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On the Synthesis of Boundary Control Laws for
Distributed Port-Hamiltonian Systems

Alessandro Macchelli Member, IEEE, Yann Le Gorrec Member, IEEE, Héctor Ramı́rez Member, IEEE, and
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Abstract—This paper is concerned with the energy shaping of
1D linear boundary controlled port-Hamiltonian systems. The
energy-Casimir method is first proposed to deal with power
preserving systems. It is shown how to use finite dimensional dy-
namic boundary controllers and closed-loop structural invariants
to partially shape the closed-loop energy function and how such
controller finally reduces to a state feedback. When dissipative
port-Hamiltonian systems are considered, the Casimir functions
do not exist anymore (dissipation obstacle) and the immersion
(via a dynamic controller) / reduction (through invariants) method
cannot be applied. The main contribution of this paper is to
show how to use the same ideas and state functions to shape
the closed-loop energy function of dissipative systems through
direct state feedback i.e. without relying on a dynamic controller
and a reduction step. In both cases the existence of solution
and the asymptotic stability (by additional damping injection)
of the closed-loop system are proven. The general theory and
achievable closed-loop performances are illustrated with the
help of a concluding example, the boundary stabilisation of a
longitudinal beam vibrations.

Index Terms—distributed port-Hamiltonian systems, boundary
control, passivity-based control, stability of PDEs

I. INTRODUCTION

It is more than two centuries that partial differential equa-
tions (PDEs) are used to model physical systems. However,
one of the most recurring assumption is that no external signals
are present. In this respect, it is only since the sixties and
seventies of the last century that a mathematical theory has
been developed in order to cope with boundary control and
observation. This fact makes it possible to study practical
problems modeled by PDEs, such as controlling the water level
in a river, or estimating the temperature distribution in a room.
Moreover, by introducing inputs and outputs, the distributed
parameter system is no longer a “closed” system since it can
be easily interconnected with other (sub-)systems.

From a physical point of view and with the bond-graph
modeling formalism [1] in mind, the interaction between
different systems can be interpreted as an exchange of energy
through a set of well-defined power ports. Port-Hamiltonian
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systems [2], [3] have been introduced about twenty years
ago as the mathematical formalization of bond-graphs to
describe lumped parameter physical systems in an unified
manner, [4], [5]. The generalization to the infinite dimensional
scenario leads to the definition of distributed port-Hamiltonian
systems [6]–[9] that have been introduced about one decade
ago as a particular case of the more general framework pre-
sented e.g. in [10], that deals with closed infinite dimensional
Hamiltonian systems, and then extended in [11] (see also
the references therein), to open physical systems. Distributed
port-Hamiltonian systems have proved to represent a powerful
framework for modeling, simulation and control of physical
systems described by PDEs.

Most of the current research on the stabilization of dis-
tributed port-Hamiltonian systems is about the development
of boundary controllers. The simplest way of designing such
controllers is to add some dissipation, or to use the passivity
properties of the interconnected systems and the total energy
as Lyapunov function to prove asymptotic or exponential
stability. Inspired by the finite dimensional case, a more
sophisticated approach aiming at achieving a certain level of
performances in closed-loop consists in shaping the energy
function, the stability being ensured by the passivity properties
of the controlled system. In current literature (see e.g. [11]–
[16]), this task has been accomplished for power preserving
systems by considering a dynamic controller and generating
a set of closed-loop Casimir functions that relates the state
of the infinite dimensional plant to the state of the finite
dimensional controller. The shape of the closed-loop energy
function is then changed by acting on the Hamiltonian of the
controller. From the existence of the closed-loop structural
invariants the dynamic controller finally reduces at the end
to a state feedback. This procedure is the generalisation of
the control by interconnection (energy-Casimir method or im-
mersion / reduction methods) developed for finite dimensional
systems, [3], [17]. The strong limitation of such control design
method is the dissipation that breaks the structural invariants.
This phenomenon is well known as the dissipation obstacle.

This paper focuses on the class of distributed port-Ha-
miltonian systems defined on real Hilbert spaces studied in
[8], [18], where the problem of existence of solutions for
the associated system of PDEs, and of the selection of the
boundary conditions to have a well-defined boundary control
system in the sense of [19] has been solved in case of
linear systems with one-dimensional spatial domain. The latest
results that combine abstract functional analytical approach
with the physical approach of port-Hamiltonian system theory
have been collected in [20], in which, among others, simple
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matrix conditions for well-posedness and stability are given.
With the framework proposed in [8], [20] in mind, in this
paper new results dealing with the synthesis of asymptotically
stabilising boundary control laws are given.

The starting point is the energy-Casimir method, here in-
vestigated in the most general possible case as far as the con-
troller structure is concerned. In this way, the results already
presented in literature [11]–[16] can be seen as particular cases
of the theory discussed here. In first instance, the geometric
properties of the closed-loop system are investigated. General
conditions for the existence of Casimir functions are provided,
together with a precise characterisation of the class of systems
to which the method is applicable. It is well-known, in
fact, that with this approach it is not possible to deal with
systems that are characterised by equilibria which require an
infinite amount of supplied energy in steady state, i.e. with
the so-called “dissipation obstacle,” [3], [15], [17], [21]–[23].
Secondly, based on [24]–[27], existence and properties of the
closed-loop system solutions are investigated, and a positive
answer in case the controller is passive is given. Once the
Casimir functions are characterised, it is shown how to use
them for control purposes. Indeed, these invariants allow to
link the state of the controller to the state of the system, and
then to reduce the dynamic contribution of the controller to a
boundary state feedback. An appropriate choice of this state
feedback through the initial choice of the controller energy
function allows to shape, at least in some directions (this
point is discussed in the last section of the paper), the closed-
loop energy function. Such a control action can be paired,
for example, with damping injection without worrying that
possible changes in the dissipative structure of the system
“destroy” the Casimir functions, thus ensuring, after having
proved existence of solution, the asymptotic stability of the
closed-loop system.

Inspired by this energy-Casimir method, a new control
design method is proposed to avoid the problems associated to
the dissipation obstacle. The idea is to keep a boundary state
feedback structure without designing it through a dynamic
controller nor closed-loop invariants. In this paper, all the
boundary state feedback laws that shape the Hamiltonian
function in pre-defined directions are characterised, so that
simple stability in closed-loop is obtained. To have asymptotic
stability, it is then necessary to add damping by means of
a further control loop. This is the same concept adopted in
finite dimensions in case of stabilisation with state modulated
sources [17], or with the more general IDA-PBC control
technique, [28]. These considerations lead to the last main
contribution of this paper. It is shown that if it is possible,
via damping injection, to impose full boundary dissipation to
the closed-loop port-Hamiltonian systems with shaped Hamil-
tonian, then the desired equilibrium is asymptotically stable.

It is now important to understand how to frame this work
in the more general topic “control of distributed parameter
systems.” First of all, there are several sub-classes of infinite-
dimensional systems. In the general operator-theoretic ap-
proach [19] the use of energy is most times hidden, although
the co-located feedback is based on it. Therefore, our approach
is more related to the second main subclass of infinite-

dimensional systems, namely working with the PDE directly,
[29]. In this class, the use of energy is very common. However,
in this paper, there is no reference to a specific PDE, but
to a class of PDEs that encompasses models e.g. of flexible
beams, waves and reaction diffusion processes, in 1D but also
2D or 3D when there are symmetries that can be exploited
to obtain a simplified 1D model, and that forms a sub-class
of port-Hamiltonian systems. Furthermore, the idea is not to
stabilise the system around the origin (the lowest point of the
energy), but around another point with modified closed-loop
performances associated to a modified shape of the closed-loop
energy. Combined with the analytic proof that this is possible,
to the best of our knowledge this has not been studied before
neither in the operator approach, nor in the PDE approach.

The paper is organized as follows. In Section II, the class
of linear, distributed, port-Hamiltonian systems under investi-
gation is briefly presented. In Section III, the geometric prop-
erties of the energy-Casimir method are discussed. Section IV
is devoted to the main control synthesis methodology that
is based on passivity-based considerations. How to achieve
asymptotic stability via damping injection is then discussed in
Section V. Finally, in Section VI, the general methodology is
illustrated with the help of an example, namely the PDE that
describes the longitudinal vibration of a beam. Conclusions
and a discussion about possible future research activities are
reported in Section VII.

II. BACKGROUND

In this paper, we refer to the class of linear distributed port-
Hamiltonian systems defined on real Hilbert spaces that have
been studied in [8], [20], [27], [30], i.e. to systems described
by the PDE

∂x

∂t
(t, z) = P1

∂

∂z

(
L(z)x(t, z)

)
+ (P0 −G0)L(z)x(t, z) (1)

with x ∈ Rn, and z ∈ [a, b]. Moreover, P1 = PT
1 and

invertible, P0 = −PT
0 , G0 = GT

0 ≥ 0, and L(·) is a bounded
and Lipschitz continuous matrix-valued function such that
L(z) = LT(z) and L(z) ≥ κI , with κ > 0, for all z ∈ [a, b].
For the sake of clearness, (Lx) (t, z) := L(z)x(t, z). We say
that the symmetric matrix M is positive definite, in short
M > 0, if all its eigenvalues are positive, and positive
semi-definite, in short M ≥ 0, if its eigenvalues are non-
negative. The state space is X = L2(a, b;Rn), and is endowed
with the inner product 〈x1 | x2〉L = 〈x1 | Lx2〉 and norm
‖x1‖2L = 〈x1 | x1〉L, where 〈· | ·〉 denotes the natural L2-inner
product. The selection of this space for the state variable is
motivated by the fact that ‖·‖2L is strongly linked to the energy
function of (1). As a consequence, X is also called the space
of energy variables, and Lx denote the co-energy variables.
This class is quite general and includes models of flexible
structures, traveling waves [7], [9], [13], heat exchangers, and
linearised models of bio or chemical reactors among others,
[31].

Remark 2.1: Note that L(·) may be L∞, i.e. a bounded
measurable matrix-valued function. Lipschitz continuity is
only needed in the proof of Theorem 5.3.
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The PDE (1) can be also written as ẋ = J x, where J
is the linear operator defined as J x := P1

∂
∂z (Lx) + (P0 −

G0)Lx, with domain D(J ) =
{
Lx ∈ H1(a, b;Rn)

}
. Here

H1(a, b;Rn) denotes the Sobolev space of order one.
To have a distributed port-Hamiltonian system, the PDE (1)

has to be completed by a set of boundary port variables. More
precisely, for Lx ∈ H1(a, b;Rn), the boundary port variables
associated to (1) are the vectors f∂ , e∂ ∈ Rn defined by(

f∂
e∂

)
=

1√
2

(
P1 −P1

I I

)
︸ ︷︷ ︸

=:R

(
(Lx)(b)
(Lx)(a)

)
. (2)

The boundary port variables are a linear combination of the
restriction of the co-energy variables to the boundary, and
integration by parts shows that 1

2
d
dt ‖x(t)‖2L = eT

∂ (t)f∂(t).
The problem of determining the “right” boundary inputs and
outputs for (1) to have a boundary control system on X in
the sense of the semigroup theory, see e.g. [19], has been
addressed in [8].

Theorem 2.1: Let W be a n×2n real matrix. With this W ,
we define the input mapping B : H1(a, b;Rn)→ Rn and the
input u(t) as

u(t) = W

(
f∂(t)
e∂(t)

)
=: Bx(t). (3)

If W has full rank and satisfies WΣWT ≥ 0, with

Σ =

(
0 I
I 0

)
,

then the system (1) with input (3) is a boundary control system
on X . Furthermore, the operator J̄ x := P1(∂/∂z)(Lx)+(P0−
G0)Lx with domain

D(J̄ ) =

{
Lx ∈ H1(a, b;Rn) |

(
f∂
e∂

)
∈ KerW

}
=
{
Lx ∈ H1(a, b;Rn) | Bx = 0

}
generates a contraction semigroup on X . Moreover, let W̃ be
a full rank n× 2n matrix such that

(
WT W̃T

)
is invertible

and let P be given by

P =

(
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

)−1

.

Define the output as

y(t) = W̃

(
f∂(t)
e∂(t)

)
=: Cx(t) (4)

with C : H1(a, b;Rn) → Rn. Then, for u ∈ C2(0,∞;Rn)
and (Lx)(0) ∈ H1(a, b;Rn), the following energy balance
equation is satisfied:

1

2

d

dt
‖x(t)‖2L ≤

1

2

(
u(t)
y(t)

)T

P

(
u(t)
y(t)

)
. (5)

Proof: See [8].
In this paper, the matrices W and W̃ are selected in such a

way that (1) is in impedance form i.e., WΣWT = W̃ΣW̃T =
0 and WΣW̃T = I , or equivalently(

W

W̃

)
Σ
(
WT W̃T

)
= Σ. (6)

In this case the energy-balance (5) reduces to

1

2

d

dt
‖x(t)‖2L ≤ y

T(t)u(t). (7)

In Sections IV and V, the design of a state-feedback law
for the PDE (1) that leads to a closed-loop system in port-
Hamiltonian form which is asymptotically stable is discussed.
However, preliminary problems are to understand if the linear
system of coupled PDEs and ODEs associated to the closed-
loop system has a unique solution, and if it is a well-defined
boundary control system. In this respect, let us consider a
linear control system in port-Hamiltonian form, whose most
general formulation is [32]{

ẋC = (JC −RC)QCxC + (GC − PC)uC

yC = (GC + PC)
T
QCxC + (MC + SC)uC

(8)

where xC ∈ RnC and uC , yC ∈ Rn, while JC = −JT
C ,

MC = −MT
C , RC = RT

C , and SC = ST
C , with this further

condition satisfied: (
RC PC
PT
C SC

)
≥ 0 . (9)

Finally, assume that QC = QT
C > 0, so that (8) is a passive

linear system. For the sake of compactness, this system can
be easily written in standard (AC , BC , CC , DC) form, being

AC = (JC −RC)QC BC = GC − PC
CC = (GC + PC)

T
QC DC = MC + SC .

(10)

The control system (8) is interconnected to the boundary of
(1) in a power-conserving way through the input u and the
output y defined in (3) and (4) under the assumptions (6) as(

u
y

)
=

(
0 −I
I 0

)(
uC
yC

)
+

(
u′

0

)
, (11)

where u′ ∈ Rn is an additional control input. This is the
standard feedback interconnection. The closed-loop system is
characterized by the total Hamiltonian

Hcl(x(t), xC(t)) =
1

2
‖x(t)‖2L +

1

2
xT
C(t)QCxC(t)︸ ︷︷ ︸
=:HC(xC(t))

(12)

and can be compactly written as{
ζ̇ = Jclζ
u′ =

(
B +DCC CC

)
ζ =: B′ζ,

(13)

where
ζ =

(
x
xC

)
∈ Z := X × RnC

is the state variable of the closed-loop system and Jcl :
D(Jcl) ⊂ Z → Z is the following linear operator

Jclζ :=

(
J 0
BCC AC

)(
x
xC

)
(14)

with domain
D(Jcl) = D(J )× RnC . (15)

Z is endowed with the inner product defined as

〈ζ1 | ζ2〉Z = 〈x1 | x2〉L + xT
C,1QCxC,2
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which means that Hcl(ζ) = 1
2 ‖ζ‖

2
Z . Some fundamental

properties associated to the PDEs and ODEs describing the
closed-loop dynamics are presented in the next proposition.

Proposition 2.2: Consider the port-Hamiltonian system re-
sulting from the power-conserving interconnection (11) of (1)
and (8), which results in (13). Then, (13) with Jcl defined in
(14) with domain (15) is a boundary control system. Moreover,
the operator J̄cl given by

J̄clζ :=

(
J 0
BCC AC

)(
x
xC

)
with domain

D(J̄cl) =

{(
x
xC

)
∈ Z | x ∈ D(J ), and B′

(
x
xC

)
= 0

}
with B′ defined in (13) generates a contraction semigroup.

Proof: The proof can be found in [26].

III. STRUCTURAL INVARIANTS OF BOUNDARY
CONTROLLED SYSTEMS

Proposition 2.2 shows that the power conserving intercon-
nection (11) of the distributed port-Hamiltonian system (1)
with the passive port-Hamiltonian controller (8) results in
a port-Hamiltonian system, the closed-loop system, charac-
terized by the Hamiltonian (12) which is the sum of the
Hamiltonian functions of (1) and (8). To use this closed-
loop Hamiltonian as Lyapunov function, one has first to
guarantee that this function has a minimum at the desired
equilibrium with a proper choice of HC . The choice of HC

also allows to change the shape (at least in some directions)
of the closed-loop energy function, and thus the closed-loop
performances. As in the finite dimensional case [3], [17], if
it is possible to find structural invariants (i.e., that do not
depend on the Hamiltonian) named Casimir functions of the
form C(x, xC) = xC − F (x), with F (x) some smooth well
defined functional of x, then on every invariant manifold
defined by xC − F (x) = κ, with κ a real constant relating
the initial state of the system to the initial state of the
controller, the closed-loop Hamiltonian (12) may be written
as Hcl(x) = H(x) + HC(F (x) + κ), with H(x) = 1

2 ‖x‖
2
L.

Hence, the closed-loop Hamiltonian Hcl depends on the state
variable of (1) only. Its minimum and its shape, defining the
closed-loop equilibrium and the closed-loop performances, can
be assigned by an appropriate choice of HC .

Definition 3.1 (Casimir function): Consider the boundary
control system defined in Proposition 2.2 with u′ = 0 in (11).
A function C : X ×RnC → R is a Casimir function if Ċ = 0
along the (classical) solutions for every possible choice of L(·)
and QC , [3], [13], [21].

Due to the fact that the geometric structure (namely, the
Dirac structure) associated to the boundary control system
introduced in Proposition 2.2 is linear, the Casimir functions
are linear (see e.g. [22]). Consequently, as in [26], [33], [34],
we look for Casimir functions in the form

C(x(t), xC(t)) = ΓTxC(t) +

∫ b

a

ΨT(z)x(t, z) dz (16)

with Γ ∈ RnC and Ψ ∈ L2(a, b;Rn). Note that they are not
(yet) in the form assumed above.

Proposition 3.1: Consider the boundary control system
introduced in Proposition 2.2 with u′ = 0 in (11). Then,
(16) is a Casimir function for this system if and only if
Ψ ∈ H1(a, b;Rn),

P1
dΨ

dz
(z) + (P0 +G0)Ψ(z) = 0 (17)

(JC +RC)Γ + (GC + PC)W̃R

(
Ψ(b)
Ψ(a)

)
= 0 (18)

(GC − PC)
T

Γ+

+
[
W + (MC − SC) W̃

]
R

(
Ψ(b)
Ψ(a)

)
= 0 (19)

Proof: The proof of [26], for the case RC = PC =
MC = 0, can be easily adjusted to show the above proposition.
However, in Appendix A we present a simpler and more
elegant one.

It is worth noting that Casimir functions are also discussed
in [10] for Hamiltonian systems, and there called “distin-
guished functionals.” They are employed in the stabilisation
by port-interconnection in [11], where a finite dimensional
Hamiltonian control system is interconnected to the boundary
of an infinite dimensional Hamiltonian plant, and similar
results to the ones in Proposition 3.1 are obtained.

Proposition 3.2: Assume that it is possible to find nC
Casimir functions, i.e. it is possible to relate all the state
variables of the controller with the states of the plant, and
denote by Γ̂ =

(
Γ1 · · · ΓnC

)
and Ψ̂ =

(
Ψ1 · · · ΨnC

)
the nC × nC matrices built from the vectors and vector
valued functions that appear in the Casimir (16). Moreover,
assume that the Ψi are independent solutions of (17). Then,
the following conditions are satisfied:

G0Ψ̂(z) = 0 (20)(
RC PC
PT
C SC

) Γ̂

W̃R

(
Ψ̂(b)

Ψ̂(a)

) = 0. (21)

Proof: The proof is reported in Appendix B.
Propositions 3.1 and 3.2 summarise the conditions for the

existence of the Casimir invariants in closed-loop. Relations
(20) and (21) impose conditions on the parameters in the
Casimir when there is dissipation in the system. This is called
the dissipation obstacle. For instance, when G0 is invertible,
i.e., there is strong dissipation in the PDE, (20) implies that Ψ̂
must be zero, and so we cannot find any Casimir function of
the form (16). Hence our control design procedure fails. See
also [3], [17] for the finite-dimensional case.

IV. BOUNDARY CONTROL BY ENERGY-SHAPING

The aim of this section is to present a boundary control law
able to shape the Hamiltonian and move the minimum to the
desired equilibrium state. The synthesis technique discussed
here allows to overcome the main limitation of the energy-
Casimir method, namely the dissipation obstacle, that imposes
strong constraints on the amount of damping that can be
added in the system, damping that is fundamental to achieve
asymptotic or exponential stability in closed-loop. Before
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presenting the main result of this section, it is important
to investigate what is the effect of the control system (8)
developed according to the energy-Casimir method on the
distributed parameter system (1).

The link between the state of the controller xC and the
state of the plant x appears through the Casimir functions
(16). Indeed, under the hypothesis of Proposition 3.2 and if Γ̂
is invertible, since each Casimir function is constant along the
system trajectories, we have that

xC(t) = −Γ̂−T

∫ b

a

Ψ̂T(z)x(t, z) dz + κ (22)

with κ ∈ RnC a constant that depends on the initial conditions
only. If we assume that the controller initial state is selected in
such a way that κ = 0, it is possible to verify that the closed-
loop dynamics are given by the boundary control system:

∂x

∂t
(t, z) = P1

∂

∂z

δHcl

δx
(x(t))(z) + (P0 −G0)

δHcl

δx
(x(t))(z)

u′(t) = W ′R

((
δHcl

δx (x(t))
)

(b)(
δHcl

δx (x(t))
)

(a)

)
(23)

in which δ denotes the functional derivative (Fréchet deriva-
tive, in the language of functional analysis) [7], [9], [10], while

Hcl(x(t)) =
1

2
‖x(t)‖2L +

1

2

(∫ b

a

Ψ̂T(z)x(t, z) dz

)T

×

× Γ̂−1QC Γ̂−T

∫ b

a

Ψ̂T(z)x(t, z) dz (24)

and W ′ is a n×2n full rank, real matrix such that W ′ΣW ′T ≥
0.

The fact that the closed-loop energy as function of the x
coordinates is given by (24) is an immediate consequence of
(12) and (22) if κ = 0. Moreover, the PDE that describes the
closed-loop dynamics in (23) follows from the fact that

δHcl

δx
(z) = (Lx)(z) + Ψ̂(z)Γ̂−1QC Γ̂−T

∫ b

a

Ψ̂T(z)x(z) dz

and because from (17) and (20) we have that

0 = P1
dΨ̂

dz
(z) + (P0 +G0)Ψ̂(z)− 2G0Ψ̂(z)

= P1
dΨ̂

dz
(z) + (P0 −G0)Ψ̂(z)

with the integral term that appears in the previous expression
of δHcl

δx that is not a function of z. Finally, with simple calcu-
lations it is possible to prove that W ′ = W + (MC + SC)W̃ ,
which from (6) and (9) implies that W ′ΣW ′T = 2SC ≥ 0.

The effect of the controller (8) is then to shape the open-loop
Hamiltonian 1

2 ‖x(t)‖2L into the desired one (24), as expected,
and this property is strictly related to the presence of Casimir
functions in closed-loop that establish the algebraic relation
(22) between state of the controller and of the plant. The
same result can be equivalently achieved by writing the control
action, i.e. the output yC of (8), in state-feedback form by
defining xC as in (22), with κ = 0. With such control action,
the closed-loop system evolves according to (23), i.e. with the

shaped Hamiltonian. Proposition 2.2 assures that also when the
boundary control action is in standard state feedback form, the
closed-loop system is well-posed. Furthermore, it is possible
to act on the auxiliary input u′ e.g. to add damping without
losing the stability properties obtained in the inner loop.

Similarly to the finite dimensional case, the main contri-
bution of this section is to use state feedback to avoid the
intrinsic drawbacks of the energy-Casimir method in presence
of the dissipation obstacle. In the following proposition, it is
shown how to design a boundary state feedback control that is
able to map the open-loop dynamics (1) into the target system
given in (23).

Proposition 4.1 (Energy-shaping): Consider the system (1)
with boundary control given by (3). Denote by H(x) =
1
2 ‖x‖

2
L its Hamiltonian function. Then, the feedback law

u = β(x) + u′, with u′ an auxiliary boundary input, maps
(1), (3) into the target dynamical system

∂x

∂t
(t, z) = P1

∂

∂z

δHd

δx
(x(t))(z) + (P0 −G0)

δHd

δx
(x(t))(z)

u′(t) = WR

((
δHd

δx (x(t))
)

(b)(
δHd

δx (x(t))
)

(a)

)
(25)

with Hd(x) = H(x) +Ha(x), provided that

P1
∂

∂z

δHa

δx
(x) + (P0 −G0)

δHa

δx
(x) = 0 (26)

β(x) +WR

((
δHa

δx (x)
)

(b)(
δHa

δx (x)
)

(a)

)
= 0. (27)

Proof: The proof is immediate by comparison of initial
and target dynamics. For a geometric interpretation of this
result in the distributed parameter scenario, we refer to [22].

Remark 4.1: Equation (26) provides all the possible func-
tions Ha that can be employed in the energy-shaping proce-
dure, while (27) gives the associated boundary control action.
Furthermore, from (26) it is clear that δHa

δx is related to
the equilibrium states of (1). More precisely, the function
x(t, z) := x?(z) is an equilibrium state of (1) if and only
if x? := L−1 δHa

δx (x?), with Ha such that (26) holds.
Once Hd is defined, by Theorem 2.1 a natural choice for

the output is

y′(t) = W̃R

((
δHd

δx (x(t))
)

(b)(
δHd

δx (x(t))
)

(a)

)
(28)

which implies that d
dtHd(x(t)) ≤ y′

T
(t)u′(t). Such new

boundary port (u′, y′) has now to be terminated over a dissipa-
tive element to obtain asymptotic stability of the equilibrium,
or just to improve the convergence rate:

u′(t) = −Ξy′(t), Ξ = ΞT ≥ 0. (29)

This will be shown in Theorem 5.3.
By the previous remarks it is clear that the additional

Hamiltonian Ha is constructed in such a way that L−1 δHa

δx (x)
are equilibrium states of (1). Furthermore, since the system has
to reach a non-zero state, Hd is chosen with a global minimum
in this non-zero state. In the following lemma, a construction
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for Ha which achieves this is illustrated. Since, in this paper,
the linear case is treated, the focus is on quadratic Hamiltonian
functions.

Lemma 4.2: Let Φi ∈ H1(a, b; Rn), i = 1, . . . , n be
independent solutions of

P1
dΦi
dz

(z) + (P0 −G0)Φi(z) = 0, (30)

and define Φ̂(z) =
(
Φ1(z), . . . , Φn(z)

)
. Furthermore, let x?

be an equilibrium state of (1), i.e. Lx? ∈ H1(a, b; Rn) and

P1
∂(Lx?)
∂z

(z) + (P0 −G0)(Lx?)(z) = 0. (31)

Then

Ha(x) =
1

2

[∫ b

a

Φ̂T (x− x?) dz

]T

×

×Qa

[∫ b

a

Φ̂T (x− x?) dz

]
−

−
∫ b

a

xT
? Lxdz + κ, (32)

with Qa = QT
a > 0 and κ ∈ R some constant, satisfies (26)

and Hd = H +Ha has a global minimum in x?.
Proof: From (32) we have

δHa

δx
(x) = Φ̂Qa

[∫ b

a

Φ̂T (x− x?) dz

]
− Lx?

and so by the definition of Φ̂ and x?, (26) is satisfied. Further-
more, since H(x)−

∫ b
a
xT
? Lxdz equals H(x− x?)−H(x?)

the last assertion follows.

V. ASYMPTOTIC STABILITY ANALYSIS

The aim of this section is now to show that damping
injection (29) with Hd = H + Ha and Ha given by (32)
asymptotically stabilises (1) in the equilibrium x?. We begin
by studying the closed-loop system (25), (28) with (29). Before
doing so, we introduce some notation. We define the bounded
linear operator KΦ : X → Rn as

KΦx =

∫ b

a

Φ̂T(z)x(z) dz, (33)

and Ld as
Ld = L+K∗ΦQaKΦ, (34)

where K∗Φ : Rn → X is the adjoint operator of KΦ.
Clearly, K∗Φ = Φ̂, and Ld is a bounded, coercive operator on
L2(a, b;Rn). Furthermore, Ha being given by (32) we find

Hd(x) =
1

2
〈(x− x?) | Ld (x− x?)〉L2 +Hd(x?). (35)

Proposition 5.1: The closed-loop system (25), (28) with (29)
in which Ha is defined by (32) admits a unique solution. Fur-
thermore, the mapping from the initial error state at time t = 0,
x0 − x? to the error state at time t, x(t)− x? defines a con-
traction semigroup in the norm 1

2 〈(x− x?) | Ld (x− x?)〉L2 .
Proof: We begin by defining x̃ as x − x?, then by (35)

we have that δHd

δx (x) = Ldx̃. Since x? is independent of t,

we see that the closed-loop system (25), (28) with (29) can
be written as

∂x̃

∂t
(t, z) = P1

∂(Ldx̃)

∂z
(t, z) + (P0 −G0) (Ldx̃) (t, z)

0 =
[
W + ΞW̃

]
R

(
(Ldx̃) (t, b)

(Ldx̃) (t, a)

)
.

(36)

By pre- and post-multiplication of (6) by
(
I Ξ

)
and(

I ΞT
)T

, respectively, we obtain:[
W + ΞW̃

]
Σ
[
W + ΞW̃

]T
= 2 Ξ ≥ 0,

and then from Lemma 5.4 in [8] it follows that the semigroup
associated to (36) is a contraction semigroup with respect to
the norm 1

2 〈(x− x?) | Ld (x− x?)〉L2 . Furthermore, since x̃
and x only differ by x? is clear that the closed-loop system
(25), (28) with (29) admits a unique mild solution for all initial
conditions.

Proposition 5.2: The operator Jd defined as

Jdx := P1
∂(Ldx)

∂z
+ (P0 −G0) (Ldx) (37)

with domain

D(Jd) =

{
x ∈ L2(a, b;Cn) | Ldx ∈ H1(a, b;Cn)

and 0 =
[
W + ΞW̃

]
R

(
(Ldx)(b)
(Ldx)(a)

)}
(38)

is the infinitesimal generator of a contraction semigroup and
has a compact resolvent.

Proof: From [8, Lemma 5.4], of which Theorem 2.1
is a particular case, it follows that Jd generates a contrac-
tion semigroup since Ld is a bounded, coercive operator on
L2(a, b;Rn). The compactness of the resolvent is derived
from [25, Theorem 2.28, pg. 50] because, as before, Ld is
a bounded and coercive operator.

The main result is an application of the Arendt-Batty-
Lyubich-Vũ Theorem, see e.g. [29, Theorem 3.26, p. 130].

Theorem 5.3 (Asymptotic stability): Consider the linear,
infinite dimensional, port-Hamiltonian system (1) and the
equilibrium state x? satisfying (31). Then, the control action
u = β(x)+u′ with β defined in (27), Ha chosen as in (32), and
with u′ defined in (29) with Ξ > 0, makes x? asymptotically
stable.

Proof: Using the previous notation, it is clear that the
assertion in the theorem is equivalent to the assertion that
the origin is asymptotically stable for the PDE (36). To this
PDE, we associate the infinitesimal generator Jd defined by
(37) and with domain (38). Since Jd has compact resolvent
and generates a contraction semigroup, the semigroup is
asymptotically stable if and only if there are no eigenvalues
on the imaginary axis, see [29, Theorem 3.26]. In this respect,
assume that ω is an eigenvalue, i.e., there exists a non-zero
x ∈ D(Jd) such that

ωx = Jdx. (39)
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Using the definition of Jd and integration by parts, we see
that

0 = Re (〈Ldx | ωx〉)

=
1

2
(Ldx)

∗
(b)P1 (Ldx) (b)− 1

2
(Ldx)

∗
(a)P1 (Ldx) (a)

− 〈Ldx | G0Ldx〉

=
1

2
(y′)
∗
u′ +

1

2
(u′)

∗
y′ − 〈Ldx | G0Ldx〉 ,

where we have introduced

u′ = WR

(
(Ldx) (b)
(Ldx) (a)

)
y′ = W̃R

(
(Ldx) (b)
(Ldx) (a)

)
and used (6). Hence the boundary condition gives

0 = − (y′)
∗

Ξy′ − 〈Ldx | G0Ldx〉 . (40)

Since Ξ > 0 we see that y′ = 0 and thus u′ = 0. Furthermore,

G0Ldx = 0. (41)

Using the fact that
(
W
W̃

)
is invertible, y′ = u′ = 0 implies

that (Ldx)(a) = (Ldx)(b) = 0. Let now consider two cases:
• If ω = 0, then (39) and (41) imply that the function q :=
Ldx satisfies the first order ordinary differential equation
P1

∂q
∂z +P0q = 0. However, since q(b) = q(a) = 0 this is

only possible when q ≡ 0. Thus zero is not an eigenvalue.
• For ω 6= 0, we introduce ξ =

∫ b
a

Φ̂T(z)x(z) dz. We have
that

ωξ =

∫ b

a

Φ̂T(z)ωx(z) dz

=

∫ b

a

Φ̂T(z)(Jdx)(z) dz

= Φ̂T(b)P1 (Ldx) (b)− Φ̂T(a)P1 (Ldx) (a),

where we have used integration by parts (30) and (41).
Since (Ldx) (a) = (Ldx) (b) = 0, we have proved that
ξ = 0. Combining this with equation (33) and (34) we
see that

Ldx = Lx+K∗ΦQaξ = Lx.

Using this and the definition of Jd, we have that x
satisfies the first order ordinary differential equation

ωx = P1
∂(Lx)

∂z
+ P0 (Lx) .

Since L is Lipschitz continuous, bounded from above and
away from zero, so is its inverse. Due to the Cauchy–
Lipschitz theorem on existence and uniqueness of solu-
tions to ordinary differential equations with given initial
conditions, and combining this fact with (Ldx) (a) =
(Lx) (a) = 0, we conclude that x = 0. Hence there are
no eigenvalues on the imaginary axis and the closed-loop
error system is asymptotically stable.

Remark 5.1: If in (32) it is assumed that the functions Φi
solutions of (30) are such that

0 = WR

(
Φi(b)
Φi(a)

)
, i = 1, . . . , n

then the energy-shaping state feedback law β defined in (27)
reduces to a constant, namely

β(x) = WR

(
Φ̂(b)φ?
Φ̂(a)φ?

)
,

which are the boundary conditions associated to the equi-
librium (Lx)?. Then, the effect of the damping injection
contribution (29) is to dissipate the total energy until the new
minimum is reached. A simple application of [30] shows that
the equilibrium is uniformly exponentially stable. Since there
are no constraints on the boundary conditions on the function
Φi solution of (30), a parametrisation of all the possible
energy-shaping control actions is provided in the linear case.
Different choices lead to different performances in closed-
loop.

Remark 5.2: With the methodology discussed in the pre-
vious section in mind, provided that HC(x) ≡ Ha(x) and
Hcl(x) ≡ Hd(x), we see that the control by interconnection
and energy shaping via Casimir generation is a particular case
of this one. In fact, since the Casimir functions have to satisfy
(17) and (20), it is immediate that

P1
dΨ

dz
(z) + (P0 −G0)Ψ(z) = 0

and that

δHC

δx
(x(t, z)) = Ψ(z)

∂HC

∂xC

∣∣∣∣
xC=

∫ b
a

ΨT(z)x(t,z) dz

Furthermore, condition (27) is a consequence of the defini-
tion of u′ in (23). In addition, if for simplicity the finite
dimensional boundary controller (8) is chosen without the
feedthrough term, i.e. if MC = SC = 0, then in the second
relation in (23) we have that W ′ = W . Since u = β(x) + u′,
from (3) we have that

β(x) = u− u′ = WR

((
δHa

δx (x)
)

(b)(
δHa

δx (x)
)

(a)

)
which is exactly (27). Equivalently, we can say that in the
lossless case for any energy shaping control action β(x) it
is possible to determine a control system (8) that is able, if
properly initialised, to generate the control action β(x) itself.

VI. EXAMPLE: THE LONGITUDINAL VIBRATION OF A
BEAM

A. Port Hamiltonian modelling

In this section we consider the example of a bar of size
L subject to longitudinal (axial) vibration. The beam motion
results from an extension / compression deformation along its
longitudinal direction z ∈ [0, L]. In the following, we shall
denote the section of the beam by S(z), the longitudinal
displacement of a section of the beam from the unstressed
configuration by ϕ(t, z), and its velocity by v = ∂ϕ

∂t (t, z).
In case of longitudinal motion, the deformation of the beam
ε(t, z) is related to the displacement by:

ε(t, z) =
∂ϕ

∂z
(t, z) (42)
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The material’s deformation behaviour is considered to be
linear (Hooke’s law), which means that the axial mechanical
constraint σ(t, z), defined as the extension / traction force
divided by section S(z), is proportional to the axial defor-
mation ε(t, z) through the Young elasticity modulus E, i.e.
σ(t, z) = E ε(t, z). Applying the second Newton’s law to
an infinitesimal piece of beam (taking internal friction into
account) leads to the PDE equation:

ρS(z)
∂2ϕ

∂t2
(t, z) =

∂

∂z

[
ES(z)

∂ϕ

∂z
(t, z)

]
−D∂ϕ

∂t
(t, z)

where ρ is the mass density, and D ≥ 0 is the internal
friction coefficient. By considering as energy variables the
deformation ε(t, z) and the linear momentum density p(t, z) =
ρS(z)v(t, z), the total energy of the system can be written as
the sum of the kinetic energy and the potential energy of the
elastic deformation, i.e.:

H(p(t, z), ε(t, z)) =
1

2

∫ L

0

[
p2(t, z)

ρS(z)
+ ES(z)ε2(t, z)

]
dz

leading to the definition of the co-energy variables

σS(t, z) =
δH

δε
(ε(t, z)) = ES(z)ε(t, z) = S(z)σ(t, z)

v(t, z) =
δH

δp
(p(t, z)) =

p(t, z)

ρS(z)
=
∂ϕ

∂t
(t, z)

which are the elastic force acting on the cross-section, and
its velocity, respectively. The port-Hamiltonian formulation of
the system is then

∂

∂t

(
ε(t, z)
p(t, z)

)
=

(
0 ∂

∂z
∂
∂z −D

)(
ES(z) 0

0 1
ρS(z)

)(
ε(t, z)
p(t, z)

)
which is in the form (1), with P0 = 0, and

P1 =

(
0 1
1 0

)
, G0 =

(
0 0
0 D

)
,

L(z) =

(
ES(z) 0

0 1
ρS(z)

)
.

The boundary port variables (2) are

(
f∂
e∂

)
=

1√
2


v(L)− v(0)
σS(L)− σS(0)
σS(L) + σS(0)
v(L) + v(0)

 .

The boundary input and output are selected as

u(t) =

(
v(t, 0)
σS(t, L)

)
, y(t) =

(
−σS(t, 0)
v(t, L)

)
, (43)

which can be derived from (3) and (4) thanks to the following
choice for W and W̃ :

W =
1√
2

(
−1 0 0 1
0 1 1 0

)
, W̃ =

1√
2

(
0 1 −1 0
1 0 0 1

)
.

The energy balance associated to this choice of input and
output is then given by:

dH

dt
(t) = −

∫ L

0

Dv2(t, z) dz + yT(t)u(t) ≤ yT(t)u(t).

B. Lossless case

At first, we assume that D = 0, and we consider the fully
actuated case, i.e. the controller acts on both sides of the beam,
and a state feedback of the form u(t) = β(ε, p) +u′. The aim
of the state feedback is to shape, at least partially, the closed-
loop energy function. The stability is insured by an additional
dissipation term on the new input/output. From Lemma 4.2,
the class of function Ha that can be employed in the energy-
shaping design procedure are in the form

Ha(ε, p) = Ĥa

(
ξ1(ε, p), ξ2(ε, p)

)
(44)

with

ξ1(ε(t, ·)) =

∫ L

0

ε(t, z) dz

ξ2(p(t, ·)) =

∫ L

0

p(t, z) dz

(45)

and Ĥa can be freely chosen. A closed-loop system with
Hamiltonian Hd(ε, p) = H(ε, p) +Ha(ε, p) with a minimum
in (0, 0) is obtained by selecting Ĥa as

Ĥa(ξ1, ξ2) =
1

2
Ξ1ξ

2
1 +

1

2
Ξ2ξ

2
2 (46)

where Ξ1, Ξ2 are two positive gains. From (27), this leads to
the state feedback:

β(ε, p) = −
(

Ξ2ξ2(p)
Ξ1ξ1(ε)

)
= −

(
Ξ2 0
0 Ξ1

)(∫ L
0
p dz∫ L

0
εdz

)
and the desired closed-loop energy function:

Hd(ε, p) =
1

2

∫ L

0

[
p2

ρS(z)
+ ES(z)ε2

]
dz+

+
1

2
Ξ1

(∫ L

0

εdz

)2

+
1

2
Ξ2

(∫ L

0

p dz

)2

. (47)

The resulting closed-loop system is impedance passive with
respect to the new input / output port (u′, y′) defined by (25)
and (28). Moreover, from (46) and (47), we see the energy
function can be (partially) shaped in the ε and p coordinates
by adequately choosing the gains Ξ1 and Ξ2. The asymtotic
stability is obtained by interconnecting a dissipative element
at the input / output port (u′, y′), as in (29). The achievable
performances of energy shaping plus damping injection control
strategy are illustrated in Section VI-D.

Remark 6.1: A similar result could have been obtained
by using the energy-Casimir method. For that purpose let
us consider the system (8) with nC = 2, RC = PC =
MC = SC = 0, GC = I and JC to be assigned later on. By
following the energy-Casimir method discussed in Section III,
it is quite easy to check that Casimir functions are not present
in closed-loop if JC = 0. With this choice, the boundary
controller (8) consists of two separate systems, each required
to provide a constant power flow in steady state: they are
not energy-balancing controllers. So, it is necessary to couple
these regulators and allow for an internal power flow at the
controller side. This can be achieved by choosing

JC =

(
0 I
−I 0

)
,
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which implies that the closed-loop system is characterized by
the following Casimir functions:

C1(ξ1(t), ε(t, ·)) = ξ1(t)−
∫ L

0

ε(t, z) dz

C2(ξ2(t), p(t, ·)) = ξ2(t)−
∫ L

0

p(t, z) dz.

Note the similarities with (45), as expected. The controller
Hamiltonian can then be chosen as in (46).

One can check that the closed-loop system is lossless, so
only simple stability has been achieved. However, asymptotic
stability can be obtained by damping injection at the boundary,
as discussed in Section IV. More precisely, asymptotic stability
follows immediately from Theorem 5.3

C. System with internal friction

Due to internal dissipation, i.e. when D 6= 0, the energy-
Casimir method briefly discussed at the end of the previous
subsection (using a dynamic controller, and reduction) cannot
be applied as the dissipation obstacle does not allow to
compute invariant Casimir function in the p coordinate. It
is then necessary to rely on the energy-shaping methodology
presented in Section IV. The PDE (26) provides the admissible
functions Ha, and (27) the associated boundary control action.

With Lemma 4.2 in mind, the admissible Ha takes again
the form (44), with now

ξ1(ε(t, ·)) =

∫ L

0

ε(t, z) dz,

ξ1(ε(t, ·), p(t, ·)) =

∫ L

0

[D(L− z)ε(t, z) + p(t, z)] dz.

(48)
Note that the solution proposed in [35] is just a particular case
of the one presented here. Finally, Ha can be selected e.g. as
in (46) and, thanks to Theorem 5.3, asymptotic stability is
obtained via damping injection (29) on the new control port
(u′, y′) defined in (25) and (28) in the general case.

D. Achievable closed-loop performances

In order to illustrate the achievable performances with the
energy shaping methods proposed in this paper, we consider
the aforementioned beam (with D = 0) clamped at one side
and controlled at the other side, i.e.:

u(t) =

(
v(t, 0)
σS(t, L)

)
=

(
0
ū(t)

)
y(t) =

(
−σS(t, 0)
v(t, L)

)
=

(
ỹ(t)
ȳ(t)

)
where u and y are defined as in (43), ū is the actual control
input, namely the applied force in z = L, and ȳ the associated
dual output, the velocity in z = L.

1) Open-loop response: For simulation purpose, we con-
sider a finite dimensional approximation of the system
with normalized parameters (all set equal to one). In par-
ticular, the spatial discretisation technique for distributed
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Fig. 1. Open-loop step response.
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Fig. 2. Different step responses for increasing values of α > 0 (with dot
α = 0.2, dashed α = 0.5, and solid line α = 1 symbols, accordingly).

port-Hamiltonian systems presented in [36] has been em-
ployed. The result is a finite volume approximation in port-
Hamiltonian form. Figure 1 shows the evolution of the position
of the end of the beam when a (normalised) force step
is applied at the same point. One can note the undamped
oscillations occurring at the different frequencies.

2) Dissipative boundary feedback: At first, a dissipative
boundary feedback in the form:

ū(t) = −αȳ(t), α > 0

is implemented. Figure 2 clearly shows that the oscillations can
be damped by increasing the values of α. As long as the system
is damped, the raising time increases, but at the same time,
the settling time decreases to 2.5 sec until α is tuned in such
a way that the system does not present any oscillations. This
happens when α = 1, i.e. when the dissipative gain matches
the mechanical impedance of the beam. For larger values of
α, the system is over-damped, and the settling time increases
again.

3) Energy shaping: We consider now the energy shaping
method presented in Section IV. Since one of the extremities
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Fig. 3. Closed-loop response in case of energy-shaping plus damping injection
control law with fixed Ξ = 200, and increasing values of α ≥ 0 (with dot
α = 10, dashed α = 20, and solid line α = 30 symbols, accordingly).

of the beam is clamped, Ha is looked for under the form
Ha(ε) = Ĥa(ξ1(ε)). By applying Lemma 4.2, the admissible
Ha are of the form

Ha(ε(t, ·)) =
Ξ

2

(∫ L

0

ε(t, z) dz

)2

=
Ξ

2

[
ϕ(t, L)− ϕ(t, 0)

]2
with Ξ > 0, in which the geometric constraint (42) has been
taken into account. The corresponding state feedback is

β(ϕ) = −Ξ1

[
ϕ(t, L)− ϕ(t, 0)

]
which is equivalent to an additional boundary stiffness, i.e. to
a proportional control action. Asymptotic stability is achieved
thanks to a dissipative feedback gain α, and the final control
law is of the form:

u = β(ϕ)− αȳ = −Ξ
[
ϕ(t, L)− ϕ(t, 0)

]
− αv(t, L)

= −Ξϕ(t, L)− αv(t, L)

in which it is assumed that ϕ(t, 0) = 0 because the beam is
clamped in z = 0. Note that this is a classical PD control law,
in which the proportional gain is related to energy-shaping,
while the derivative one to damping injection. Figure 3 shows
how Ξ allows to improve the settling time, and this effect
combined with the damping injection gain α allows to improve
drastically the transient response.

VII. CONCLUSIONS AND FUTURE WORK

The motivating idea of the paper has been the development
of a general synthesis methodology of boundary control laws
for linear, distributed port-Hamiltonian systems on a one-
dimensional spatial domain. As in the lumped parameter case,
the feedback law is determined in such a way that its effect
on the system is to shape the energy function, and to modify
the dissipative structure. Thanks to energy-shaping, simple
stability of the desired equilibrium is achieved, while damping
injection assures asymptotic convergence of the trajectories.
For any infinite-dimensional system existence and uniqueness
of solutions is not guaranteed beforehand. Therefore, we

started with the energy-Casimir method to design our control
action that leads to a (formally) passive dynamical system.
Using this structure it is much easier to prove that the set
of PDEs and ODEs associated with the dynamics of the
closed-loop system has a unique solution. This property holds
also when the control action is not provided by a dynamic
controller, but by an equivalent state feedback law.

Since the class of stabilising controllers that the energy-
Casimir method can provide is quite limited because of the
dissipation obstacle, the problem of determining a feedback
law able to shape the Hamiltonian in a proper manner has
been tackled by determining the control action that maps the
open-loop system into a new one, with the same geometric
structure, but with a different Hamiltonian. Since the control
action shares the main properties of the feedback law obtained
via the energy-Casimir method, it is possible to verify that also
in this case the closed-loop system is well-posed, and defines
a new boundary control system. The resulting control law is
proved to asymptotically stabilize the system.

The proposed methodology has been developed for linear
systems with one-dimensional domain. The extensions to
distributed port-Hamiltonian systems on a 2D or 3D spatial
domain and to non linear distributed port-Hamiltonian systems
are our main future research topics. Concerning the later
one, all the geometric considerations that have been used in
this paper remain valid as the port-Hamiltonian framework is
intrinsically devoted to non linear systems, but the analysis
of the existence of solution and of the stability proof remain
difficult and open problems.
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APPENDIX
PROOFS OF THE RESULTS OF SECTION III

A. Proof of Proposition 3.1

By using the compact notation introduced in (10), and with
Definition 3.1 in mind, dC

dt = 0 along all classical solutions
if and only if for all (Lx, xC) ∈ H1(a, b; Rn) × RnC there
holds

B′
(
x
xC

)
= 0

and

0 = ΓT
[
ACxC +BcuC

]
+

+

∫ b

a

ΨT

[
P1
∂(Lx)

∂z
+ (P0 −G0)(Lx)

]
dz (49)

Since (49) holds for all Lx ∈ H1(a, b;Rn), it implies that
Ψ ∈ H1(a, b;Rn). By integrating by parts, we find

0 = ΓT
[
ACxC +BCuC

]
+

+

∫ b

a

[
−
(

dΨ

dz

)T

P1 + ΨT(P0 −G0)

]
(Lx) dz+

+

(
Ψ(b)
Ψ(a)

)T(
P1 0
0 −P1

)(
(Lx)(b)
(Lx)(a)

)
. (50)

By the definition of a Casimir, the above has to hold indepen-
dently of L and QC . The integral term vanishes if and only
if Ψ satisfies (17), where we used the properties of P1, P0

and G0. Next we concentrate on the equation (50) without the
integral term. Using (3), (4), and (11) with u′ = 0 we have
that

W

(
f∂
e∂

)
= u = −yC = −CCxC −DCuC

W̃

(
f∂
e∂

)
= y = uC .
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Thanks to (6) and the definition of Σ, we see that the inverse
of
(
W
W̃

)
equals Σ

(
WT W̃T

)
Σ. Thus(

f∂
e∂

)
= Σ

(
WT W̃T

)( uC
−CCxC −DCuC

)
.

By using the above relation, the equality(
P1 0
0 −P1

)
= RTΣR (51)

and (2), we see that (50) becomes

0 = ΓT
[
ACxC +BCuC

]
+

+

(
Ψ(b)
Ψ(a)

)T

RT
(
WT W̃T

)( uC
−CCxC −DCuC

)
,

or equivalently by using (10) and uC = y

0 =
[
ΓT (JC −RC)−

−
(

Ψ(b)
Ψ(a)

)T

RTW̃T (GC + PC)
T

]
QCxC+

+
[
ΓT (GC − PC) +

+

(
Ψ(b)
Ψ(a)

)T

RT
(
WT − W̃T (MC + SC)

)]
y.

From the definition of y in (4) and the skew symmetry of JC
and MC , this expression becomes independent of QC and L(·)
if and only if (18) and (19) hold. Since the classical solution
are dense, the assertion follows.

B. Proof of Proposition 3.2

Let us consider the matrices W and W̃ introduced in
Theorem 2.1, and satisfying (6). Then, the skew-symmetric
and symmetric parts of W̃TW are given by

J̃ =
1

2

[
W̃TW −WTW̃

]
and

1

2

[
W̃TW +WTW̃

]
=

1

2
Σ,

respectively, where (6) was used in the last relation. We can
then write that

W̃TW = J̃ +
1

2
Σ. (52)

Now, since(
Ψ̂(b)

Ψ̂(a)

)T(
P1 0
0 −P1

)(
Ψ̂(b)

Ψ̂(a)

)
=

=

∫ b

a

dΨ̂T

dz
(z)P1Ψ̂(z) + Ψ̂T(z)P1

dΨ̂

dz
(z) dz,

we find by using (17), the symmetry of P1, G0, and the skew-
symmetry of P0 that(

Ψ̂(b)

Ψ̂(a)

)T(
P1 0
0 −P1

)(
Ψ̂(b)

Ψ̂(a)

)
=

= −2

∫ b

a

Ψ̂T(z)G0Ψ̂(z) dz. (53)

By eliminating GC in (18) and (19), we have that

0 = Γ̂T(JC +RC)Γ̂ + 2Γ̂TPCW̃R

(
Ψ̂(b)

Ψ̂(a)

)
+

+

(
Ψ̂(b)

Ψ̂(a)

)T

RTW̃T(MC + SC)W̃R

(
Ψ̂(b)

Ψ̂(a)

)
−

−
(

Ψ̂(b)

Ψ̂(a)

)T

RTWTW̃R

(
Ψ̂(b)

Ψ̂(a)

)
which can be compactly written as

0 =

 Γ̂

R

(
Ψ̂(b)

Ψ̂(a)

)T [(
RC PCW̃

W̃TPT
C W̃TSCW̃

)
+

+

(
JC PCW̃

−W̃TPT
C W̃TMCW̃ + J̃

)] Γ̂

R

(
Ψ̂(b)

Ψ̂(a)

)−
− 1

2

(
Ψ̂(b)

Ψ̂(a)

)T(
P1 0
0 −P1

)(
Ψ̂(b)

Ψ̂(a)

)
(54)

once (2), (52) and (53) have been taken into account. Since for
a skew-symmetric matrix Q there holds that vTQv = 0, we
see that the middle term in above equality disappears. From
equations (9) and (53), we see that the remaining two terms
are non-negative. Hence (54) implies that both terms are zero,
thus (21) holds, and by (53) we conclude that (20) holds as
well.
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