
Memory-efficient high-speed algorithm
for multi-⌧ PDEV analysis

Magnus Danielson
R&D System Design

Net Insight AB
Stockholm, Sweden

Email: magda@netinsight.net

François Vernotte
Observatory THETA/UTINAM,

UBFC/UFC and CNRS
Besançon, France

Email: francois.vernotte@obs-besancon.fr

Enrico Rubiola
CNRS FEMTO-ST Institute,
Dept Time and Frequency

Besançon, France
Email: rubiola@femto-st.fr

Abstract—The ⌦ preprocessing was introduced to improve
phase noise rejection by using a least square algorithm. The
associated variance is the PVAR which is more efficient than
MVAR to separate the different noise types. However, unlike
AVAR and MVAR, the decimation of PVAR estimates for multi-
⌧ analysis is not possible if each counter measurement is a
single scalar. This paper gives a decimation rule based on two
scalars, the processing blocks, for each measurement. For the ⌦
preprocessing, this implies the definition of an output standard
as well as hardware requirements for performing high-speed
computations of the blocks.

Index Terms—Least square methods, Phase noise, Stability
analysis, Time-domain analysis.

I. PVAR AND ⌦-COUNTERS

The concept of ⌦-counter was formulated by Rubiola [1],
based on Johansson [2], to achieve the optimal rejection of
white phase noise for short term frequency measurement by
using an estimator based on the least squares. Such methods
was presented by Barnes [3], for the purpose of drift estimation
under presence of white noise. The algorithms of [4] does
not provide means of decimation of data while maintaining
the least square properties, it rather states that there is no
such method known. In [5] such method was presented, thus
allowing for decimation.

The principle of this frequency estimation is to calculate
the least squares slope over a phase sequence {x

k

} obtained
at instants t

k

= k⌧0 with k 2 {0, . . . , N � 1} where ⌧0 is
the sampling step and ⌧ = (N � 1)⌧0 the total length of the
sequence. It is well known that the least squares provide the
best slope estimate in the presence of white noise (i.e. white
PM noise) [3]. It has been demonstrated that, in the presence
of white PM, the variance of this frequency estimate is lower
by a factor of 3

4 than the MVAR. Moreover, since the least
squares are optimal for white noise, the variance of the ⌦-
counter estimate is minimal. It is then an efficient estimator
[6].

The ⌦-counter weight functions for phase data as well as
for frequency deviations are plotted in Figure 1. The shape of
w

c

(t) (see Figure 1-B) explains the choice of the Greek letter
⌦ to name this counter [7], [1].

PVAR is then defined as PVAR(⌧) = 1
2

D�
ŷ

⌦
2 � ŷ

⌦
1

�2E [4].
The weight function associated to PVAR for phase data is
plotted in Figure 2.

A B

Fig. 1. weight functions of the ⌦-counter computed from phase data (A, left)
or from frequency deviations (B, right).

t

h⌦
x

(t)

�⌧ +⌧

�3
p

2/⌧2

+3
p

2/⌧2

Fig. 2. weight function associated to PVAR for phase data.

PVAR, like MVAR, is intended to deal with short term
analysis (and then white and flicker PM noises) whereas AVAR
is preferred for the measurement of long term stability and
timekeeping. The main advantage of PVAR regarding MVAR
relies on the larger EDF of its estimates, and in turn the
smaller confidence interval. The best of PVAR is its power
to detect and identify weak noise processes with the shortest
data record. PVAR is superior to MVAR in all cases, and
also superior to AVAR for all short-term and medium-term
processes, up to flicker FM included. AVAR is just a little
better with random walk and drift. Therefore, PVAR should
be an improved replacement for MVAR in all cases, provided
the computing overhead can be accepted.

Thus, the only drawback of PVAR lies in the difficulty to
find its decimation algorithm. In order to solve this problem,
let us remind the basics of decimation.

978-1-5090-2091-1/16/$31.00 ©2016 IEEE 278

II. LEAST-SQUARE FREQUENCY ESTIMATION

A. Linear system

The least square system producing the output vector x of
phase samples from the system state vector c using the system
matrix A and assuming the error contribution of d as defined
in x = Ac+d having the least square estimation as given by

ĉ = (AT

A)�1
A

T

x (1)

For this system, a linear model of phase and frequency state
is defined

ĉ =

✓
x̂

ŷ

◆
(2)

A block of phase samples, taken with ⌧0 time in-between them,
building the series x

n

where n is in the range {0, . . . , N � 1}
where by convention N is the number of phase samples. In the
system model, each sample n has an associated observation
time t

n

= ⌧0n. The matrix A and the vector x then becomes

A =

0

BBBBBB@

1 t0
...

...
1 t

n

...
...

1 t

N�1

1

CCCCCCA
=

0

BBBBBB@

1 0
...

...
1 ⌧0n

...
...

1 ⌧0(N � 1)

1

CCCCCCA
(3)

x =

0

BBBBBB@

x0
...
x

n

...
x

N�1

1

CCCCCCA
(4)

B. Closed form solution

Inserting (3) and (4) into (1) results in

ĉ =

2

664

✓
. . . 1 . . .

. . . ⌧0n . . .

◆
0

BB@

...
...

1 ⌧0n

...
...

1

CCA

3

775

�1

⇥

✓
. . . 1 . . .

. . . ⌧0n . . .

◆
0

BB@

...
x

n

...

1

CCA (5)

simplifies into

ĉ =

0

BBBB@

N�1X

n=0

1 ⌧0

N�1X

n=0

n

⌧0

N�1X

n=0

n ⌧

2
0

N�1X

n=0

n

2

1

CCCCA

�10

BBBB@

N�1X

n=0

x

n

⌧0

N�1X

n=0

nx

n

1

CCCCA
(6)

replacing the sums C and D

C =
N�1X

n=0

x

n

(7)

D =
N�1X

n=0

nx

n

(8)

becoming

ĉ =

N ⌧0

N(N�1)
2

⌧0
N(N�1)

2 ⌧

2
0
N(N�1)(2N�1)

6

!�1✓
C

⌧0D

◆
(9)

inverse can be solved as

N ⌧0

N(N�1)
2

⌧0
N(N�1)

2 ⌧

2
0
N(N�1)(2N�1)

6

!�1

=
12

⌧

2
0N(N � 1)(N + 1)

⇥

✓
⌧

2
0
(N�1)(2N�1)

6 �⌧0
N�1
2

�⌧0
N�1
2 1

◆
(10)

insertion of (2) and (10) into (9) resulting in the estimators

x̂ =
6

N(N + 1)

✓
(2N � 1)

3
C �D

◆
(11)

ŷ =
12

⌧0N(N � 1)(N + 1)

✓
�

N � 1

2
C +D

◆
(12)

these estimators have been verified to be bias free from
static phase and static frequency, as expected from theory.
Using these estimator formulas the phase and frequency can
estimated of any block of N samples for which the C and D

sums have been calculated.

C. PVAR calculation

The PVAR estimator calculation is defined from the equa-
tions

�̂

2
P

(⌧) =
1

M

MX

i=1

(↵
i

)2 (13)

↵

i

=
1
p

2

�
ŷ

⌦
i

� ŷ

⌦
i+1

�
(14)

inserting (12) and (14) into (13) produces

�̂

2
P

(⌧) =
72

M⌧

2
0N

2(N � 1)2(N + 1)2

MX

i=1
(D

i

�D

i+1)�
N � 1

2
(C

i

� C

i+1)

�2
(15)

where (C
i

, D
i

) and (C
i+1, D

i+1) is two pairs of accumulated
sums being consecutive. These may be either forms by the
direct accumulation of (7) and (8) or through the decimation
rule of (25) and (26), as long as N is the number of samples
in each block (being of equal length) and that the block
observation time ⌧ = N⌧0. Using the decimation rules, any ⌧

calculation can be produced and then their PVAR calculated
using (15). Notice that M is the number of averaged blocks.

279

III. DECIMATION

A. Decimation of different sized blocks

The key idea in decimation is to form the (C,D) pair for a
larger set of samples. Consider a block of N12 samples. The
definition says

C12 =
N12�1X

n=0

x

n

(16)

D12 =
N12�1X

n=0

nx

n

(17)

but for practical reason processing is done on two sub blocks
being N1 and then N2 samples long, giving

N12 = N1 +N2 (18)

C1 =
N1�1X

n=0

x

n

(19)

C2 =
N2�1X

n=0

x

N1+n

(20)

D1 =
N1�1X

n=0

nx

n

(21)

D2 =
N2�1X

n=0

nx

N1+n

(22)

the C12 sum can be reformulated as

C12 =
N12�1X

n=0

x

n

=
N1�1X

n=0

x

n

+
N12�1X

n=N1

x

n

= C1 +
N2�1X

n=0

x

N1+n

= C1 + C2 (23)

where N1 can be chosen arbitrarily under the assumption 0

N1 N12 and then N2 = N12 �N1. Similarly the D12 sum
can be reformulated as

D12 =
N12�1X

n=0

nx

n

=
N1�1X

n=0

nx

n

+
N12�1X

n=N1

nx

n

= D1 +
N2�1X

n=0

(N1 + n)x
N1+n

= D1 +
N2�1X

n=0

N1xN1+n

+
N2�1X

n=0

nx

N1+n

= D1 +N1

N2�1X

n=0

x

N1+n

+D2

= D1 +N1C2 +D2 (24)

Thus using (23) and (24) any set of consecutive blocks can
be further decimated to form a new longer block. For each
decimation, only the length N and sums C and D needs to
be stored, thus reducing the memory requirements. In a pre-
processing stage, these sums can be produced. The decimation
rule thus allows for any length being a multiple to the pre-
processed length to be produced, with maintained non-biased
phase, frequency and PVAR estimator properties.

B. Decimation by N

The generalized decimate by N formulation follows natural
from this realization and is proved directly though recursively
use of the above rule. Consider that a preprocessing provides C
and D values for block of length Npre, then on first decimation
block 0 and 1 is decimated, and block 1 needs to be raised with
NpreC1 (as illustrated in Figure 4), as block 2 is decimated in
the next round, 2NpreC2 etc, and in general we find

C

tot

=
N2�1X

i=0

C

i

(25)

D

tot

=
N2�1X

i=0

D

i

+ iN1Ci

(26)

for the observation time ⌧ = ⌧0N1N2 with N1N2 samples,
for use with the (11) and (12) estimators.

This decimation by N mechanism can be used together
with the generic block decimation to form any form of block
processing suitable, thus providing a high degree of freedom
in how large amounts of data is being decimated.

C. Geometric representation

t

t0
⌧0

w̃

C

(t)

N⌧0

1

t

t0
⌧0

w̃

D

(t)

N⌧0

N

Fig. 3. weight functions of the C and D elementary block pair.

1) Decimation rule: Figure 3 represents the weight func-
tions of the C and D elementary block pair that we will
symbolize respectively with and .

In the same way as in § III-A, let us consider two consecu-
tive sets of N1 samples, beginning respectively at instants t1

and t2, and the whole sequence of N12 = 2N1 samples. We
can form the blocks C1 and D1 over the first sub-sequence,
C2 and D2 over the second one as well as C12 and D12

over the whole sequence (see left hand side of Figure 4). The
right hand side of Figure 4 shows that C12 = C1 + C2 and
D12 = D1 +N1C2 +D2 as demonstrated in (23) and (24).

2) The ⌦-counter weight function: As stated in § I, the
weight function of the ⌦-counter for phase data x(t) is given
by [4]. Figure 5 shows that the estimate ŷ

⌦ of the ⌦-counter
is:

ŷ

⌦
/ D �

N

2
C.

280

w̃

C1 w̃

C2
w̃

D

1
w̃

D

2

t

t1 t2

w̃

C1 w̃

C2

N1w̃C2

w̃

D

1
w̃

D

2

N

1
w̃

C

2
+
w̃

D

2

t

t1 t2

Fig. 4. Decimation rule of the (C1, D1) and (C2, D2) block pair weight
functions over two adjacent sub-sequences for composing the (C12, D12)
block pair weight functions over the whole sequence.

�Nw̃

C

/2

w̃

D

w̃

D

�

N

w̃

C

/

2

t

�⌧/2 0 +⌧/2

Fig. 5. Association of the (C,D) block pair weight functions for composing
the ⌦-counter weight function.

3) The PVAR weight function: Since PVAR(⌧) =
1
2

D�
ŷ

⌦
2 � ŷ

⌦
1

�2E, it comes

PVAR(⌧) /

*✓
D2 �

N

2
C2 �D1 +

N

2
C1

◆2
+

as illustrated by Figure 6.

+Nw̃

C1/2
w̃

D

1

N ˜w
C1

/2
�

˜w
D1

�Nw̃

C2/2

w̃

D

2

w̃

D

2
�

N

w̃

C

2/
2

t

�⌧ 0 +⌧

Fig. 6. Association of the (C1, D1) and (C2, D2) block pair weight functions
for composing the PVAR weight function.

D. Decimation processing

It should be noted that the decimation process may be used
recursively, such that it is used as high-speed preprocessing
in FPGA and that the (C,D) pairs is produced for each N1

samples as suitable for the plotted lowest ⌧ . Another benefit
of the decimation processing is that if the FPGA front-end has
a limit to the number of supported N1 it can process, software
can then continue the decimation without causing a bias. This
provides for a high degree of flexibility without suffering from

high memory requirements, high processing needs or for that
matter overly complex HW support.

E. Multi-⌧ decimation

Another aspect of the decimation processing is not only that
many ⌧ can be produced out of the same sample or block
sequence, but once a suitable set of ⌧ variants have been
produced, these can be decimated recursively in suitable form
to create ⌧ variants of higher multiples. One such approach
would be to produce the 1 to 9 ⌧ multiples (or only 1, 2 and 5
multiples which is enough for a log-log plot) of accumulates
for ⌧ being 1 s, thus producing the 1 to 9 s sums, and by
recursive decimation by 10 produces the same set of points
on the log-log plot, but for 10th multiple of time, for each
recursive step. This will allow for large ranges of ⌧ to be
calculated for a reasonable amount of memory and calculation
power.

IV. SUMMARY

Presented is an improved method to perform least-square
phase, frequency and PVAR estimates, allowing for high speed
accumulation similar to [8], but extending into any ⌧ needed.
It also provides for multi-⌧ analysis from the same basic accu-
mulation. The decimation method can be applied recursively
to form longer ⌧ estimates, reusing existing calculations and
thus saving processing. Thus, it provides a practical method to
provide PDEV log-log plots, providing means to save memory
and processing power without the risk of introducing biases
in estimates, as previous methods have shown.

REFERENCES

[1] E. Rubiola, M. Lenczner, P.-Y. Bourgeois, and F. Vernotte, “The Omega
counter, a frequency counter based on the linear regression,” IEEE UFFC,
2016, submitted (see arXiv:1506.05009).

[2] S. Johansson, “New frequency counting principle im-
proves resolution,” Proceeedings of 37

th

PTTI, 2005,
http://spectracom.com/sites/default/files/document-files/Continuous-
timestamping-article.pdf.

[3] J. Barnes, “The measurement of linear frequency
drift in oscillators,” Proceeedings of 15

th

PTTI, 1983,
http://tycho.usno.navy.mil/ptti/1983papers/Vol 15 29.pdf.

[4] F. Vernotte, M. Lenczner, P.-Y. Bourgeois, and E. Rubiola, “The parabolic
variance (PVAR), a wavelet variance based on the least-square fit,” IEEE

UFFC, 2016, accepted (see arXiv:1506.00687).
[5] M. Danielson, F. Vernotte, and E. Rubiola, “Least square estimation of

phase, frequency and pdev,” 2016, (see arXiv:1604.01004).
[6] B. S. Everitt, “The cambridge dictionary of statistics,” Cambridge Uni-

versity Press, 1998.
[7] E. Rubiola, “On the measurement of frequency and of its sample variance

with high-resolutioin counters,” RSI, vol. 76, no. 5, May 2005, also
arXiv:physics/0411227, Dec. 2004.

[8] J. J. Snyder, “An ultra-high resolution frequency meter,” Proceeedings of

35

th

Annual Frequency Control Symposium, May, 1981.

281

