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Abstract

We present the Evidential Hidden Markov Model (EvHMM), an extension of standard HMM for time-series modelling where
conditional belief functions are used in place of probabilities to manage uncertainty on discrete latent variables. Inference and
learning mechanisms are described and allow to solve the three problems initially defined for HMM, namely: the classification
problem (find the most plausible model), the decoding problem (finding the best sequence of hidden states) and the learning problem
based on incomplete and uncertain data (estimate the parameters). Exact inference mechanisms based on the Generalized Bayesian
Theorem are proposed which allows one to recover standard HMM when probabilities are considered. An EM-like procedure is
developed for parameter learning, relying on some approximations suggested to make the solutions tractable. Relationships are
discussed with both the learning criterion conjectured by Vannoorenberghe and Smets and the formulation of Evidential Markov
Chains by Pieczynski et al. A comparison with standard HMM on simulated data confirms the interest of considering random
disjuctive sets to represent data incompleteness in evidential temporal graphical models.

Index Terms

Evidential Hidden Markov Models, Dempster-Shafer theory of Belief functions, Expectation-Maximization, Generalized
Bayesian Theorem, evidential temporal graphical models

NOMENCLATURE
ARI Adjusted Rand Index
BBA Basic Belief Assignment
CBF Conditional Belief Functions
DEVN Directed Evidential Network
DRC Disjunctive Rule of Combination
EFB Evidential Forward-Backward algorithm
EMC Evidential Markov Chain
EM Expectation-Maximization algorithm
EvHMM Evidential HMM
EvHMM-CT EvHMM with conditional form of transition
EvHMM-JT EvHMM with joint form of transition
GBT Generalized Bayesian Theorem
GMM Gaussian Mixture Model
HMM Hidden Markov model
TSDEVN Time-sliced DEVN
TWD Theory of Weighted Distributions

I. INTRODUCTION

A. Latent variable models for time-series

The statistical treatment of temporal multivariate measurements originating from complex dynamical systems is of paramount
interest in many application fields as diverse as biological sequences alignment, computer vision and image understanding,
speech recognition and synthesis, or diagnostics and prognostics of industrial equipments.

In real-world applications, the sequences of high-dimensional observations are generated from a number of possible sources
which are generally partially unknown and unobservable. One important challenge is to recognize which source is active
at a time (latent event), discover which source leads to particular sensor measurements (causal structure) and determine the
relationship between latent source activity and measurements (observation model) [1], [2].

More generally, latent variable models are convenient statistical tools used in machine learning in order to represent
unobserved factors. Those variables allow to develop state models which divide the feature space of time-series into meaningful
areas that can be used to characterize sources [3]. Estimating the parameters of those models as well as making inference of
the latent structure from temporal observations is thus of key importance.
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B. Time series modeling using HMM

Hidden Markov Models (HMM) [4], [5] belong to the family of latent variable models dedicated to time-series analysis. It
considers multivariate time-series X = [x1; x2; . . .xT ] of length T in D dimensions with xt = (x1, . . . , xD)′ as being generated
by a doubly random process (Figure 1(a)). The first process is a discrete latent variable Markov model which supposes that
the system is governed by a Markov chain and can switch back and forth between discrete states through time. The states can
be hidden (not observed) [5] or partially hidden [6] according to the amount of prior knowledge available during learning and
inference. The states are represented by discrete random variables z1, z2 . . . zt taking values in a finite set Ωz = {s1, s2, . . . , sK}.
Starting from a state at t = 1, with a probability πj = p(z1 = sj) with Π = [πj ], j = 1 . . .K, the system switches between
states from t to t + 1 with a probability ajk = p(zt = sk|zt−1 = sj) with A = [ajk], j = 1 . . .K, k = 1 . . .K called the
transition matrix. The second process is a mixture model which represents the distribution of the data given each possible state.
It practically means that the time-series is represented as consecutive segments, each characterized by a particular distribution
over input data. It is supposed that the observations distribution is a mixture of multivariate Gaussians in each state sk
(Fig. 1(b)):

p(xt|zt = sk) =

M∑
j=1

cjkN (xt | µjk,Σjk), k = 1 . . .K (1)

where cjk is the mixing coefficient for the j-th component in the k-th state and c = [cjk], j = 1 . . .M, k = 1 . . .K the set of
coefficients for all states and components. In the sequel, the parameters of an HMM are denoted as θ = {Π,A,µ, c,Σ}.

There are three main efficient algorithms especially dedicated to HMM that have been proposed over the years [5], accounting
for their applicability in many disciplines:
• The first algorithm solves a first problem (P1) that is the computation of the likelihood of a HMM model given the

parameters and a sequence of observations. The practical interest of this problem is to select the best HMM model within
a library that best fits the observations.

• The second algorithm is focused on a second problem (P2) that is the estimation of the best sequence of hidden states
given the parameters and a sequence of observations. It practically aims at finding the hidden structure of the data (for
exploration) and is used to determine whether a particular state has been reached (for detection or forecasting purposes).

• Finally, the third problem (P3) is the estimation of the parameters given a sequence of observations solved by an iterative
algorithm called Expectation-Maximization (EM) [7].

Problems P1 and P2 rely on efficient inference mechanisms based on the forward-backward algorithm and on dynamic
programming, while problem P3 is a learning problem that makes use of the latter mechanisms within EM [5], [8, Chap.
13], [9], [10].

(a) (b)

Fig. 1. Graphical representation of hidden Markov (a) and mixture models (b), z is discrete, x continuous. [11].

C. Problem statement and related work

In standard HMM, a latent variable is represented as a K-dimensional binary random variable z. It has the particularity that
one element zk is equal to 1 while all other elements are equal to 0 and the values of zk satisfy zk ∈ {0, 1} with

∑
k zk = 1.

Therefore, there are K possible states for the vector z according to which element is nonzero. Inference mechanisms defined
in HMM aims at estimating the probability that a particular state occurs at t given the observations.

Consider now a situation where the system can gradually evolve through random disjunctive sets (Figure 2). It means that,
for a given data vector xt, and in addition to uncertainty, a doubt may explicitly exist about the membership of this data
vector to a state (or a component). The uncertainty on states is encoded by belief functions [12], [13] so that a Basic Belief
Assignment (BBA) mΩz (S) at time t represents the amount of probability to be shared among subsets in S made of an union
of states and without being assigned to a smaller subset in S by lack of knowledge. This is in agreement with the idea of
incomplete data [14, Chap. 5]. A BBA is defined as:

m : 2Ωz 7→ [0, 1]
S → mΩz (S) s.c.

∑
Sm

Ωz (S) = 1,mΩz (S) ≥ 0
(2)
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For the sake of convenience, we use capital letter (e.g. S ⊆ Ωz) to indicate that general subsets are considered and small letter
(e.g. s ∈ Ωz) for singletons. When mΩz (S) > 0, A is called a focal set, and if mΩz (∅) = 0 then the BBA is said normal (a
particular case).

Fig. 2. Flow of belief from singleton state s1 (made of 3 components) to a singleton state s2 (with 2 components) through an imprecise state s1 ∪ s2 which
explicitly represents a doubt between both singletons without the possibility to select a particular state due to lack of knowledge.

The question posed in this paper is the following: Can we extend the procedures for inference and parameters learning
defined initially for HMM to the case where the Markov chain is neither governed by probabilities but by belief functions?
Pros and cons of using such functions in place of probabilities has been discussed in many publications since the advent of
Belief Networks [15]–[20].

The latent variable can thus be represented as a 2K-dimensional binary random variable zt which equals 1 for a particular
element and 0 for all others, satisfying ztk ∈ {0, 1} and

∑
k ztk = 1. The set of vectors zt for t = 1 . . . T are gathered into

a matrix S, likewise to the data matrix X. It is important to make a distinction between the K singleton states and the other
2K −K values which do not represent “states” but subsets of states (without considering additivity). Therefore, the knowledge
about a subset A of states at time t may “flow” [21] towards subsets B at time t + 1 if A ∩ B 6= ∅ (for instance if more
information is available through new observations). Given the temporal graphical model (Fig. 1(a)), the flow of belief towards
subsets can be managed by the Generalized Bayesian Theorem (GBT) [17, Theorem 4] on one hand, and the Total Plausibility
Theorem (TPT) [22] together with the Disjunctive Rule of Combination (DRC) [17, Theorem 3] on the other hand, defined
as:

GBT: plΩz (S Rxt, θ) = plΩx(xt RS, θ) (3a)

DRC: plΩx(xt RS, θ) = 1−
∏
sk∈S

(
1− plΩx (xt R sk, θ)

)
(3b)

TPT: fΩx
1 ∩© 2(xt) =

∑
S⊆Ωz

mΩz
1 (S) · fΩx

2 (xt RS) (3c)

The GBT here assumes no prior on Ωz . The DRC allows to compute a plausibility conditionally to subsets given only
plausibilities on singletons. In the TPT, f2 represents the causal link between both variables X and S. Only a BBA can be used
to weigh f2 and the result is always of the same type as f2 such as a BBA, a belief function, a plausibility or a commonality.
Some of those functions are defined subsequently, the reader may also find details in [17], [21] and all those functions have
one-to-one correspondence [12], [13]. For the sequel, the plausibility is of interest and defined as

plΩz (B) =
∑

C∩B 6=∅

mΩz (C) (4)

in particular
plΩz (Ωz) = 1−mΩz (∅) (5)

The latter expression means that the plausibility of “everything” (for instance of the observed data and after evaluating all
possible states) is equal to one minus the degree of “nothing”. “Nothing” here represents a situation where the model used to
quantify the uncertainty on subsets is in conflict with the observed data. This quantity has been used to evaluate the quality of
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a model in several publications since the advent of the Transferable Belief Model which allows to consider that a mass can
be assigned on the empty set [13]. Of particular interest, a connection between conflict (Eq. 5) and the likelihood has been
formally established in [23, Sect. 3.2] and suggested in some previous papers of the author [24, Eq. 18]. Shafer [12, Chap. 3,
Section 4] already pointed out the potential importance of this measure.

The consideration of belief propagation is a fundamental difference with the approaches developed by Pieczynski et al. [10],
[25]–[27] in which 2K sets of parameters are estimated, one for each subset: It conceptually means that the elements in zt
are considered as different, one to each other. The propagation used in the latter work involves probabilities on singletons
using the standard forward-backward algorithm and therefore the uncertainty can not flow through set-intersections operations
as considered in the belief functions theory.

D. Contribution

The problem tackled in this paper is thus the development of mechanisms for the inference of hidden states and parameter
learning based on imcomplete data in HMM when the uncertainty is no more represented by probabilities but by belief
functions [12], [13], [28]. The proposed model is called Evidential Hidden Markov Model (EvHMM) and can be viewed as a
“Time-Sliced Directed Evidential Networks” (TSDEVN) [29] that is the counterpart of Dynamic Bayesian Networks based on
the Probability Theory [11] extended to belief functions.

In order to solve the problems P1 and P2 in EvHMM, some elements have been proposed by the author [24], [29] which are
summarized in the sequel, in particular the extension of the Forward-Backward (FB) algorithm to belief functions (called EFB:
Evidential FB) which is of key importance for the learning phase (P3). This algorithm is based and Shenoy’s [30] and Smets’
[17] works on belief propagation and “Directed Evidential Networks” (DEVN). We consider Conditional Belief Functions
(CBF) [17] that allow one to store |Ωx| × 2|Ωy| belief functions to express the relationship between both variable x and y (by
a conditional distribution of y given x) tacking values in Ωx and Ωy respectively, instead of using joint BF which may be
prohibitive in practice when the frames of discernment are large. It is demonstrated that the forward propagation extended to
belief functions allows to get the plausibility (equivalent to the likelihood in standard HMM) of an EvHMM. Concerning the
learning problem (P3), a new approach is proposed which is discussed with respect to the pioneering work of Vannoorenberghe
and Smets [31].

In order to develop the solution to the learning problem in EvHMM, we first start by considering a simpler case: Evidential
Markov Chain. We then proceed with the EvHMM and some illustrations.

II. MARKOV CHAIN REVISITED WITH CONDITIONAL BELIEF FUNCTIONS

Consider a system described at time t as being in one state in Ωz . Its evolution is managed by a first-order probabilistic Markov
chain such that p(st | st−1, st−2 . . . s1) = p(st | st−1). A particular sequence of singleton states S = (s1, s2, . . . st . . . sT ), st ∈
Ωz has the probability pπ(s1)

∏T
t=2 p(st | st−1) where pπ is the initial prior. If the chain takes its values in subsets of Ωz ,

then what is the total support in terms of plausibility given to a particular sequence?

A. Support to a sequence made of subsets

Suppose that the transition matrix is made of BBAs mΩz
a (· | St−1), St−1 ⊆ Ωz . A sequence S = (S1, S2, . . . St . . . ST ), St ⊆

Ωz starting at S1 requires to considering that S1 is true at t = 1, S2 is true at t = 2 and so on. Consider that the initial BBA
representing one’s belief in the first states is vacuous: mΩz

π (Ωz) = 1. At t = 1, mΩz
π is combined by Dempster’s rule [28]

with a categorical BBA, i.e. made of one focal set on S1 (with mass equal to 1). Given two BBAs mΩz
1 and mΩz

2 , Dempster’s
rule is

mΩz
1∩©2(A) =

∑
C∩D=A

mΩz
1 (C) ·mΩz

2 (D) (6)

which becomes a conditioning rule if one of the BBAs is categorical. Given the definition of the plausibility (Eq. 4 and
Eq. 5), conditioning a mass on a subset S generates a BBA such that the sum of masses on all focal sets except the empty
set represents the plausibility of S.

Therefore, after conditioning mπ on S1, we get a BBA with one focal set equal to S1 since mπ is vacuous. Now, if the
second state of the chain is S2, then the transfer of mass from t = 1 to t = 2 is driven by the TPT (Eq. 3c). The BBA resulting
from the transfer has to be combined by Dempster’s rule with a BBA made of one focal set on S2. The BBA obtained is made
of several focal sets such that the sum of masses on all focal sets except the empty set represents the plausibility of S2 given
S1 which is simply given by an element of the matrix pla. The same reasoning can be applied for t = 3 . . . T yielding the
following result.

Proposition 1: The total support assigned to a sequence S = (S1, S2, . . . St . . . ST ), St ⊆ Ωz can be quantified by the
plausibility on ΩTz = Ωz × Ωz × . . .Ωz (T times) after conditioning on the sequence. Given a vacuous BBA on initial states,
the total support is given by:

plΩ
T
z (S) =

T∏
t=2

plΩza (St | St−1) (7)
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It defines an Evidential Markov Chain (EMC). Note that the solution is different if the prior is not vacuous: In that case, one
may use a forward propagation as presented subsequently. The solution is also different from the result proposed in [10, Def.
4.1] which is based on the product of BBAs.

Definition 1 (proposed in [10]):

mΩTz (S) =

T∏
t=2

mΩz
a (St | St−1) (8)

Note that for the sake of convenience, in particular for subsequent developments, no prior is considered. This relation means
that the BBA especially assigned to S is considered while omitting all other BBAs that can be assigned to subsets of S. The
support computed with the plausibilities has a larger value than the support with the BBAs and the difference collapses for
Bayesian BBA (focal sets are singletons).

B. Learning the evidential transition matrix from incomplete data

Following the notation proposed in [8], let zt,k = 1 if the true state is Sk at time t, 0 otherwise. Then it follows

plΩ
T
z (S | A) =

T∏
t=2

plΩza (St | St−1,A)zt,jzt−1,i (9)

where A allows to emphasize that pla is parameterized. It yields

log plΩ
T
z (S | A) =

T∑
t=2

(zt,jzt−1,i) log plΩza (St | St−1,A) (10)

Taking the expectation of this expression similarly to HMM [8, page 616] (since the states and thus zt are unknown) requires to
define a BBA mΩz×Ωz

ξ(t,t−1) defined on two consecutive slices that represents the probability mass of observing the binary variable
(zt,jzt−1,i) we get:

E
[
log plΩ

T
z (S | A)

]
mξ

= . . .

T∑
t=2

∑
Sj⊆Ωz

∑
Si⊆Ωz

mΩz×Ωz
ξ(t,t−1)(Si, Sj) log plΩza (Sj | Si,A)

(11)

This defines a cross-entropy between a BBA and a plausibility. Cross-entropy maximization is at a basis of EM where, at
iteration (q), the step “E” estimates mξ given the data using inference procedures while the step “M” finds the parameters
that allows the function within the logarithm (here pl) to get closer to the target function (here mξ) that weigh the logarithm.
Trying to maximize such a criterion in an EM-like algorithm with respect to the parameters in the plausibility function (for
instance the transition A for a Markov chain) would lead to reestimation formula based on both BBA and plausibilities which
seems inconsistent. The constraints are actually expressed on ma with

∑
Am

Ωz
a (A | St−1) = 1,∀St−1 ⊆ Ωz and the link with

pla should be made by a Moebius transform [21].
The approximation of Eq. 7 by Eq. 8 is thus of practical interest yielding reestimation formula based only on BBAs. Consider

an EM-like algorithm (described subsequently) where the parameters A (conditional mass functions in the present case) have
to be estimated given the previous estimates A(q) in an iterative manner. Using the approximation based on BBAs in the
expectation, and based on the fact that

∑
Am(A) log pl(A) ≥

∑
Am(A) logm(A), the criterion can be modified as follows

using BBAs:
E
[
log plΩ

T
z (S | A)

]
mξ
≥ Qam,m(A(q),A) (12)

with

Qam,m(A(q),A) =

T∑
t=2

∑
Sj⊆Ωz

∑
Si⊆Ωz

. . .

mΩz×Ωz
ξ(t,t−1)(Si, Sj | A

(q)) logmΩz
a (Sj | Si,A)

(13)

The maximization of Qam,m with respect to ma at iteration (q) requires to take the derivative of Qam,m and using appropriate
Lagrange multipliers (ensuring that

∑
Bm

Ωz
a (B | St−1) = 1,∀St−1 ⊆ Ωz) yielding:

m
(q+1)
a (Sj,t | Si,t−1) = . . .∑T

t=2m
Ωz×Ωz
ξ(t,t−1)(Si, Sj | A

(q))∑T
t=2

∑
∅6=Sl⊆Ωz

mΩz×Ωz
ξ(t,t−1)(Si, Sl | A(q))

(14)

By assuming that the BBAs defined conditionally to subsets are computed by the DRC based only on BBAs defined conditionally
to singletons, it follows that Eq. 14 allows to estimate |Ωz|×2|Ωz| parameters. This procedure supposes a similar conjecture as
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in [31] where the authors suggested an EM-like procedure for parameters learning in GMM using belief functions on mixing
variables.

Conjecture 1: Similarly to the auxiliary function in EM [4, Theorem 2.1], the maximization of the lower bound of the support
Qm,m does not decrease the total support.
It is shown subsequently that it can be practically feasible to check whether the conjecture holds or not when applied on
datasets using the evidential forward algorithm. This algorithm allows to estimate the exact total support which can not be
directly maximized as in standard HMM.

C. Incorporating evidential prior to adjust the posterior BBA

We can observe that the target BBA m
(q)
ξ computed in the E-step, which gives information about the hidden variables, is

used in the reestimation formula of ma. In cases of model’s misspecification (choice of A for instance) or biases induced by
the data collection process, this BBA may eventually lead to bad parameter estimates. This problem is well known in statistics
and two solutions can be mentionned.

The first solution was proposed in [31]. It considers that the prior knowledge on hidden variables are encoded by a set of T
belief functions. In the case of EMC described above, the prior may be ideally defined on Ωz×Ωz , denoted as mΩz×Ωz

prior(t,t−1), t =

2 . . . T . It may also be defined on Ωz with a BBA mΩz
prior(t). In that case, it has to be extended on Ωz ×Ωz using the vacuous

extension defined as:

mΩz↑Ωz×Ωz
prior(t,t−1) (C) =

{
mΩz

prior(t)(B) if C = B × Ωz
0 otherwise

(15)

Note that if nothing is known about the hidden variables, then ∀t,mΩz×Ωz
prior(t,t−1)(Ωz × Ωz) = 1. Those priors can then be

incorporated into the computation of the mathematical expectation (Eq. 20a) by Dempster’s rule (Eq. 6):

m
(q)
ξ ← m

(q)
ξ ∩©mprior(t,t−1) (16)

The second solution relies on the Theory of Weighted Distributions (TWD) [32] which allows to incorporate prior knowledge
on expectations by means of (positive) weights with the aim to “adjust” the posterior distribution. It has been used in EM in
[33].

The next section now considers that the states are hidden and only some measurements are available. A model is thus
necessary to build a relationship between those observations and the latent variables, while an EMC is supposed to still govern
the latent variables (Figure 1(a)).

III. LEARNING PARAMETERS IN EVIDENTIAL HIDDEN MARKOV MODELS

EM-based learning in standard probabilistic HMM is based on the maximization of the cross entropy between both a
posterior distribution over latent variables (computed using the parameters at the previous iteration) and a joint distribution
over observed and latent variables (given unknown parameters). The strong advantage of standard HMM is the possibility to
build a joint distribution using only products [5, Section 3.A]. However, it is not the case when considering belief functions.
This is illustrated in the application of the TPT (Eq. 3c) for the transfer between two consecutive time-slices where a BBA
appears. To expect a tractable solution while maintaining a connection with standard HMM, some approximations are required.

A. The criterion

The goal is to find a criterion that reflects the quality of a model (such as Fig. 1) given that belief functions are used to
quantify uncertainty on discrete latent variables. As explained previously, the quality of a model can be quantified by minimizing
the amount of conflict (Eq. 5) between the model and the data or equivalently maximizing the total support. Likewise to EMC,
it seems relevant to express the plausibility on ΩTz after observing X. More specifically, finding the parameters θ∗ in a latent
variable model when uncertainty is managed by belief functions can be turned into the maximization of the potential support
assigned to the subset (x1,Ωz) , (x2,Ωz) . . . , (xT ,Ωz) after observing all data vectors:

θ∗ = argmax
θ

plR
T×ΩTz ((x1,Ωz) , (x2,Ωz) ... (xT ,Ωz) | θ) (17)

where R is the domain of xt. For short, this criterion is rewritten as argmax θ pl(X,Ωz | θ). This plausibility can be computed
by summing the belief masses assigned to all configurations of the hidden variables S (Eq. 4):

pl(X,Ωz | θ) =
∑
S63∅

m(X,S | θ) (18)

which can be rewritten as
pl(X,Ωz | θ) =

∑
S63∅

R(S)
m(X,S | θ)

R(S)
(19)
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where R is a distribution such that
∑
AR(A) = 1. This constraint allows Jensen’s inequality to be applied [34, Eq. 5] since

the logarithm is a concave function. It leads to a lower bound of the logarithm of the quantity of interest:

log pl(X,Ωz | θ) ≥ Qm,m(θ(q), θ)−Hm,m(θ(q), θ(q)) (20a)

Qm,m(θ(q), θ) =
∑
S63∅

R(S, θ(q)) logm(X,S | θ) (20b)

Hm,m(θ(q), θ(q)) =
∑
S63∅

R(S, θ(q)) logR(S, θ(q)) (20c)

s.t.
∑
S

R(S, θ(q)) = 1 (20d)

where Hm,m depends only on previous estimates θ(q). The criterion expectedly presents similarities with (13). In particular,
the introduction of Hm,m allows to underline that when the function in the logarithm ideally evolves towards the target R
(which can change at each iteration) then Qm,m −Hm,m → 0.

Since R(S) must sum up to 1 (due to Jensen’s inequality), it follows that a rational choice for R is a BBA denoted as mγ

subsequently. By considering only the part dependent on the parameters θ, the criterion Qm,m = Emγ [logm(X,S | θ)] is thus
an expectation taken with respect to mγ . Moreover, as presented in Section II-C, evidential prior can be incorporated either
by applying Dempster’s rule with R or using the TWD.

An EM-like procedure can thus be applied. At iteration q, the E-step aims at maximizing the expectation 20b given
fixed parameters θ(q). We can cancel its derivative with repect to R using appropriate Lagrangian multipliers (integrating
the aforementionned constraint on R) to get the maximizer m(q)

γ :

E-step: ⇒ m(q)
γ =

m(X,S | θ(q))∑
S′ 63∅m(X,S′ | θ(q))

≡ m(S | X, θ(q)) (21)

The denominator of this expression is the sum of the masses on all subsets S which is equal to the opposite of the belief mass
on the emptyset. m(q)

γ (· | X) is the posterior BBA on states given observations. The posterior is then used in the M-step to
find the best estimate θ(q+1) for the next iteration so that it maximizes the expectation under m(q)

γ :

M-step: ⇒ θ(q+1) = argmax
θ

E
m

(q)
γ

[logm(X,S | θ)] (22)

The algorithm iterates likewise to standard EM until the relative increase of the support pl(X,Ωz) between two consecutive
iterations remains below a threshold.

Property 1: Since R is a BBA, then Jensen’s inequality holds so that this algorithm is guaranteed to converge.
Proof 1: Let Qm,m(θ(q), θ) =

∑
S63∅R(S, θ(q)) logm(X,S | θ), Qm,m(θ(q), θ(q)) =

∑
S63∅R(S, θ(q)) logm(X,S | θ(q)),

Hm,m(θ(q), θ) = −
∑

S63∅R(S, θ(q)) logR(S, θ) and Hm,m(θ(q), θ(q)) = −
∑

S63∅R(S, θ(q)) logR(S, θ(q)) defining the
criterion at the current (θ) and the previous (θ(q)) iteration. Then Qm,m(θ(q), θ)−Qm,m(θ(q), θ(q)) ≥ 0 due to the maximization
step, and Hm,m(θ(q), θ) − Hm,m(θ(q), θ(q)) ≤ 0 since

∑
S63∅R(S, θ(q)) log R(S,θ)

R(S,θ(q))
≤ log

∑
S63∅R(S, θ(q)) R(S,θ)

R(S,θ(q))
≡ 0,

where the inequality comes from Jensen’s inequality [34] and assuming that R is normalized. Therefore, by defining
the criterion as Qm,m − Hm,m as proposed above, it follows that the difference of the criterion between two iterations[
Qm,m(θ(q), θ)−Hm,m(θ(q), θ)

]
−
[
Qm,m(θ(q), θ(q))−Hm,m(θ(q), θ(q))

]
is positive (or equal to zero) which completes the

proof.
The problem with Eq. 22 is that the joint BBA in the logarithm can not be expressed using only products which makes the
M-step untractable.

Assumption 1: It is possible to decouple both the maximization of Qa (Eq. 13) concerning the Markov chain and the
maximization of the criterion Qbm,m related to observations given latent variables.
This decoupling appears naturally in standard HMM due to factorisation [8, Chap. 13]. Therefore, the whole criterion becomes
Qm,m = Qam,m +Qbm,m and the reestimation formula obtained in Eq. 14 can be applied for EvHMM at each iteration of EM.
It thus remains to find the parameters of the observation model, supposed to be a GMM (Eq. 1).

B. M step

In [31], the authors suggested an approach (EM-like) to estimate the parameters in a GMM using belief functions to represent
uncertainty on mixing (discrete latent) variables. The criterion Qm,pl used the plausibility in the logarithm in place of the
BBA:

Qm,pl(Φ(q),Φ) =
∑
S

mΩz
γ (S | X,Φ(q)) log pl(X,S | Φ) (23)

with Φ = {c,µ,Σ}. This criterion relies on the same conjecture as suggested above (its maximization does not decrease the
support to the model). Note that the expression of the support was not explicitly provided by the authors [31]. A proposition
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of reestimation formulas can be found in [35] and are based on approximations using the pignistic transform [13] that allows
to get a probability distribution from a BBA.

As for EMC, the use of plausibilities creates inconsistency with the BBAs for reestimation formulas and therefore, a criterion
such as Eq. 20b is more appropriate (using only BBAs). Considering only the observation model, we aim at maximizing the
support log plR

T

(X) approximated by:

Qbm,m(θ(q), θ) =

T∑
t=1

∑
S⊆Ωz

. . .

mΩz
γ,t(S | X,A(q),Φ(q)) logmΩz

b (S Rxt,Φ)

(24)

where it is important to remark that mγ is made dependent not only on the current parameters of the observation model
(Φ(q)) but also on the EMC (A(q)). Indeed, the Evidential FB algorithm is shown subsequently to be able to compute this
quantity, which is related to Eq. 14 by a marginal operation likewise to standard HMM. The GBT allows to deduce the BBA
mΩz
b (S Rxt,Φ) given plausibilities conditional to singleton plΩz (xt RSt,Φ) [36]:

mΩz
b (S Rxt,Φ) =

∏
sk∈S

plR(xt R sk,Φ) . . .∏
sk /∈S

(
1− plR (xt R sk,Φ)

) (25)

where plR(xt R sk, θ),∀sk ∈ Ωz is given by 1.
Remark 1: The link between plausibility defined conditionally to hypotheses and likelihood has been discussed in several

papers, see for instance [17], [36], [37].
Making use of Eq. 25, the criterion Qbm,m can be rewritten as:

Qbm,m(θ(q), θ) =

T∑
t=1

∑
Sk⊆Ωz

mΩz
γ,t(Sk | θ(q))

{
. . .∑

sl∈Sk

log pl(xt R sl, θ) +
∑
sl′ /∈Sk

log
(
1− pl(xt R sl′ , θ)

)}
=

T∑
t=1

∑
sl∈Ωz

{
plΩzγ,t(sl | θ(q)) log pl(xt R sl, θ) + . . .

belγ,t(sl | θ(q)) log
(
1− pl(xt R sl, θ)

)}
(26)

where belγ,t(A) =
∑
∅6=B⊆Amγ,t(B) is the belief function. We can see that the logarithm in the right-hand side of Eq. 26

can make the optimization untractable.
Assumption 2: The contribution of “belγ,t(sl | θ(q)) log

(
1 − pl(xt R sl, θ)

)
” is negligible compared to the left-hand side

expression plΩzγ,t(sl | θ(q)) log pl(xt R sl, θ).
This assumption does not narrow the expression down to a probabilistic formulation because the weight plΩzγ,t(sl | θ(q)) makes
use of the information held by all subsets that contain sl.

It means that the weight belγ,t(sl | θ(q)) is low for data points located close to µl whereas, conversely, plΩzγ,t(sl | θ(q)) is
high. Since for any belief function and associated plausibility we have pl(A) = bel(Ωz)− bel(A), it follows that if plγ(sl) is
high and assuming that R ≡ mγ is normalized (M-step, Proof 1), then bel(sl) is necessarily low. Now, if plγ(sl) is low, then
bel(sl) becomes high and thus the contribution of states potentially far from µl may contribute to sl which may justify the
approximation.

Example 1: Figure 3 depicts the simplification (left-hand side) and illustrates it on a real case (right-hand side) with an 1D
data set made of two normal distributions centered on µ1 = 2 and µ2 = 4 with standard deviations σ1 = 2 and σ2 = 1.
For illustration purpose, we consider one Gaussian component for each singleton state. The criterion can thus be approximated
as:

Qbm,m(θ(q), θ) ≈
T∑
t=1

∑
sl∈Ωz

plΩzγ,t(sl | θ(q)) log pl(xt | sl, θ) (27)

Therefore, the means µk, k = 1 . . .K for the next iteration are obtained by taking the derivative of Eq. 27 with respect to µj :

∂Qbm,m
∂µj

=
∑
t

pl
(q)
γ,t(sj) · Σ−1

j (xt − µj) ≡ 0 (28a)

⇒ µ
(q+1)
j =

∑
t pl

(q)
γ,t(sj) xt∑

t pl
(q)
γ,t(sj)

(28b)



9

(a) Concept behind the approximation
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.

The covariances can be obtained with a similar approach as explained in [38] yielding:

Σ
(q+1)
j =

∑
t pl

(q)
γ,t(sj) · (xt − µj) (xt − µj)′∑

t pl
(q)
γ,t(sj)

(29)

and the weight of the j-th component is given by:

π
(q+1)
j =

∑
t pl

(q)
γ,t(sj)∑

t

∑
l pl

(q)
γ,t(sl)

(30)

Example 2: Figure 4 represents the evolution of Qm,m = Qam,m + Qbm,m (proposed criterion), Qm,pl [31] and the exact
support (likelihood) of the model computed by Proposition 2 (Eq. 43) for an EvHMM applied to a simulated dataset described
in Section V-A. This figure shows that the assumption holds for this dataset and that both approximations are rather correlated
to the exact support to the model (Eq. 18).
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C. E-step

mγ,t represents the knowledge on subsets of states after observing X which is obtained by the evidential forward-backward
algorithm [24]. This algorithm can be written using commonality functions which allows point-wise multiplication. The notation
x1:t means that observations from t = 1 to t were taken into account (x1,x2 . . .xt), and X ≡ x1:T . The forward-backward
passes are given by the following sequence of operations. First the forward initialisation:

qΩz
α,1(Sj ,x1) = qΩz

π (Sj) · qΩz
b,1(x1 RSj) (31)

the forward induction:
qΩz
α,t(Sj ,x1:t) = q̂Ωz

α,t(Sj ,x1:t−1) · qΩz
b,t (xt RSj) (32)

with q̂Ωz
α,t(Sj ,x1:t−1) given by ∑

Si⊆Ωz

mΩz
α,t−1(Si,x1:t−1) · −→q Ωz

a,t|t−1(Sj | Si) (33)

and −→
plΩza,t|t−1(Sj | Si) = 1−

∏
s∈Si

(1− plΩza,t|t−1(Sj | s)) (34)

The commonalities −→q a are computed from
−→
pla by a fast Moebius transform [21]. Similarly, the backward initialisation is

given by
qΩz
β,T = 1 (35)

representing full ignorance, and followed by the backward induction

qΩz
β,t(xt+1:T | Si) = . . .∑

Sj⊆Ωz

mΩz
β∩©b,t+1(xt+1:T RSj) · ←−q Ωz

a,t|t+1(Si | Sj) (36)

with qΩz
β∩©b,t+1(xt+1:T RSj) given by

qΩz
β,t+1(xt+2:T RSj) · qΩz

b,t+1(xt+1 RSj) (37)

The commonalities ←−q a are computed from pla by the GBT:
←−q Ωz
a,t|t+1(Si | Sj) =

∏
s∈Sj

plΩza,t+1|t(Sj | s) (38)

The posterior commonalities on states are then given by:

qΩz
γ,t(Sj | x1:T ) = qΩz

α,t(Sj ,x1:t) · qΩz
β,t(xt+1:T | Sj) (39)

mΩz×Ωz
ξ(t−1,t) represents the knowledge on subsets of states at t and t− 1 after observing X obtained by the forward-backward

algorithm [24]:
m↑Ωz×Ωz
α,t−1 ∩©m↑Ωz×Ωz

β,t ∩©m⇑Ωz×Ωz
a,t,t−1 ∩©m↑Ωz×Ωz

b,t (40)

where ⇑ is the ballooning extension [17] with:

m⇑Ωz×Ωz
a,t,t−1 (B) =

∏
s∈Ωz

mΩz
a,t|t−1(A | st−1), B ⊆ Ωz × Ωz

A = ((st−1 × Ωz) ∩B)) ↓ Ωz

(41)

and where ↓ is a marginalization defined as:

mΘ×Ω↓Ω(B) =
∑

C⊆Θ×Ω
Proj(C↓Ω)=B

mΘ×Ω(C), ∀B ⊆ Ω
(42)

with Proj(C ↓ Ω) the projection of C onto Ω. Symbol ↑ represents a vacuous extension defined in Eq. 15.
One must make a distinction between the transitions −→q a and ←−q a used in the forward pass and in the backward pass

respectively.
Property 2: Conversely to probabilistic HMM, the transition matrix can not be transposed blindly, unless the following

conditions are satisfied:
• Condition 1: The elements of the transition matrix represent plausibilities: plΩza,t|t−1(Sj | Si),∀Sj ⊆ Ωz,∀Si ⊆ Ωz ;
• Condition 2: The plausibilities defined conditionally to a subset, i.e. plΩza,t|t−1(· | Si), Si ⊆ Ωz, s.c. |Si| > 1, can be

computed from the plausibilities defined on singletons, i.e. from plΩza,t|t−1(· | si), si ∈ Ωz, s.c. |si| = 1, with the DRC
(Eq. 3b).
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The origin of these two conditions comes from the use of the GBT [17]. If these conditions are not satisfied, one must work
on the joint space Ωz × Ωz to perform the forward and the backward passes which may be practically prohibitive.

An important consequence of these conditions concerns the expression of the reestimation formula for transitions found by
Eq. 14 which directly provides the BBA defined conditionally to subsets. For a coherence with the GBT, we advise to keep
the BBA defined conditionally to singletons and to apply the DRC (Eq. 3b) to get the ones defined on subsets. In addition,
this allows one to decrease memory consumption by storing |Ωz| × 2Ωz elements of transition instead of 2Ωz × 2Ωz . The
main disadvantage is that the transitions found in this way may partly maximize the criterion since only the transitions defined
conditionally to singletons are ensured to maximize Eq. 14.

The “three problems” solved by standard HMM and defined by Rabiner [5] can now be solved for EvHMM as follows.

IV. SOLVING THE “THREE PROBLEMS”

A. Problem 1 – The classification problem, or how to estimate the likelihood of an EvHMM given some observed data X?

Proposition 2: The log-likelihood log pl(θ; X) of an EvHMM model specified by a set of parameters θ and given an
observation sequence X ≡ x1:T is given by:

log pl(θ; X) ≡ log
(

1−mΩz
α,T (∅,x1:T | θ)

)
(43a)

≡ log plΩzα,T (Ωz,x1:T | θ) (43b)

=

T∑
t=1

log
(

1−mΩz
α,t(∅,x1:t | θ)

)
(43c)

=

T∑
t=1

log plΩzα,t(Ωz,x1:t | θ) (43d)

which means that, on the basis of the observations X, the total degree of support given to a model is given by summing the
opposite of the amount of conflict between the model and the data computed at each time step of the forward propagation.

Proof 2: We start by rewritting the forward pass using the BBA:

mΩz,∗
α,t (Sj , X1:t) = ct ·

(
m̂Ωz
α,t ∩©mΩz

b,t

)
(Sj , X1:t) (44)

where mΩz,∗
α,t is a normalized BBA such that mΩz,∗

α,t (∅, X1:t) = 0,
∑
∅6=Sj⊆Ωz

mΩz,∗
α,t (Sj , X1:t) = 1 and is given by:

mΩz,∗
α,t (Sj , X1:t) = ct ·mΩz

α,t(Sj , X1:t) (45)

with
c−1
t = 1−mΩz

α,t(∅, X1:t) = plΩzα,t(Ωz, X1:t) (46)

If the normalization is applied from t = 1, then ∀t > 1, and especially at T , the prediction phase can be rewritten as:

m̂Ωz
α,T (Sj ,x1:T−1) =

T−1∏
t=1

ct × . . .∑
∅6=Si⊆Ωz

mΩz
α,T−1(Si,x1:T−1) ·mΩz

a,T |T−1(Sj | Si)
(47)

leading to

mΩz,∗
α,T (Sj ,x1:T ) =

T∏
t=1

ct ·mΩz
α,T (Sj ,x1:T ) (48)

so that:

1 =
∑

∅6=Sj⊆Ωz

mΩz,∗
α,T (Sj ,x1:T ) (49)

=

T∏
t=1

ct ·
∑

∅6=Sj⊆Ωz

mΩz
α,T (Sj ,x1:T ) (50)

yielding

1−mΩz
α,T (∅,x1:T ) = plΩzα,T (Ωz,x1:T ) =

1∏T
t=1 ct

(51)

Applying the logarithm on both sides completes the proof.
Algorithm 1 summarizes the steps to follow to get the evidential likelihood that can be used to compare different models.
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Algorithm 1 Algorithm EvHMM Classification
Require: model θ = {qa, ψ,Π}
Ensure: Evidential likelihood Le
Ensure: Evidential forward variable mγ

1: Prepare transitions −→q a with Eq. 34
2: Apply forward propagation with Eq. 31-34 to get mα,t, t = 1 . . . T
3: Normalize it at each time step as in Eq. 46
4: Compute the likelihood Le by Eq. 43

B. Problem 2 – The decoding problem, or how to find the best sequence of hidden states given some observed data X and an
EvHMM?

The problem is to find the sequence of singleton states within a set of observations X with the highest degree of support to
an EvHMM model specified by its parameters θ or, equivalently, the sequence which presents the minimum amount of conflict
with the model.

The important point is to observe that only singleton states are considered. Moreover, it is known that a conjunctive
combination between a BBA m1 together with a categorical BBA m2 focused on a singleton state, i.e. m2(sj) = 1, sj ∈ Ωz ,
results in a BBA with one focal set for which the belief mass is equal to the plausibility of the singleton state, i.e. to pl1(sj),
and the remaining of the mass is assigned to the empty set.

Let’s now consider a sequence S = {s1, s2 . . . sT }. What is its degree of support to the model specified by θ? This sequence
can be represented by a set of T categorical BBAs mΩz

t with only one focal sets such that mΩz
t (st) = 1. Those prior BBAs can

be combined conjunctively with the posterior BBA mγ,t yielding a first estimate of the best state at t in terms of a plausibility
function on singletons:

s∗t = argmax
sj∈Ωz

plΩzγ,t(sj) (52)

As for the probabilistic HMM [5], this solution may be sufficient in some cases but it does not take the occurrence of sequences
of states into account.

Another solution is to find the sequence S = {s1, s2 . . . sT } such that

S : max
s1,s2...sT

plΩzδ,T ((s1,x1), (s2,x2) . . . (sT ,xT ) | θ) (53)

Proposition 3: The best sequence of singleton states (with the highest degree of support or the minimum amount of conflict)
is given by the Viterbi algorithm defined as for probabilistic HMM but using plausibilities on singletons (θ is implicit):
• Viterbi initialisation:

plΩzδ,1(sj ,x1) = plΩzπ (sj) · plΩzb,1(x1 R sj) (54)

• Viterbi induction, ∀t = 2 . . . T :
plΩzδ,t (sj ,x1:t) = plb(xt R sj)× . . .

max
si∈Ωz

[
plΩzδ,t−1(sj ,x1:t−1)pla(sj |si)

] (55)

ψ(i, t) = . . .

argmax si∈Ωz

[
plΩzδ,t−1(sj ,x1:t−1) · pla(sj |si)

] (56)

• Viterbi backtracking, initialized with
s∗T = argmax

sj∈Ωz

plΩzδ,T (sj ,x1:T ) (57)

and then ∀t = T − 1, T − 2 . . . 2, 1:
s∗t+1 = argmax

sj

ψ(s∗t+1, t+ 1) (58)

Proof 3: One can observe that Prop. 3 reduces to a similar expression as for the standard HMM except that probabilities are
replaced by plausibilities on singletons. Therefore, we can proceed as for the classical Viterbi algorithm with those plausibilities.

C. Problem 3 – The learning problem, or how to estimate the parameters given observed data X?

The solution has been tackled in details in the previous paragraphs and the algorithm 2 summarizes the steps. Two
simplifications are proposed.
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a) Concerning the estimation of transitions: The expression (14) makes use of Eq. 40 which can be difficult to compute
due to memory and time consumption since it involves both a ballooning extension, which potentially creates many subsets
on Ωz × Ωz with high cardinality, and several conjunctive rules between BBAs defined on a joint space. We suggest an
approximation by making use of the fact that mγ,t is the marginal of mξ on Ωz at t − 1. We thus propose to simplify the
estimation of transitions by approximating the joint BBA mξ by the conjunctive combination with vacuous extension of mγ,t

and mγ,t+1:
m

(q+1)
ξ(t−1,t) ≈ m

Ωz↑Ωz×Ωz
γ,t−1 ∩©mΩz↑Ωz×Ωz

γ,t (59)

That greatly simplifies the problem to estimate transitions since there are less conjunctive combinations with less number of
focal elements. Eq. 59 leads to two kinds of transitions:
• The joint form given by Eq. 14 for all subsets St−1,k ⊆ Ωz and subsets Stl ⊆ Ωz;
• The conditional form given by Eq. 14 for singletons st−1,k ∈ Ωz and subsets Stl ⊆ Ωz . The conditional form on subsets

are then computed by the DRC (Eq. 3b).
As discussed previously (Section III-C) and shown in the experiments (Section V), the conditional form may be more suitable
in practice.

b) Concerning the Gaussian mixing weights: The amount of overlap among the mixture components and their relative
size may have a negative impact on the convergence of EM which becomes slower and may lead to component annealing [39].
This effect is expected to be amplified by the use of the plausibilities in parameter optimization (Eq. 27) since it shares belief
from subsets involving several singletons. In practice, we suggest to not consider the weights in the mixture. This simplification
decreases the number of parameters to be estimated. The quality of the model may not be degraded since other additional
parameters are considered: Larger number of transitions by considering subsets, and doubt between components of the mixtures
through plausibilities.

Algorithm 2 Find parameters

Require: Initial model Ψ(0) = {q(0)
a , θ(0),Π(0)} (θ given by Eq. 1)

Ensure: Best parameter estimates Ψ∗ = {q∗a, θ∗,Π∗} and evidential likelihood Le
1: {Initialisation}
2: Prepare transitions −→q a with Eq. 34
3: Prepare transitions ←−q a with Eq. 38
4: L(0)

e ← −∞
5: repeat
6: q ← q + 1
7: {E-STEP, with Ψ(q)}
8: Apply forward propagation with Eq. 31-34 to get mα,t, t = 1 . . . T
9: Normalize mα,t at each time step as in Eq. 46 to get ct

10: Compute the likelihood L(q)
e as in Eq. 43 using ct

11: Apply the backward propagation with Eq. 35-38 to get mβ,t, t = 1 . . . T
12: Apply Eq. 39 to get the posterior BBA mγ,t using mβ,t and mα,t

13:
14: {M-STEP, to get Ψ(q+1)}
15: Get the plausibilities on singletons plγ,t with Eq. 4
16: Compute new means and covariances with Eq. 28 and 29
17: Compute new transitions with Eq. 40 using the approximation in Eq. 59
18: until |L

(q)
e −L

(q−1)
e |

L(q−1)
e

< ε

Remark 2: The evidential forward-backward algorithm allows to retrieve the results of standard HMM since there is
no approximation (when using the joint BBA for transitions in Eq. 40). A Bayesian BBA is indeed easily encoded using
commonalities which are used in most of equations. The same remark holds for the learning procedure, the only difference
holds in the fact that the prior on states at t = 1 is not considered.

V. RESULTS

The goal of this section is to illustrate the inference and learning procedures in EvHMM using synthetic datasets. Some
complementary results obtained on benchmarks used in prognostics and health management are presented in [40].
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Fig. 5. One simulated dataset. Initial position of means corresponds to random selection of data points, initial covariances are set to diag([5, 5])

.

A. Datasets

Two-dimensional synthetic datasets are generated from a probabilistic HMM with Q = 4 states with the following parameters:
• Transition probabilities are set to pa(Sj | Si) =

aij∑
j′ aij′

where elements aij are drawn from an uniform distribution such
that the elements of the diagonal are greater than the off-diagonal ones: aij ∼ 1i=j + U[0,1];

• Prior probabilities on the first state are drawn from an uniform distribution: pπ(Sj) =
πj∑
j′ πj′

with πj ∼ U[0,1].

• The means of the Gaussian emission model are set to: µ =

[
0 0 2.5 2.5
0 2.5 5 2.5

]
• The covariance matrix Σj for state j is calculated as Σj = νj cov(Dj) where Dj = [x1 x2 . . . xt . . . xT ]

′
is a set of

data with length Tj = 120 (number of data points per state) sampled as xt ∼ N (

[
0
0

]
,

[
1 0
0 1

]
) and using a scattering

controlled by ν =
[
2 0.5 2 0.5

]
.

This probabilistic HMM is used as a generative model to obtain 200 datasets, each with 480 data points. The HMM and
EvHMM are then run onto each dataset with the aim to recover the hidden structure of the data. For each dataset, the sequence
of hidden states is known (by sampling from the HMM) and corresponds to a ground truth to which the results of both HMM
and EvHMM are compared using the Adjusted Rand Index (ARI) [41]. The ARI is a measure of agreement between two
partitions in clustering, and in the present case between two sequences of states (the estimated one by the EvHMM or HMM,
and the ground truth), and tends to 1 if the sequence estimated is equal to the ground truth. For comparison purposes, both
the EvHMM and HMM are initialised with the same means and covariance matrices for each dataset.

B. Comparison with HMM

1) Conditional form for transitions in EvHMM (EvHMM-CT): Figure 6 represents the box plots of the relative performance
of EvHMM-CT (EvHMM with conditional form of transition, Section IV-C) and HMM with respect to the n best results,
where n is computed by the percentiles (so here n = 20, 40 . . . 200). The EvHMM performance is computed as:

P rel
EvHMM = 100

| ARIEvHMM −ARIHMM |
ARIHMM

(60)

that is relative to the performance of the probabilistic HMM which should expectedly provide similar or better results compared
to EvHMM due to the data generation process which is made by a standard HMM. This is the case for n = 200 for which
results are rather similar on average. This result means that the EM procedure for the EvHMM works but, similarly to HMM, is
quite sensitive to the initialisation. Remembering that the datasets have been generated by a probabilistic HMM, an advantage
can be attributed to the EvHMM with the 75-th percentile equal to +26%. Note also that we do not make use of prior on
latent variables (Sections II-C and III) which has been shown to be interesting for HMM [6].

Now, consider lower n. The trend of the median against n evolves exponentially with n: When considering the 20 best
results, an improvement of 117.8% (75-th percentile) can be obtained (with median equal to 103%) in favor of the EvHMM.
These results show that, with appropriate initialisation, the EvHMM has the highest potential for state recognition on this
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Fig. 6. Using conditional form of transitions (EvHMM-CT): Relative performance (n best results among 200) of EvHMM taking the HMM as a reference.
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Only trends in median are reported (variability of EvHMM-JT was similar to the previous case with EvHMM-CT).

dataset. Note that the initial conditions have been the same for both HMM and EvHMM. Therefore, those results also mean
that both models seem complementary.

2) Comparison with joint form for transitions in EvHMM (EvHMM-JT): The results obtained with the conditional form of
transitions (EvHMM-CT) are compared to the previous case in Figure 7. EvHMM-JT leads to better performance than HMM
as previously but are are lower than with EvHMM-CT.

The EvHMM-CT seems thus to be more suitable in terms of performance for these datasets. As discussed previously, this
model is more parcimonious than the EvHMM-JT so it requires less memory (coding only belief functions conditionally to
singletons in transitions) and is coherent with the GBT.

VI. CONCLUSION

This paper provides the formulations for inference and learning in Evidential HMM with conditional belief functions, which
are an equivalent model of probabilistic HMM where the uncertainty on states is managed by belief functions. We have shown
that the “three problems” defined for HMM can be solved for the EvHMM. In particular, the likelihood can be computed
exactly in EvHMM. The learning problem has been solved using some assumptions to make the solutions tractable:
• We suggested to use conditional belief functions for transitions between states for a coherence with the Generalized

Bayesian Theorem and to decrease time and memory consumption. Results on simulated data show a better performance
with the conditional form compared to the joint form.
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• We did not consider mixing weights in the GMM due to component annealing observed in practice which was also
reported for probabilistic models [39].

• It was shown that the support assigned to a Markov chain can be computed exactly using plausibilities. It was approximated
by a product of BBAs as proposed in [10] to get simple reestimation formula.

• The criterion used for the optimization is approximated by considering only the terms based on plausibilities (and therefore
by neglecting some subsets).

• The criterion used for learning relies on the same conjecture as in [31] which states that its maximization does not degrade
the support of the model. It was shown that this conjecture can be easily controled in EvHMM at each iteration using
the forward algorithm.

Despite those assumptions, results on simulated datasets show a high potential compared to standard HMM. Moreover, replacing
BBAs by probabilities in all algorithms allows to recover standard HMM.

The adjustment of the posterior BBA to compensate model’s misspecification [33] was not studied in experiments, this
could be studied in the future since it has been shown for HMM that this procedure could be of great interest in partially
supervised learning [6]. Some preliminary results have been presented in [40] where it is shown that the EvHMM with partial
knowledge on hidden states behaves similarly in presence of uncertainty but differently, in a better way, with noisy labels.
More experiments on diverse applications, such as related to time-series classification, forecasting and systems’ prognostics
[42], is necessary to confirm those results.

Comparison of the methodology of evidential HMM against other imprecise and fuzzy uncertainty theories can also be
performed. Mohamed and Gader [43] suggested a Choquet-based formulation using conditional fuzzy measure with application
to handwritten word images analysis. Soubaras [44] considered a similar extension to propose risk measures with application
in crisis management. The relation with HMM formulated with imprecise probabilities [45], [46] can also be of interest. Those
models are able to generate bounds around expectations on states or on parameters which may be interesting for datasets with
limited knowledge or for decision-making in critical applications. Since the plausibility and belief on states can be generated
during the forward-backward propagations, the use of the EvHMM for such aims could be a path to follow.

The learning procedure in EvHMM was sensitive to the initialisation phase, likewise to standard HMM due to the use of
EM. It could be of interest to consider EM’s alternatives such as Iterative Conditional Estimation and Stochastic EM [47] to
make initialisation more robust. Still on learning, the relationships with entropy and divergence measures in the belief functions
framework should be more studied. On this subject the reader can be interested in the recent survey paper by Jirousek and
Shenoy [48].

A fourth long-term perspective concerns the application of the proposed learning concepts to more general Time-
Sliced/Dynamic/Temporal Evidential Networks considering for instance the formalism of Pairwise and Triplet Markov Chain
[9], [10].
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the Laboratory of Excellence “ACTION” through the program Investments for the future managed by the National Agency for
Research (references ANR-11-LABX-01-01).

REFERENCES

[1] D. Wingate, N. D. Goodman, D. M. Roy, and J. B. Tenenbaum, “The infinite latent events model,” in Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence. AUAI Press, 2009, pp. 607–614.

[2] A. Anandkumar, D. Hsu, and S. M. Kakade, “A method of moments for mixture models and hidden Markov models,” in COLT 2012 - The 25th Annual
Conference on Learning Theory, June 25-27, 2012, Edinburgh, Scotland, 2012, pp. 33.1–33.34.

[3] S. L. Scott, G. M. James, and C. A. Sugar, “Hidden Markov models for longitudinal comparisons,” Journal of the American Statistical Association, vol.
100, no. 470, 2005.

[4] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov
chains,” The annals of mathematical statistics, pp. 164–171, 1970.

[5] L. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, pp. 257–285, 1989.
[6] E. Ramasso and T. Denoeux, “Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions,” Fuzzy Systems,

IEEE Transactions on, vol. 22, no. 2, pp. 395–405, 2014.
[7] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the Royal Statistical Society,

vol. 39, no. 1, pp. 1–38, 1977.
[8] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[9] W. Pieczynski, “Pairwise markov chains,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 634–639, 2003.

[10] ——, “Multisensor triplet Markov chains and theory of evidence,” International Journal of Approximate Reasoning, vol. 45, no. 1, pp. 1–16, 2007.
[11] K. Murphy, “Dynamic Bayesian Networks: Representation, inference and learning,” Ph.D. dissertation, UC Berkeley, Computer Science Division, 2002.
[12] G. Shafer, A mathematical theory of Evidence. Princeton University Press, 1976.



17

[13] P. Smets and R. Kennes, “The Transferable Belief Model,” Artificial Intelligence, vol. 66, pp. 191–234, 1994.
[14] T. Augustin, F. P. A. Coolen, G. D. Cooman, and M. C. M. Troffaes, Eds., Introduction to Imprecise Probabilities, ser. Wiley Series in Probability and

Statistics. Wiley, 2014.
[15] J. Pearl, “Reasoning with belief functions: An analysis of compatibility,” Int. Jour. of Approximate Reasoning, vol. 4, no. 5-6, pp. 363–389, 1990.
[16] B. Cobb and P. Shenoy, “A comparison of Bayesian and belief function reasoning,” Information Systems Frontiers, vol. 5, no. 4, pp. 345–358, 2003.
[17] P. Smets, “Beliefs functions: The disjunctive rule of combination and the generalized Bayesian theorem,” IJAR, vol. 9, pp. 1–35, 1993.
[18] ——, “Advances in the dempster-shafer theory of evidence,” R. R. Yager, J. Kacprzyk, and M. Fedrizzi, Eds. New York, NY, USA: John Wiley &

Sons, Inc., 1994, ch. What is Dempster-Shafer’s Model?, pp. 5–34.
[19] G. Shafer, “Perspectives on the theory and practice of belief functions,” International Journal of Approximate Reasoning, vol. 4, pp. 323–362, 1990.
[20] E. Pollard, M. Rombaut, and B. Pannetier, “Bayesian networks vs. evidential networks. an application to convoy detection,” in IPMU conference, 2010.
[21] P. Smets, “The application of the matrix calculus to belief functions,” Int. Jour. of Approximate Reasoning, vol. 31, no. 1-2, pp. 1–30, 2002.
[22] D. Dubois and H. Prade, “On the unicity of Dempster rule of combination,” International Journal of Intelligent Systems, vol. 1, no. 2, pp. 133–142,

1986.
[23] T. Denoeux, “Maximum likelihood estimation from uncertain data in the belief function framework,” Knowledge and Data Engineering, IEEE Transactions

on, vol. 25, no. 1, pp. 119–130, 2013.
[24] E. Ramasso, M. Rombaut, and D. Pellerin, “Forward-backward-viterbi procedures in TBM for state sequence analysis using belief functions,” in

ECSQARU, 2007, pp. 405–417.
[25] A. Bendjebbour, Y. Delignon, F. Fouque, V. Samson, and W. Pieczynski, “Multisensor image segmentation using Dempster-Shafer fusion in Markov

fields context,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 8, pp. 1789–1798, 2001.
[26] P. Lanchantin and W. Pieczynski, “Unsupervised restoration of hidden nonstationary Markov chains using evidential priors,” IEEE Transactions on Signal

Processing, vol. 53, no. 8, pp. 3091–3098, 2005.
[27] M. E. Y. Boudaren, E. Monfrini, W. Pieczynski, and A. Aissani, “Dempster-Shafer fusion of multisensor signals in nonstationary Markovian context,”

EURASIP J. Adv. Sig. Proc., vol. 2012, no. 134, pp. 1–13, 2012.
[28] A. Dempster, “A generalization of Bayesian inference,” Journal of the RSS, vol. 30, pp. 205–247, 1968.
[29] L. Serir, E. Ramasso, and N. Zerhouni, “Time-sliced temporal evidential networks: The case of evidential HMM with application to dynamical system

analysis,” in Prognostics and Health Management (PHM), 2011 IEEE Conference on, June 2011, pp. 1–10.
[30] P. Shenoy, “Valuation-based systems: A framework for managing uncertainty in expert systems,” Fuzzy Logic for theManagement of Uncertainty, pp.

83–104, 1992.
[31] P. Vannoorenberghe and P. Smets, “Partially supervised learning by a credal EM approach,” in Symbolic and Quantitative Approaches to Reasoning with

Uncertainty, ser. Lecture Notes in Computer Science, L. Godo, Ed. Springer Berlin Heidelberg, 2005, vol. 3571, pp. 956–967.
[32] G. Patil, Weighted distributions, A. H. El-Shaarawi and W. W. Piegorsch, Eds. John Wiley & Sons, Ltd, Chichester, 2002, vol. 4, pp. 2369-2377.
[33] P. Cano and E. Ramasso, “Ascertainment-adjusted parameter estimation approach to improve robustness against misspecification of health monitoring

methods,” Mechanical Systems and Signal Processing, 2016, submitted, revision 2.
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