 0∧ /* doors locked, then glasses closed */
. . .

Init =̂ Be,AC,Do, Lo,Wa, Us,Gl, CS, Li,Mv, Tr,De := 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Bell Activation =̂ Tr = 0 ∧Mv = 0 ∧ AC = 1 ∧Do = 1⇒ Wa,Be := 1, 1

/* if the alarm is engaged and a door is opened the bell noisy */
Bell Stop =̂ Tr = 0 ∧Mv = 0 ∧ Be = 1 ∧ AC = 0⇒ Wa,Be := 0, 0

/* if the alarm is disengaged whereas the bell noisy the bell is stopped */
Doors Opening =̂ Tr = 0 ∧Mv = 0 ∧Do = 0 ∧ (Us = 0 ∨ (Us = 1 ∧ Lo = 0 ∧ AC = 0))⇒ Do := 1

/* if the doors are closed then the non authorized user can open the doors */
/* or the authorized user can open the doors when they are unlocked */

Doors Closing =̂ Tr = 0 ∧Mv = 0 ∧Do = 1 ∧ Us = 1⇒ Do := 0
/* if the doors are opened then the authorized user can close it */

User Authorized =̂ Tr = 0 ∧Mv = 0 ∧ Us = 0 ∧ Be = 1⇒ Us,Be,Wa,AC,Lo := 1, 0, 0, 0, 0
/* if the user is non authorized and the bell noisy then the user becomes authorized */

User Unauthorized =̂ Tr = 0 ∧Mv = 0 ∧ Us = 1 ∧Do = 0 ∧ AC = 1 ∧ Lo = 1⇒ Us := 0
/* if the user is authorized and the alarm is engaged then the user becomes non authorized */

Alarm Deactivation =̂ Tr = 0 ∧Mv = 0 ∧ Us = 1 ∧ AC = 1⇒ AC := 0
/* if the user is authorized and the alarm is engaged then alarm becomes disengaged */

Alarm Activation =̂ Tr = 1 ∧Mv = 0 ∧ Lo = 1 ∧Do = 0 ∧ AC = 0 ∧De ≥ 5 ∧De ≤ 10⇒
AC, Tr,De := 1, 0, 0
/* if the doors are locked, the alarm is engaged between five and ten ut */

Doors Locking =̂ Tr = 0 ∧Mv = 0 ∧Do = 0 ∧ Us = 1 ∧ Lo = 0 ∧Gl = 0 ∧ AC = 0⇒
Lo, Li, Tr,De := 1, 0, 1, 0
/* if the doors are unlocked and the user authorized, they are locked and
the chronometer is activated */

Doors Unlocking =̂ Tr = 0 ∧ Lo = 1 ∧Do = 0 ∧ Us = 1⇒ Lo := 0
/* if the doors are locked and the user authorized, they are unlocked */

Glasses Opening =̂ Tr = 0 ∧Gl = 0 ∧ Lo = 0⇒ Gl := 1
/* if the glasses are closed and the doors unlocked the glasses can be opened */

Glasses Closing =̂ Tr = 0 ∧Gl = 1 ∧ Lo = 0⇒ Gl := 0
/* if the glasses are opened and the doors unlocked the glasses can be closed */

Ch Sec Activation =̂ Tr = 0 ∧Mv = 0 ∧ Lo = 0 ∧ CS = 0 ∧Do = 1⇒ CS := 1
/* if the doors are opened, the children security can be activated */

Ch Sec Deactivation =̂ Tr = 0 ∧Mv = 0 ∧ Lo = 0 ∧ CS = 1 ∧Do = 1⇒ CS := 0
/* if the doors are opened, the children security can be deactivated */

Car Moving =̂ Tr = 0 ∧Mv = 0 ∧Do = 0 ∧ Lo = 0 ∧ AC = 0⇒Mv := 1
/* the car can be moved when it is unlocked and doors closed */

Car Stopping =̂ Tr = 0 ∧Mv = 1 ∧Do = 0 ∧ Lo = 0 ∧ AC = 0⇒Mv := 0
/* the car can be stopped when it moves */

Light Activation =̂ Tr = 0 ∧ Li = 0 ∧ Lo = 0 ∧ AC = 0⇒ Li := 1
/* the lights can be activated when they are not and the car is unlocked */

Light Deactivation =̂ Tr = 0 ∧ Li = 1 ∧ Lo = 0 ∧ AC = 0⇒ Li := 0
/* the lights can be deactivated when they are and the car is unlocked */

Incr Chronometer =̂ Tr = 1 ∧De < 10⇒ De := De + 1
/* the chronometer is incremented when it is started and when it did not reach ten ut */

Figure 12: Car Alarm System Model
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