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Abstract 
To control the noise level of passenger compartment is one of the important design issues in fields such as 

automobile and manned aerospace. An uncoupled model of the acoustic part extracted from the coupled 

vibroacoustical system is significant for predicting and improving the vehicle noise performance. The 

objective of this work is to build mass, stiffness, and damping matrices of a reduced equivalent system 

which exhibits the same behavior as the full size one. An extension of the least-square complex frequency-

domain (LSCF) method is introduced specifically for vibroacoustical identification. The QR 

decomposition is subsequently performed to obtain a reduced model whose behavior is as close as 

possible to the measurement. The properness condition enforcement method employed here provides the 

optimal eigenvectors, which can be safely used to reconstruct the equivalent system. A simulated case 

study is proposed to illustrate the application of this approach. 

1 Introduction 

Identification of analytical models from measurements remains an important issue in experimental modal 

analysis. The specific vibroacoustical application pushes model identification into a more challenging 

battle, where not only the global coupled system but also the uncoupled structural/acoustic part of the 

system should be identified [1, 2]. The behavior of the uncoupled acoustic part is significant for designers 

to control the noise level of passenger compartment in fields such as automobile and manned aerospace. 

For cases with large number of sensors in the experiment, the number of degrees of freedom (dofs) of the 

model may be too large, leading to a huge calculation burden for their further application. In this case, 

being able to identify the models with a smaller size, i.e. with reduced dofs, is another common and 

important aspect in model identification [3, 4]. 

The objective of this work is to identify a reduced and uncoupled model which can represent the same 

behaviors as the experimentally measured ones. One of the ways to construct the system matrices is to 

start from the identified complex modes. The reconstruct procedure from the modes to the matrices, i.e. 

the inverse procedure, is quite sensitive to the noise coming from the experiment and reduction procedures, 

leading to a large change in the final represented system behaviors compared with the original ones. To 

deal with this difficulty, this work focus on a specific point named as the properness condition, described 

with various names in different literatures [5-7]. This condition is automatically fulfilled by the exact 

complex modes of the system without noise. Under this sense, the directly identified complex modes 

should be optimized to make sure the properness condition is enforced, so that the complex modes can be 

safely used in the inverse procedure to reconstruct the system matrices. 

This paper proposes an integrated process including identification, reduction, and optimization techniques, 

after which a reduced and uncoupled model of the original vibroacoustical system is obtained. The 

specific topology of vibroacoustical problem is described and the corresponding non-symmetric second-



order formulation is analyzed by state-space representation. As a specific non-symmetric case, the right 

and left complex modes are identified by an extended LSCF technique. The QR decomposition is 

subsequently performed on the complex modes to reduce the size of the original models. The so-called 

“over-properness” enforcement method [8] is specially designed for this vibroacoustical application, 

which is employed herein to optimize the complex modes before reconstructing the system matrices. A 

large size simulated case study is presented to illustrate and evaluate each of the techniques proposed in 

the approach. 

2 The eigenvalue problem of vibroacoustical systems 

2.1 Description of the vibroacoustical system 

The typical structural dynamic problem is represented as 

 ( ) ( ) ( ) ( )t t t t  Mq Cq Kq f                           (1) 

where q(t) is the vector of the system response; f(t) is the excitation vector; M, C, and K are respectively 

the mass, damping, and stiffness matrices, which are typically symmetric.  

The vibroacoustical system can be typically represented as the fluid domain (i.e. cavity) surrounded by the 

elastic structure. Response of this system is described based on natural fields which are directly measured 

from different parts, i.e. displacement of the structure and acoustic pressure of the cavity. Then the system 

has a specific topology as  
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where x(t) is the vector of displacement of the structure, p(t) is the vector of acoustic pressure of the cavity, 

Fs(t) is the vector of the excitation on the structure, ( )a tQ  is the acoustic excitation source (volume 

acceleration) in the cavity. Ms and Ks are respectively the mass and stiffness matrices of the structure; Ma 

and Ka are respectively the mass and stiffness matrices of the cavity; Cs and Ca are respectively the 

structural and acoustic losses; L is the coupling matrix. 

It is obvious that the system matrices of vibroacoustical problem are no longer symmetric. For this non-

symmetric system, the right and left modes are required to solve the associated quadratic eigenvalue 

problem [7]: 

 2( ) 0i i Ri   M C K φ ,        (3) 

and  

 2( ) 0T T T

i i Li   M C K φ ,                              (4) 

where i  is the i-th eigenvalue associated to the i-th right eigenvector Riφ  and the i-th left eigenvector Liφ . 

As the matrices are not symmetric, the eigenvalues are real or come in pairs ( j , *

j ). If jφ  is a (right or 

left) eigenvector associated to j , then *

jφ  is a (right or left) eigenvector associated to *

j . Ref. [9] is 

suggested for a thorough review of this kind of problem. 

The specific topology of the system matrices in Eq. (2) includes the hypothesis that there is no loss effect 

at the coupling between the structural and acoustic parts, and that the internal loss can be represented 

using equivalent viscous models. A detailed description of this vibroacoustical formulation and its 

damping conditions are given by Ref. [8]. 
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2.2 State-space representation 

The non-symmetric character of the vibroacoustical system implies the right and left modes must be 

described separately. This can be done using the state-space representation of Eq. (1):  

 ( ) ( ) ( )t t t UQ AQ F                                   (5) 

where  
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Eigenvalues of Eq. (5) are stored in the spectral matrix          j
 
  

Λ . The corresponding eigenvalue 

problem can then be represented as  

 ( )i Ri  U A θ 0                                    (7) 

and 

 ( )T

Li i  θ U A 0                                    (8) 

where Riθ  and Liθ are respectively the i-th right and left eigenvectors, with the construction as:  
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where Riφ  and Liφ  are respectively the i-th right and left eigenvectors of Eq. (1). Riθ  and Liθ can also be 

constructed in modal matrix form: 
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R
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Then Eq. (7) and Eq. (8) can be respectively formulated as  

 R RUΘ Λ AΘ                                     (11) 

and 

 T T

L LU Θ Λ A Θ .                                   (12) 

Let          j
 
  

ξ denotes a diagonal matrix with 2n arbitrary diagonal elements, the orthogonality between 

different modes can be represented as 

 T

L R Θ UΘ ξ  or T

L R Θ AΘ ξΛ .                            (13) 

The modal decomposition of the permanent harmonic response at frequency ω is 

 1 i

2( ) ( (i )) ( )T t

R n Lt e   Q Θ ξ E Λ Θ F                          (14) 

where E2n is the 2n-by-2n identity matrix and F(ω) is the complex amplitude of the harmonic excitation. 

This relationship can also be written using the n dofs notion in the frequency domain as 

 ( ) ( )T

R L  Q Ξ f                                 (15) 

where  

 

\
1

  
(i )

                     \
i i  

 
 

  
 
 

Ξ .                                (16) 
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It is important to note in the following context, the arbitrary diagonal matrix ξ  in Eq. (13) is assumed to 

be normalized as 2nξ E . Similarly in Eq. (16), 1,  1,  ,  i i n    . This normalization condition is 

significant in the following inverse procedure to reconstruct the system matrices. 

As for a general non-symmetric problem, the right and left eigenvectors are different and have no certain 

relationship with each other. While in the case of vibroacoustical application, due to the special topology 

of the problem shown in Eq. (2), there is a direct link between the right and left complex modes [10] : 

    2If , then R L    


XX
P PΛ

                           (17) 

where X corresponds to the structural dofs of the right eigenvector, and P is related to the acoustic dofs. 

Note that, this relationship is valid under the situation with only viscous damping and without structural-

acoustic cross damping. This hypothesis is fundamental for the vibroacoustical problem considered in this 

paper and it is also important for the least-square complex frequency-domain (LSCF) identification 

method introduced in the following section.  

3 Enforcement of the properness condition 

The inverse procedure to reconstruct the system matrices from the complex modes can be derived starting 

from the orthogonality relationship in Eq. (13). When ξ  is normalized to E2n (the normalization condition), 

it is easy to calculate the inverse of U and A as: 
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Recalling Eqs. (6) and (10), the above equations can be rewritten as 

 

1

2

1 1

0

0

0

T T

R L R L

T T

R L R L

T T

R L R L

T T

R L R L



 

     
   

      

      
   

      

C M Λ

M Λ Λ

K Λ

M Λ Λ

.                          (19) 

Then the system matrices are extracted as  
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The above inverse procedure is valid only if the so-called properness condition is satisfied, which can be 

easily yielded from Eq. (19) as 

 0T

R L   .                                    (21) 

Note that the above properness condition is universal for the entire non-symmetric problem. For the 

particular vibroacoustical case, the properness condition can be rewritten using only the right complex 

eigenvector as 

 

2

2
0

T T

T T





 
 

 

XX XΛ P

PX PΛ P
.                             (22) 

Identified from the experimental measurements, the complex eigenvectors are unavoidably polluted by the 

random noise, which comes from both of the measurements and the identification process. As a result, the 

PROCEEDINGS OF ISMA2016 INCLUDING USD2016



identified complex modes generally do not verify the properness condition, which means an enforcement 

procedure is required before the modes can be utilized in the inverse procedure to reconstruct the system 

matrices. This enforcement procedure is essentially an optimization problem: 

Finding the approximate X  and P , minimizing 1 2|| ||  and  || ||f f   X X P P , with the constraints as 
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                                 (23) 

As long as the structural and acoustic parts of the right eigenvector are optimized, the left eigenvector is 

constructed following Eq. (17).  

To solve this optimization problem is not easy because of the eigenvalue matrix Λ  which makes it 

impossible to find explicitly the expression of multipliers versus the unknown vectors. This paper utilizes 

the so-called “over-properness” enforcement approach, which is described in Ref. [8]. It is possible to 

obtain quick results that can be used in practical engineering. The general procedure is briefly recalled 

here. 

Firstly, a hybrid matrix combining both the right and left eigenvectors is constructed as 

 
2
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 


 
  
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Ψ P

PΛ

.                                  (24) 

Considering the properness condition 0T ΨΨ , one can get the constraints as 
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.                    (25) 

The usage of Ψ simplifies the problem from a vibroacoustical situation to the typically symmetric 

structural situation. The methodology proposed in Ref. [11] can be easily employed here by solving a 

Riccati equation. This equation is derived from the simplified optimization problem: 

 Find Ψ  minimizing || ||Ψ Ψ , while 0.T ΨΨ                   (26) 

Note that the obtained Ψ  contains totally six constraints presented in Eq. (25), among which the four 

required terms of Eq. (23) are included. There are two superfluous constraints which are not theoretically 

required, and this is the reason why this procedure is called as over-properness enforcement. Nevertheless, 

as the four required constraints are indeed fulfilled, the procedure gives feasible identification results. 

4 Identification and reduction techniques 

4.1 Extension of the LSCF identification method 

The classical LSCF method has been demonstrated as a reliable technique to identify the complex modes 

from experimental measurements [12, 13]. While this method is initially developed for symmetric systems, 

an extension of the LSCF method should be considered for a non-symmetric application. As stated in Ref. 

[14], the full identification of the right and left eigenvectors requires the excitation being added at every 

point of sensors, i.e. at every model dofs of interest. However, as a special case of non-symmetric 

problems, the vibroacoustical system’s right and left eigenvectors have a certain relationship as shown in 

Eq. (17). In this case, only one excitation is needed to perform the full identification.  
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The first step of the method is to identify the complex poles i  from the measured frequency response 

functions (FRFs), and this can be done in exactly the same way as if the system were symmetric, since the 

eigenvalues associating with the right and left eigenvectors are equal. Once the poles have been identified, 

the right and left eigenvectors are calculated based on the so-called residue matrix. Construction of the 

residue matrix is relative to the position of the excitation. Assume the excitation is added on the k-th dof of 

the vibroacoustical system, the residue matrix has the formation as 

 k R k Re L                                    (27) 

where R  is the unknown right eigenvector matrix; Lk is the so-called modal participation matrix, which 

is diagonal and whose terms are the k-th row of the unknown left eigenvector matrix. This indicates each 

column of Rek is proportional to a right eigenvector. Note that according to the excitation is added on the 

structural or acoustic part of the vibroacoustical system, the proportional coefficients in Rek are different, 

which means the calculation of eigenvectors belongs to different situations. 

 When the excitation is added on the structural part: 

Vector form of Eq. (27) is rewritten as  

       
       

k Ri kix
 

  
  

Re φ                             (28) 

where , 1,  ,  Ri i n φ , is the i-th right eigenvector; , 1,  ,  ,kix i n   is the unknown coefficient. As xki is 

simultaneously the element in the k-th row of the left eigenvector which belongs to the structural dofs , it 

is clear to get  

 ( , ), 1,  ,  ki kx k i i n  Re                            (29) 

where ( , )k k iRe is the element positioned at the k-th row and i-th column in matrix Rek. Then the right 

eigenvector is extracted as 

 
(:,  )

, 1,  ,  k

Ri

ki

i
i n

x
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Re
φ                            (30) 

where (:,  )k iRe  is the i-th column of Rek, afterwards the left eigenvector is calculated following Eq. (17). 

 

 When the excitation is added on the acoustic part: 

In this case, vector form of Eq. (27) should be rewritten in a different formation compared with Eq. (28): 

   2     
               

k Ri ki ip 
 
  
 
 

Re φ                            (31) 

where , 1,  ,  ,kip i n   is the unknown coefficient with the same sense as xki in Eq. (28). pki is 

simultaneously the element in the k-th row of the left eigenvector, but herein it belongs to the acoustic part, 

which can be calculated as  

 2( , ) , 1,  ,  ki k ip k i i n   Re .                          (32) 

Then the right eigenvector is extracted as 

 
2

(:,  )
, 1,  ,  k

Ri

ki i

i
i n

p 
   

Re
φ .                           (33) 

Similarly, the left eigenvector can be obtained following Eq. (17). 

PROCEEDINGS OF ISMA2016 INCLUDING USD2016



4.2 QR decomposition for model reduction 

Model reduction is popular in the fields such as structural dynamics, system and controlling, and 

numerical mathematics. The objective of model reduction herein is to find an equivalent model with 

reduced dofs, which continues to exhibit the same system behavior as the full size one.  

Ref. [15] describes a methodology based on QR decomposition to optimize the placement of sensors in 

experimental measurement. Though with different objectives, the activity in Ref. [15] obeys the same 

logic as which proposed in this work, which is to screen the “key” dofs that can be used to represent the 

system behavior. Under this sense, the QR decomposition is a suitable technique which can be employed 

here to achieve this objective. 

In order to discriminate the key dofs, the identified full size eigenvector matrix is investigated. The idea is 

that the most linear independent rows of this matrix construct a reduced matrix which provides a MAC 

(Modal Assurance Criteria) with minimized off-diagonal terms. In other words, these dofs are capable of 

representing the maximum number of modes. QR decomposition is proposed here to extract these rows 

from the original eigenvector matrix  : 

 T E QR                                       (34) 

where Q is an orthogonal matrix; R is an upper triangular matrix; E is a column permutation matrix with 

the purpose of making the diagonal terms of R are ranked in descending order. The row vectors with the 

most significant independence can subsequently be discriminated according to the rearranged column 

number in matrix E. 

Two principles are fulfilled by this technique when reducing the dofs: i) The selected dofs are sensitive for 

the maximum number of modes in the frequency range of interest; ii) For a given mode, responses on two 

selected dofs are different and independent enough to make each of the modes is distinguishable. This is 

the reason why the technique is feasible not only for optimizing the placement of sensors before the 

experiment but also for reducing a large size original model after the experiment. The MAC matrix of the 

reduced model can be employed to evaluate the effect of this technique by checking if the off-diagonal 

terms are minimized. 

5 Application: A large size simulated case 

The overall identification process is illustrated by a large size numerical vibroacoustical case study with 

the following steps: 

1. The original data: The start point is the system matrices following the specific vibroacoustical 

topology. The frequency response functions (FRFs) and the coupled/uncoupled natural frequencies 

are then calculated according to these matrices. The original FRFs and frequencies are served as the 

reference data in the following procedure. 

2. Identification and reduction: Based on the original FRFs, the complex modes are identified by the 

extended LSCF method. The complex eigenvector matrix is reduced from the original size to a much 

smaller size using the QR decomposition technique. In order to simulate the uncertainty in 

experimental measurements, the uniform random noise (with the maximum as 1% of the original 

data) has been added on the eigenvectors and eigenvalues. 

3. The direct data: The reduced and noised complex modes are then employed in the inverse procedure 

to reconstruct the system matrices. These matrices are termed as “direct” because they are obtained 

from the original modes but without optimization. The direct FRFs and frequencies are calculated 

according to the direct matrices with the purpose for comparison with the original and optimized 

ones. 

4. The proper data: The over-properness enforcement procedure is proposed to optimize the reduced 

complex modes before they can be utilized in the inverse procedure. The optimized system matrices 
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are termed as “proper” data. And similarly, the proper FRFs and frequencies are calculated according 

to the proper matrices. 

5.1 Identification and reduction of the original data 

The proposed vibroacoustical system contains 130 structural dofs and 123 acoustic dofs. The original 

system matrices with the size of 253-by-253 are pre-defined following the specific vibroacoustical 

topology. As long as the original FRFs are calculated, an identification procedure based on the extended 

LSCF method is performed, as shown in Fig. 1. This identification procedure is performed on MODAN, 

which is an integrated structural dynamic identification software developed by Femto-ST. 

 

Figure 1: The identification procedure in MODAN 

Mode No. 
Natural frequencies 

coupled structural Acoustic 

1 21.79 29.54 28.38 

2 38.16 69.79 202.47 

3 69.35 77.10 221.66 

4 76.64 116.76 283.94 

5 116.42 137.90 301.49 

6 137.65 157.35 348.49 

7 157.07 182.42 363.16 

8 182.20 194.96  

9 194.65   

10 202.98   

11 222.03   

12 284.93   

13 301.70   

14 348.77   

15 363.49   

Table 1: The original natural frequencies of the coupled and uncoupled system 

In this case, the frequency range of interest is 0-400Hz where totally 15 modes are identified. As long as 

the eigenvector matrices are identified, the QR decomposition technique can be utilized to reduce their 

size from 253 to 15. While before performing the reduction, it is necessary to make sure that each of the 
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identified frequencies comes from structural part or acoustic part of the coupled system. As the QR 

decomposition is applied separately on the structural and acoustic parts, a correct understanding of this 

distribution on the coupled frequency list is important for determining how many structural/acoustic dofs 

should be reserved in the reduced model. In practical application, finite element analysis results of the 

uncoupled part can be used to estimate this first knowledge. While in this case as the original system 

matrices are available, the exact coupled and uncoupled frequencies are listed in Table 1. 

As shown in Table 1, in these 15 modes there are 8 structural modes and 7 acoustic modes, indicating 8 

structural dofs and 7 acoustic dofs should be reserved in the reduced model. As mentioned above, the 

MAC matrix can be utilized to evaluate the effects of reduction. Fig. 2 is the MAC matrices of the reduced 

and original models, showing the degree of independence among rows in the eigenvector matrices. Both 

of these two MAC matrices in Fig. 2 are corresponding to the acoustic part of the system, while the 

difference is that MAC in Fig. 2(a) is for the eigenvector matrix reduced by QR decomposition (termed as 

MAC_QR); MAC in Fig. 2(b) is for a eigenvector matrix whose 7 rows are randomly selected from the 

original 130 rows of the acoustic eigenvector matrix (termed as MAC_Random). 

The diagonal terms of these two MAC matrices are naturally equal to one, while the off-diagonal terms of 

them are obviously different. The off-diagonal terms of MAC_QR are basically minimized to zero 

indicating a high degree of independence of the row vectors of the reduced eigenvector matrix. Contrary, 

the off-diagonal terms of MAC_Random have different values from zero to one, which means some rows 

in the randomly reduced model are dependent with others, and consequently, they are not the dofs suitable 

enough to be reserved during model reduction. 

(a)                                                                   (b) 

 

Figure 2: (a) MAC of the QR decomposition reduced model, (b) MAC of the randomly reduced model 

5.2 Comparison between the direct and optimized data 

The original, direct, and proper FRFs are compared respectively on the structural and acoustic parts of the 

vibroacoustical system, as shown in Fig. 3. 

The direct FRF is calculated based on the matrices which are constructed following Eq. (20). However, 

the direct eigenvectors do not necessarily fulfill the properness condition. Table 2 shows the Euclidian 

norm of the properness condition matrix, which is proposed here to denote the degree how the 

eigenvectors verify the properness condition. It is clear that norm of the proper eigenvector matrix is 

minimized to a small value, while norm of the direct eigenvector matrix is relatively much larger. This 

explains the results in Fig. 3 where the direct FRFs are obviously inconsistent with the original FRFs 

while the proper FRFs fit with the original data well. 

 Direct eigenvectors Proper eigenvectors 

Norm of T

R L   273.95 5.13 

Table 2: Euclidian norm of the properness condition matrices 

MAC_QR
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Figure 3: Comparison of FRFs (left: on the 2nd dof - structural part; on the 9th dof - acoustic part) 

Results in Fig. 3 show that the identified small size matrices can reproduce the behavior of the original 

large size system. While it is interesting to check from Fig 3, both of the original and proper FRFs have 

lost a mode nearby 400 Hz. Explanation for this discrepancy should trace back to the first step of the 

identification using MODAN. Fig. 1 shows some discrete poles nearby 400 HZ which are not selected. As 

these modes have been lost in the first step of the process, it is natural that the identified model cannot 

represent them, even if the model has been optimized. Note that the phenomenon of mode losing during 

identification is more common in real experimental case when there is more uncontrollable noise in the 

measurements. Frequencies of the original, direct, and proper models are shown in Table 3. It is clear that 

the proper frequencies fit the original data with a high precision. However, the direct frequencies display 

an obvious error compared with the original data.  

Mode No. 
Natural frequencies 

Original (Hz) Direct( Hz) Proper (Hz) 

1 21.79 21.77    (-0.09) 21.74    (-0.23) 

2 38.16 38.22    (0.16) 38.49    (0.86) 

3 69.35 69.55    (0.29) 67.49    (-2.68) 

4 76.64 79.22    (3.37) 71.63    (-6.54) 

5 116.42 123.38   (5.98) 121.01   (3.94) 

6 137.65 139.37   (1.25) 139.46   (1.32) 

7 157.07 153.87   (-2.04) 153.96   (-1.98) 

8 182.20 170.66   (-6.33) 180.20   (-1.10) 

9 194.65 190.66   (-2.05) 195.74   (0.56) 

10 202.98 231.61   (14.10) 203.38   (0.20) 

11 222.03 255.44   (15.05) 221.41   (-0.28) 

12 284.93 261.52   (-8.22) 285.84   (0.32) 

13 301.70 293.64   (-2.67) 302.74   (0.34) 

14 348.77 354.57   (1.66) 346.05   (-0.78) 

15 363.49 383.66   (5.55) 359.89   (-0.99) 

Absolute mean error  4.59% 1.47% 

Table 3: The coupled frequencies of the original, direct, and proper models (percent errors in parentheses) 

As for this vibroacoustical case, it is also important to compare the uncoupled frequency of the structural 

and acoustic parts. The natural frequencies of the structural and acoustic parts are respectively detailed in 

Tables 4 and 5. The comparison results are similar with the coupled ones as the proper uncoupled 

0 50 100 150 200 250 300 350 400
-200

-150

-100

-50

0

A
m

p
lit

u
d
e
 (

d
B

)

Comparaison of FRFs on the 2nd dof (structural part)

 

 

Original

Direct

Proper

0 50 100 150 200 250 300 350 400
-360

-270

-180

-90

0

Frequency (Hz)

A
n
g
le

 (
d
e
g
)

0 50 100 150 200 250 300 350 400
-40

-20

0

20

40

60

80

A
m

p
lit

u
d
e
 (

d
B

)

Comparaison of FRFs on the 9th dof (acoustic part)

 

 

Original

Direct

Proper

0 50 100 150 200 250 300 350 400
-360

-270

-180

-90

0

Frequency (Hz)

A
n
g
le

 (
d
e
g
)

PROCEEDINGS OF ISMA2016 INCLUDING USD2016



frequencies have a much higher representation precision compared with the direct identified data. This 

result shows the identified model can not only reproduce the behavior of the coupled system, but also the 

behavior of the uncoupled structural/acoustic part. 

Mode No. 
Natural frequencies 

Original Direct Proper 

1 29.54 29.47    (-0.24) 29.70    (0.54) 

2 69.79 77.83    (11.52) 67.57    (-3.18) 

3 77.10 93.24    (20.93) 72.66    (-5.76) 

4 116.76 107.40   (-8.02) 120.19   (2.94) 

5 137.90 138.89   (0.72) 139.13   (0.89) 

6 157.35 154.18   (-2.01) 154.29   (-1.94) 

7 182.42 187.37   (2.71) 180.52   (-1.04) 

8 194.96 196.06   (0.56) 195.95   (0.51) 

Absolute mean error 5.84% 2.10% 

Table 4: The comparison of uncoupled frequencies of the structural part (errors in parentheses) 

Mode No. 
Natural frequencies 

Original Direct Proper 

1 28.38 28.43    (0.18) 28.30    (-0.28) 

2 202.47 181.02   (-10.59) 203.34   (0.43) 

3 221.66 193.92   (-12.51) 220.68   (-0.44) 

4 283.94 279.60   (-1.53) 283.10   (-0.30) 

5 301.49 327.78   (8.72) 302.32   (0.28) 

6 348.49 338.22   (-2.95) 345.39   (-0.89) 

7 363.16 345.68   (-4.81) 359.79   (-0.93) 

Absolute mean error 5.90% 0.51% 

Table 5: The comparison of uncoupled frequencies of the acoustic part (errors in parentheses) 

6 Conclusions and prospects 

An integrated approach containing a series of techniques for model identification in vibroacoustics has 

been proposed. The identified model is not only reduced but also uncoupled, which means not only the 

full size system but also the uncoupled subsystem can be represented.  

The specific topology of vibroacoustical problem is presented beforehand with the purpose for clarifying 

the validity domain of this approach. As the first step, the classical LSCF identification method is 

extended to be adaptive to this non-symmetric vibroacoustical problem, and the normalization condition of 

the identified complex modes is guaranteed. The QR decomposition is subsequently employed to reduce 

the full size modes to small size equivalent modes. Before using the modes to reconstruct the system 

matrices, the over-properness enforcement method is proposed to optimize the directly reduced modes, so 

that the finally obtained model is physical. 

A large size simulated case study is proposed with the motivation that the exact behaviors of the coupled 

and uncoupled systems can be calculated by the original system matrices, which is severed as reference 

data during the comparison. While feasibility of this approach in practical experimental case should also 

be evaluated, in this case, the reference data is directly measured from the uncoupled acoustic part (with 

rigid walls). This experiment setup and evaluation is in operation as the next step of this work. 
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