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Abstract 
Smart and periodic structures have received the attention of researchers by virtue of their great potential. 
These structures have powerful properties like adaptiveness and the ability to operate as mechanical filters. 
Although, the presence of uncertainties must be taken into account to guarantee robustness. Thus, a finite 
element model is proposed to elucidate the importance of stochastic aspects and to present the concept of 
robust frequency bandgap. The smart part consists of piezoelectric actuators connected to resonant circuits 
in a tridimensional truss unit cell. The periodic part is the replication of this cell to assemble the final 
structure. Floquet/Bloch conditions are used to model the infinite representation. Then, a Monte Carlo 
Simulation is carried out and the bandgaps’ bounds are analyzed considering frequency responses and 
dispersion diagrams. The goal being to evaluate the influence of uncertainties affecting the prediction of the 
attenuation zones. Likewise, the consequences of increasing the uncertainty level are evaluated. 

1 Introduction 

Wave propagation [1] is one of the basis of vibration analysis. If this type of propagating energy arrives in 
a boundary condition or regardless of the impedance mismatch nature, there is a part that will be reflected 
and another transmitted. The presence of this kind of discontinuity, located periodically in a structure, can 
creates destructive interferences and, consequently, this movement is blocked and this energy is trapped 
inside this periodicity. Repetitive or periodic structures have being recently in focus by researchers of 
vibration control scientific community. It is explained by this unusual mechanical filter behavior for wave 
dispersion. A detailed review about these kinds of structures can be found in [3] and some overviews about 
their future in [4]. One of these perspectives is related to adaptiveness and tunable frequency bandgaps. 

Smart material and structures capacity of self-sensing and self-changing to adapt to new conditions 
according to design requirements is their most important characteristic. Some fundamental aspects of these 
intriguing structures can be found in [21]. Therefore, periodic and smart structures seem to be a good 
combination to help the resolution of complex vibration problems. More information about periodic and 
smart structures is shown in [5] and [6]. 

Piezoelectric (PZT) actuators [21, 22, 30] are used in the numerical example of this study. If this actuator is 
linked in series with a shunt circuit, it will dynamically behaves as adding a Dynamic Vibration Absorber 
(DVA). This kind of mechanism creates resonant bandgaps if placed periodically in a structure. More 
information about DVAs can be found in [7, 8, 9]. The principle behind this strategy is that the vibrational 
energy is transformed into electric energy through the direct piezoelectric effect and is transferred to the 
circuit where it is partially dissipated and/or dispersed. Among the types of used electric circuit, RL, known 



as resonant circuits, are considered as some of the most efficient [22, 23]. Such circuits comprise an inductor 
and a resistor that are connected to the piezoelectric transducer that is assimilated to a capacitor, thus forming 
an RLC circuit. When coupled to a dynamic system, this device operates similarly to a dynamic vibration 
absorber (DVA). Distributing these devices may lead to multimodal control [24]. 

Claeys describes the difference between placing a localized mass and a DVA in a periodic structure in [10]. 
Normally, increasing the mass density in one specific degree of freedom (dof) in a unit cell may create a 
large band gap but with weak attenuation. Oppositely, by adding a spring-mass dof, it is possible to create 
resonant band gaps whose attenuation zones are narrower but with strong dispersion grace of lower 
frequency response amplitudes. Although, as it is not yet possible to add just an inertia effect on an electrical 
circuit with a PZT actuator, because only the actuator is already a spring equivalent, the resonant circuit is 
the best choice. The main advantage of using piezoelectric actuators, rather than DVAs, is the characteristic 
of no addition of significant mass to the main structure and the convenience of electronically tuning without 
changing geometric properties. Moreover, these circuits can be redesigned and unusual behaviors can be 
included. One example of this is the negative capacitance shunting [13], which aims at removing the intrinsic 
capacitive effect of the piezoelectric patch [25]. This may be combined with resonant circuits [26], opening 
the way to new strategies with wideband efficiency [27, 28, 29]. 

Signorelli in [11] and [12] shows the wave propagation behavior in truss structures by using beam finite 
element and the transfer matrix method. This sort of structure also has the weightlessness as its major 
characteristic. In virtue of this, the use of piezoelectric actuator in these lattices like structures seems to be 
a good compromise because it favors the lightness design requirements. Nevertheless, uncertainty and 
robustness analysis are rare in literature. Near-periodic structures, defects, impurities on periodic structures 
and the localization phenomena are well detailed by [16, 17, 18, 19], but robustness analysis are scarce. 

In this paper, one addresses the robustness of repetitive truss structures whose attenuation zones are created 
and passively controlled by using piezoelectric stack actuators associated with electrical shunt circuits [21, 
22]. The finite element method is used to find the movement equation for unit cells [31, 32] whose three 
members contain a piezoelectric stack actuator connected to this circuit. Just like DVAs, shunt circuits must 
be tuned, which means that the values of their electric parameters must be precisely chosen for vibration 
attenuation in a narrow frequency band. However, the characteristic values of electronic components are 
prone to variability, due to manufacturing process and temperature, which can lead to mistuning and, 
consequently, decreasing of the control performance. 

In this scenario, it becomes essential to evaluate the probability that the system will comply with the design 
requirements, given the probability density functions ascribed to the uncertain variables considered. For 
that, three different cases are analyzed based on typical operation and performance requirements. 
Uncertainties in the values of mass joints and inductance of the shunt circuit are modeled as Gaussian 
random variables. Following, a Monte Carlo Simulation [33, 34, 35] is performed considering an infinite 
and a finite model by using the dispersion constants and frequency response function bandgaps data as 
output variables. The uncertainty level is varied by increasing the standard deviation of input variables as a 
percentage of their means. Subsequently, the results are presented and discussed. 

2 Methodology 

A unit cell is the smallest part of a periodic structure that is repeated side by side to assemble the complete 
structure. As long as these cells are identical, appropriate periodic boundary conditions can be taken into 
account and an infinite model can be created. The equation (1) presents the Floquet [2] theorem for a 1D 
periodic structure: 

 
( ) ( )xXlxX λ=+ , (1) 
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where, in an equivalent mechanical structure, X  can be the displacement, x  the position, l  the cell length, 
or spatial period, and λ  is the Floquet multiplier. For example, using a discrete model, the periodic boundary 
conditions are described in equations (2) and (3): 
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for continuity and equilibrium to the left (L ) and right (R ) of the unit cell, respectively, where µ  is the 
dispersion constant with δ  and ε  its real and imaginary components. These variables are the attenuation 
and phase constants, respectively [3, 4]. For a purely complex µ , the waves propagate and the frequency 
zone is a pass band. If, in a given frequency band, all waves correspond to purely real values of µ , the 
waves are attenuated and this zone is a stop band or well kwon in periodic structure scientific community 
as bandgap. 

  
Figure 1: a) 3D truss unit cell and b) its finite model. 

 
In this article, a simple truss unit cell, composed of 12 longitudinal rods, is shown in Figure 1. The embedded 
smart devices will be described in the next section. This structure has 3 boundary nodes on each side, the 
rods’ properties are the (common) cross section area A , the Young's modulus E , density ρ  and we denote 

il  the length of the cell i  while l  is the total length of a structure with n  cells. For a sake of simplicity and 
low computational cost, the repetitive truss structure in Figure 1 is composed only by bar finite elements 
with 2 nodes and 3 degrees of freedom (dof) per node. 

2.1 Smart Cell 

One category of smart material are the piezoelectric material [21]. These materials produce an electrical 
output when a mechanical strain is imposed. This effect is called direct. Oppositely, a mechanical strain can 
also be induced by applying an electrical signal to this material and it is reciprocally called the inverse effect. 
These properties are expressed mathematically by the following equation: 
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where D  and S are the electric displacement and the mechanical strain, E  and T  are the electrical field 

and mechanical stress. The material properties T
33ε (F/m), d33 (C/N or V/m) and Es (m²/N) are, respectively, 

the dielectric permittivity coefficient, piezoelectric strain coefficient and the mechanical compliance of the 
piezoelectric material of the active members. The indexes E  and T  represent the values in short-circuit 
(constant electric field) and open-circuit (varying electric field) with stress-free condition, while 33 is the 
direction along the axis of piezoelectric material polarization and it is one of the most common operating 
modes of a piezoelectric device. These characteristics are used to model the semi-active finite element 
present on this repetitive structure. 

2.1.1 Periodic Cell with a resonant shunt circuit 

In this section, the representation of the finite element model of the three-dimensional truss cell is depicted 
in Figure 2. This unit cell is composed by 6 nodes, 9 passive elements and 3 active elements. The nodes 
displacement are connected and the joint has a spherical function. Each of the active members is considered 
as being composed of a stack-type actuator placed between two passive segments. The actuator is assumed 
to be composed of piezoelectric discs poled in the axial direction (direction 3), wired in such a way that 
those discs are electrically connected in parallel. Application of voltages to the actuators will generate an 
internal longitudinal force enabling to attenuate transversal and longitudinal waves in the truss. 
 

                        

Figure 2: a) Smart unit cell and b) its piezoelectric stack actuator described as a finite element model. 
 

As indicated in Figure 2, E (N/m2), A (m2) and ρ (kg/m) are the Young’s modulus, cross-section area and 
linear mass density of the passive members, respectively. The others properties, EY33(N/m2), Ap (m2), tp (m) 

and ρp (kg/m) are the Young’s modulus, cross-section area, thickness of the piezoelectric discs and linear 
mass density of the piezoelectric material of the active members. The physical and geometrical properties 
of the main structure and the actuator are provided in Table 1, in which subscripts b and p indicate the 
properties related to the metallic and piezoelectric material. 
 

Property Unit Symbol Steel (b) PZT-5H (p) 
Young’s modulus ][ 2mN  iE and EY33  11101.2 ×  9100.60 ×  

Density ][ 2mkg  iρ , bρ or pρ  0.7860  0.7800  

Cross section area ][ 2m  iA , bA or pA  6100.25 −×  6105.27 −×  

Bar lengths (Cell length) ][ m  bL or pL ( L or il ) ( )1.0033.0  ( )1.0033.0  

Piezoelectric strain coefficient ]/[ NC or ][ mV  33d  - 12100.650 −×  
Dielectric permittivity 

coefficient 
][ mF  T

33ε  - 9100.33 −×  

Table 1: Properties of the smart periodic cells. 

a) b) 
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As detailed in reference [21, 22] the development of the finite element-based equations of motion of the 
electromechanical system can be made and it is equivalently expressed as: 
 

( ) ( ) ( ) ( )ttVtt FKKUUM =−+ ~
&& , (5)

( ) ( ) ( )tQtVt =+ ΓUK
~

, (6)
 

where M  is the mass matrix, K  is the stiffness matrix, K
~

 is the electromechanical coupling matrix, F is 
the vector of external loads, Γ  is the matrix of dielectric permittivity, U is the vector of mechanical degrees 
of freedom, )(tQ  is the electric charge and )(tV  is the voltage across the electrodes of the piezoelectric 
patches. The main structures is considered as conservative and the damping matrix C  is zero. A RLC shunt 
circuit can be connect in series by adding the voltage condition as described in equation (7). 
 

( ) ( ) ( )tQLtQRtV &&& += . (7) 
 

Associating Eqs. (5), (6) and (7), the electromechanical equations of motion are found under the form: 
 

( ) ( ) ( ) ( )tttt FZKZCZM =++ &&& , (8) 
 

where ( )tZ , M , C  and K  are equal to ( ) ( ){ }TtQtU , [ ]TLL ΓK0M
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~
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, respectively. An equivalent movement equation of a truss model can be found in [22]. 
In this work, Preumont shows a method by using the admittance of the shunt circuit. 

2.1.2 Tuning a resonant RLC circuit 

Figure 2 b) illustrates a piezoelectric transducer connected to a resonant (RL) shunt circuit and bonded to a 
host vibrating structure. Similarly to what happens with a dynamic vibration absorber, the resonant shunt 
circuits must be tuned, which means that the values of their electrical resistance and inductance parameters 
must be accurately determined for the attenuation of vibrations of the host structure in a given range of 

frequencies. According to Hagood and Von Flotow [22], the electromechanical coupling coefficient  

plays the same role as the mass ratio in tuning a DVA. Indeed, this coefficient can be approximated as 

follows: ( ) ( )( ) ( )2222 E
n

E
n

D
nijK ωωω −= where D

nω and E
nω  are the n -th natural frequencies in open and closed 

circuit, respectively. Knowing the value of ijK , one can calculate the optimum values of resistance optR  and 

inductance optL  according to: ( ) ( )212 ijijopt KKr += , ( )E
n

S
optopt CrR ω= , 21 ijopt K+=δ  and 

( )( ) 12 −
= SE

nopt CL ω . In this article, the electrical resistance is considered as 0 and no optimal values are used 

to tune. Thus, equation (9) shows how the inductance value is obtained for a specific tune frequency: 
 

S
nC

L
2

1

ω
= . (9) 

 

However, in practical conditions, the values of the electric characteristics of the shunt circuit are inevitably 
affected by uncertainties resulting from material composition, manufacturing process and temperature 
variations. Such uncertainties can lead to mistuning of the shunt circuit and, as a result, deterioration of the 
performance of the damping/resonating device. In the case of periodic structures, it changes the bandgap 

ijK
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bounds and, for as strong impedance mismatch in mechanical and electrical domains can creates natural 
frequencies inside that increases the amplitude and, consequently, decrease the attenuation zone efficacy. 

2.2 Frequency Response Function and Dispersion Diagrams 

To give a sense on the influence of the joint mass and shunt inductance, 8 scenarios were compared by 
observing the dispersion diagrams and frequency responses and they are illustrated in Figure 3. 
 

    

    

    

    
Figure 3: Considered unit cells a), b), c), d), e), f), g) and h) with their respective dispersion diagrams. 

 

The equation 8 can be solved considering a harmonic solution to obtain the frequency response function 
(FRF) in equation (10). Moreover, the equation (11) is achieved by solving equation (10) considering 
periodic boundary conditions of equations (2) and (3). 
 

  ( ) ( ) 12 −
++−= KCMH ωωω j , (10) 

  [ ] 0)()()( )()(2)()( =−+ µµωωµ rrrr j UMCK . (11) 
 

Figures 3 a), b), c), d), e), f), g) and h) shows the added mass and actuator position with their correspondent 
imaginary part of dispersion constants. Transversal and longitudinal wave’s modes are not sorted and the 
bandgaps highlighted in gray comprehend these two kind of waves. The red dots indicate the bandgap 

a) b) c) d) 

e) f) g) h) 
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bounds. It is important to mention that as the model of one cell has 18 and 21 d.o.f., considering reduced 
matrices (r), the same number of mode branches can be found. As long as it does not represent all the dof 
that one finite structure can have, the area after the last branch is not considered as an attenuation zone and 
they are not exposed in these diagrams. The Figure 4 shows their equivalent respective frequency response 
by considering a transversal (x or y) and longitudinal (z) excitation on the first node cell and observing the 
response of equivalent node of last cell. 
 

 
Figure 4: a), b) and c) frequency responses of these periodic finite structures with 10 cells by 

exciting the first node on direction x, y and z and observing the correspondent dofs on the last unit cell. 
 

The number of cells considered to model the finite structure is equal to 10. This choice was done concerning 
the lowest number of cells that the bandgap is easily depicted in frequency response. 

The added mass (am ) is equal to 0.3 kg and the value of the inductance (L ) to tune to a 7000 Hz, considering 
equation (9) is 0.1084 H. 

It is possible to observe that infinite and finite models have the same band gaps and it is verified by 
comparing Figures 3 and 4. Some important aspects can be observed. Firstly, these models without added 
joint mass and piezoelectric actuator have no band gaps (Figure 3.a). The same can be observed by adding 
mass in all joint or adding actuators as shown in Figures 3 b) and 3 e). The fact of adding mass in joints, or 
considering the actuators in half cell, creates the attenuation zones that can be analyzed in Figures 3 c) and 
3 f). By comparing these diagrams, a larger one is found in the case of added mass and a deeper one with 
added mass and PZT in shunt circuit. It is similar to the added mass and mass-spring effects in [10]. 

Figures 3 d), g) and h) are the combination of the others. The bandgap width is increased by combining 
added mass and actuator in scenarios of figures 3 g) and 3 h). Uncertainties can drastically change these 
bandgaps behavior and it is elucidate in the following. 

a) 

b) 

c) 
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2.3 Monte Carlo Simulation and Localization Phenomena 

The Monte Carlo Simulation (MCS) [33, 34 and 35] is a method that consists in sampling input random 
variables, defined as a probability density function, to obtain predefined outputs. As mentioned in reference 
[33], convergence can be reached with approximately 95% confidence, by using from 10,000 to 20,000 
samples, depending on the function being evaluated. This convergence is characterized by the stabilization 
of mean and standard deviation values. For problems featuring low standard deviations, very large numbers 
of samples are necessary. Optimized sampling methods can be used to reduce the computation effort 
necessary for MCS convergence. In this work, the sampling technique referred as Latin Hypercube Sampling 
(LHS) was used. More details about this technique can be found in reference [36].  

A specific probability density function should be chosen to represent the stochastic variable considering the 
input variable characteristics. In this article, for the sake of simplicity and easy comprehension, the normal 
distribution is used. Considering a Gaussian distribution, if the standard deviation has high values, the gap 
between the properties of neighbor cells can creates the localization phenomena. 

 

 

 

 

 
Figure 5: a) FRFs with localization phenomena L1, L2, L3 and L4 and b) their correspondent mode shape. 
 

The Figure 5 a) shows two FRFs considering a strong difference between one or two cells and the others in 
the same structure. L1, L2 and L3 are the localization phenomena by adding a mass of 1 kg on dofs 142, 
143 and 144 located in cell 8. L4 is the same but by changing the inductance of cells 8 and 9 to 0.001 H. 
The Figure 5 b) depicts their respective mode shapes and it can be observed that the displacement of nodes 
in these places is higher than the other positions of finite structure. 

The localization phenomena can be briefly explained as normal mode that is confined in a specific place of 
the structure. As the number of cells tends to infinity, the influence of this mode tends to zero. Consequently, 
it does not appear in the infinite model. It is explained due to the stronger impedance mismatch compared 

 Cells        1           2           3           4           5           6           7           8          9          10 

L1 

L2 
L3 

L4 
a) 

b) 

L2 

L1 

L3 

L4 
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to other cells and, grace of it, the localization phenomenon appears. These phenomena can be considered as 
valuables as long as they reduce the variation of bandgap borders. 

In other words, this kind of unpredictable event in a Monte Carlo Sampling adds robustness to the bandgap 
behavior in meanings of borders variation but it becomes hard to observe the amplitude on FRF inside 
bandgaps’ zones and to identify the effective attenuation zones. Consequently, a robust interval confidence 
envelope will not take into account the localization phenomena since the worst configuration may takes part 
in any cell in a random analysis. 

3 Numerical Example 

In practice, it is not easy to design locally or to modulate periodically the inertia and the stiffness of a 
mechanical structure without weakening it. Normally, the properties as Young modulus and the density do 
not vary considerably if the material comes from same pack. Therefore, the principal incoming of 
uncertainties are the imperfections or defects caused by the manufacturing process. Accordingly, Figures 3 
(c), (f) and (h) illustrate the 3 situations of interest in which the added joint mass and inductance values are 
stochastically analyzed. The Table 1 shows the properties of the truss unit cell for the numerical example. 

3.1 Probabilistic Analysis 

A periodic structure is composed by quasi-identical cells. This “quasi” is for the reason that there is no 
perfectly identical structures even they were designed to be. Thus, a robustness analysis is employed for this 
periodic structure with the goal of finding a robust bandgap. For this case, to get closer to reality, the 
variables of each cell should be independents. For the sake of comparison, infinite and finite models are 
used in this probabilistic analysis. To realize this investigation, for each standard deviation of random input 
variable (RV), a convergence of Monte Carlo Simulation is achieved and the outputs are obtained. In this 
article, the band gap edges are the outputs. Figures 3 show an illustration of these variables where the red 
dots are the bounds for infinite structure and a specified magnitude, different for each case, is used as a 
threshold for obtaining the bandgaps limits for a finite structure. The stochastic properties of the input 
random are shown in Table 2. 
 

 Variables Distribution Mean )(µ  Standard Deviation )(σ  

1X  ][ kgma  Normal (Gaussian) 3.0  1Xµγ ×  

2X  ][ HL  Normal (Gaussian) 1084.0  
2Xµγ ×  

Table 2: Probabilistic variables and their distributions. 
 

Two different cases are considered for each of the 3 scenarios of figures 3 c), f) and g): 

• the uncertainty variable (1 RV) in the unit cell is repeated for each cell and, consequently, the 
structure still periodic (infinite model); 

• all cells are independents (10 RV) from the uncertainty point of view (the structure is not perfectly 
periodic anymore, meaning quasiperiodicity, and is strictly finite). 

For both cases, FE models were considered. The equation (12) presents the stochastic coefficient γ . It 
permits the variation of uncertainty level, given by the standard deviation, which is obtained from a 
percentage of probability distribution mean, according to: 

  
nn XX = µγσ × . (12) 
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This parameter varies from 2 % to 20 % with a step of 2 % for this numerical example. Then, for each 
considered value, a Monte Carlo Simulation with Latin Hypercube is performed until its convergence 
(number of samples around 5000). Considering a Normal approach for 95% of confidence level envelope, 
the output standard deviation value must multiplied by 1.96. It means that the probability of the output mean 
of the output samples has 95% of chance to be in this interval. 

4 Numerical Results 

The Figure 6 shows the envelope of the frequency band gaps for three considered scenarios. Figures 6 a), b) 
and c) for infinite model obtained from imaginary part of propagation constant considering with 1 RV 
(strictly periodic structure) and Figures d), e) and f) for finite model obtained from frequency responses with 
10 RV (quasi-periodic structure). 

 

      
 

     
Figure 6: Bandgap bounds envelopes relatives to (c), (f) and (h) on figure 3, with: a) mass as RV, b) and c) 

inductance as RV considering an infinite model (1 RV) with their correspondent d), e) and f) to finite 
model results with 10 RV. 

 

Considering a normal approach, this picture shows the means and the 95% confidence intervals. It is possible 
to observe that the envelopes widths increase according to the increasing of uncertainty level. In general, 
the envelopes are narrower for the models with finite structures (10 RV), approximately less than a half of 
the bandgaps obtained with infinite structures (1 RV). 

If an uncertainty level of 10 % is considered for the random variables, the dark gray areas represents the 
robust bandgaps (bandgap almost certain considering these uncertainties). 

The localization phenomena perturbed the result in Figure 6 e) and equivalent results were not found as 
related to Figures 6 d) and 6 f). This proves that this phenomenon is strongly sensible to low variations of 
inductance values in a shunt circuit and an erroneous result is obtained. 

c) a) b) 

d) e) f) 
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The Figure 7 elucidates the concept of robust band gap by situating the classical band gaps and robust band 
gaps inside the frequency response and dispersion diagrams, for infinite and finite models, respectively. 
 

 

 

 

 
Figure 7: a), b), c) and d) Robust band gaps for a) finite and b) infinite structures. 

 

The light red areas (envelopes) in Figure 6 indicate that the attenuation zone calculated with a single random 
variable is narrower than the dark gray, which was obtained with ten random variables for gamma, 
considering γ  equals to 10%. Thus, when one uncertainty is considered for each cell of a finite structure, 
which corresponds to the quasi-real case, the effects on the responses are compensated and the structure are 
intrinsically more robust. This envelope does not take into account the localization phenomena. However, 
it can appears just in the case of finite model simulation with 10 RV. For high gamma values, the chances 
of appearing this situation is higher. 

It is also possible to observe in figures 7 (b) and 7(d) that there is a branch correspondent to a longitudinal 
wave that inhibits the appearance of two others bandgaps which can be verified by the appearance of on 
figures 7 (a) and 7 (c). 

5 Conclusion 

A low computational cost three-dimensional periodic structure truss was used as a numerical example. 
Firstly, solutions for finite and infinite structures were found likewise their frequency response and 
dispersion diagrams, respectively. This structure was discretized by a bar finite element with 3 degrees of 

a) 

b) 

c) 

d) 
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freedom per node. A number of cells equals to ten has been selected for the finite structure. This choice was 
made in order to obtain credible location of the attenuation frequency zones without substantially increasing 
the computational cost. 

The localization phenomenon was identified related to a place with strong impedance mismatch. This 
important remark was clarified and it explains the behavior of uncertainties in this kind of repetitive 
structure. A relevant impedance mismatch, which highly differs from the other cells, localized in some place 
of the repetitive structure can reveal interesting properties. 

An uncertainty analysis was performed using the finite and infinite models of this structure. The added joint 
mass and inductance values were purposely chosen as random variables with a Gaussian probability density 
function owning a mean and standard deviation as stochastic properties. 

The choice of this probability distribution is explained due to its facility of understanding. Although the 
mass and inductance values may achieve negative values for this model, a strongly high value of standard 
deviation is necessary. 

A coefficient of variation, namely gamma, was specified to vary the standard deviation as a percentage of 
the mean value. Numerous Monte Carlo Simulations with Latin Hypercube were conducted until their 
convergences for each value of the coefficient mentioned before. 

The results for infinite and finite models are different. The results for infinite structures are not completely 
reliable since the same uncertainty is repeated indefinitely. The results for finite structures are more reliable 
since the uncertainty is considered ten times for the finite structure with ten cells. 

The confidence envelope for the complete structure with ten stochastic variables is narrower than those 
found with one random variable. Besides, they are more reliable due to the model being closer to reality for 
the same case. The fact of considering ten random variables, instead of one, proves that the uncertainties 
self-compensate and the periodic structures are intrinsically tough. 

Finally, a more accurate and reliable robust smart bandgap was obtained. 
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