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Chapter 1

General Introduction

Light has been a topic of studies for a long time, reaching back to the philosophers in

ancient Greece discussing the properties of sight. The expansion of light as a science

accelerated in the Islamic world around 1000 AD, and continued in Europe with the

renewal of science, philosophy and art through the renaissance. In the 17th century,

methodological studies of optical phenomena lead to the development of the particle and

wave theories of Huygens and Newton. By the end of the 19th century, optics had been

found to be electromagnetic radiation, and with Maxwells equations, the noticeable optical

phenomena of the time could be explicated. However, the development of optical sciences

continued when the visions from quantum physics were introduced in the 20th century,

and studies of light-matter interactions share in understanding of optical processes up to

this day.

The advances in nanoscience and technology are in large part due to our newly acquired

ability to measure, fabricate and manipulate individual structures on the nanometer scale

using scanning probe techniques, optical tweezers, high-resolution electron microscopes

and lithography tools, focused ion beam milling systems and others. One of the domains
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of nanoscience is the nano-optics, which attracts more and more interest nowadays. The

nano-optics focuses on understanding light-matter interactions on a length scale either

comparable to, or smaller than, the classical diffraction limit of light [10]. The nano

optics is applied in a lot of fields. For example in metamaterials science, plasmonic,

communication, astronomy, medicine, photography and different engineering fields. It

is also applied in photonic optics, which is in the heart of innovation, combined with

other disciplines such as mechanical, electronic and digital techniques. The nano optics

has opened up the possibility to create different devices such as: Electro-optical sensors,

switches, modulators, nano optical tweezers, waveguides.

Our thesis works are theoretical and based on development the numerical tools for

the modeling of experiments that are carried out within our team. We have already large

variety of codes based on Finite Difference Time Domain (FDTD) algorithm. However,

these codes allow computation of electromagnetic field inside a calculation window in-

cluding the structure under study and enable determination of eigenmodes of any shape

waveguide structure (periodic or not). In addition, and at the beginning of my thesis,

our team has experimental project which is supported by the Agence Nationale de la

Recherche under Contract ANR10-NANO-002, we proposed to do that work theoretically

to provide more interpretation of the results obtained through this project. So, the FDTD

code will be modified to calculate the optical force through Maxwell stress tensor (MST)

and to study the optical manipulation and trapping of a nanoparticle by using two type of

nanoantenna as optical tweezers. In parallel and to address some drawbacks of the FDTD

algorithm, 2D FDFD (Finite Difference Frequency Domain) algorithm was developed to

solve Maxwells equations as eigenproblem to determine guided mode properties of exotic

waveguide designs.

In chapter 2, we will introduce the finite-difference frequency-domain (FDFD) method.
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This chapter starts with a presentation of basic Maxwell equations and their derivation

in frequency domain. Only eigenproblem, that corresponds to the determination of eigen-

modes of a 2D structure, is addressed. Validation of the code is then done through some

tests based on comparison with already published results or with results obtained through

other methods that are available in our team. Finally, some applications, dealing with the

determination of guiding properties for several original geometries of waveguides (ridge

and slot waveguides), are performed [11].

In chapter 3, we will introduce the origin of the electromagnetic forces and the principle

of optical trapping. Some algebra is then done to derive the analytical expression of the

Maxwell Stress Tensor (MST) that allows determination of optical forces. Indeed, this

tensor must be calculated over an enclosed surface that contains the particle on which

the electromagnetic (EM) force is exerted. The elements of MST are deduced from the

known of the electromagnetic field (both electric and magnetic fields) on the considered

surface. These values of field can be easily determined by a FDTD simulation. Principle

of this powerfull method is then presented together with its adjustment to integrate the

calculation of the needed MST. The chapter ends with the validation of the developed

code and a discussion of its convergence.

In chapter 4, we will present a direct application of our code by studying the 3D optical

trapping of small dielectric nanoparticles (NPs) with a fibered nano-antenna. Experimen-

tal proof of this trapping was done by our team. The comparison between theoretical and

experimental results shows a very good agreement. We theoretically extend the study

demonstrating the ability of such nano-tweezers (Fibered Bowtie nano-antenna aperture)

to trap smaller NPs.

The last chapter 5 is devoted to a pure theoretical study of optical forces induced by

the light-nanoantenna interaction. A Diabolo nano-antenna, that was designed to exhibit
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both electric and magnetic field enhancement, is considered. Enhancement of the radiation

pressure at its resonance is demonstrated. Different mechanical regimes: trapping at

contact, trapping at distance and non trapping of NPs, are pointed out depending on

both the NPs radii and the operation wavelength.
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Chapter 2

Finite Difference Frequency Domain

2.1 Introduction

The finite-difference frequency-domain (FDFD) method is a numerical method which

is commonly used to solve electromagnetic problems, based on finite-difference approx-

imations of the derivative operators in the differential equation to be solved. Whereas

"FDFD" is a general term describing all frequency-domain finite-difference methods, the

title seems to mostly explain the method as applied to scattering problems [12, 13, 14].

The method exhibits many similarities with the finite-difference time-domain (FDTD)

method so that the literature on FDTD can be directly of interest to understand the

basic principle. In general, the method works by transforming Maxwell’s equations (or

other partial differential equation) for sources and fields at a constant frequency into a

linear matrix equation Dx = b. D is then a matrix that is derived from the wave equation

operator, the column vector x contains the field components to be calculated, and the

column vector b describes the source. The method can be applied for anisotropic mate-

rials, but in this case the off-diagonal components of the tensor appear and they require
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special mathematical treatment.

There are at least two kinds of "frequency-domain" problems in electromagnetism [15,

16, 17]. One is dedicated to the steady-state response of a structure in the presence

of a time-harmonic source such as a current density J vector in the form J(x) e−iωt,

or a similar time-harmonic source. In this case, the frequency-domain problem leads

to a Dx = b system of linear equations as described above. The description of a 3D

frequency-domain FDTD method to solve scattering problems in the microwave range was

published [18] since 1987. The other version of FDFD is devoted to find the eigenmodes

of a structure (e.g. a waveguide for instance) in the absence of sources: in this case

the frequency ω becomes itself a variable, and one obtains an eigenproblem equation

Γ×x = Λ×x (where Γ is the eigenvector,x electromagnetic field components and usually,

the eigenvalue Λ is proportional to ω2). In its original form, the method was used to

solve the Helmholz wave equation[19, 20]. Recently, a full-wave, 2D finite difference

frequency domain 2D FDFD algorithm was proposed that solved Maxwells equations

directly[21, 22, 23, 24, 25]. A lot of researches used FDFD method to guiding the light

due it has more advantage [26, 27, 28, 29, 30, 31, 32], where it has been useful.

2.2 Motivations for using FDFD method

The numerical methods that are generally applied to the resolution of the electromagnetic

wave problems can be classified into two general categories: time domain methods and fre-

quency domain methods. In the frequency-domain formulation, the solution is described

as a set of time-harmonic modes. The advantages of solving the electromagnetic wave

problems in frequency domain can be attributed to two properties: first, it can handle

any frequency dependent properties of materials such as dispersion. Second, simulations
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in frequency domain are faster when only responses for a few frequencies are required.

The main motivation of using FDFD method in our case lies many reasons. In fact,

our team had developed many FDTD code that can simulate both infinite or finite struc-

tures in 2D and in 3D. Especially, we have implemented the N-order FDTD algorithm

allowing determining of the eigenmodes. But this code has some drawbacks as it cannot

allow fixing the mode frequency. In this case, the propagation constant k⃗ is set and the

algorithm allows the calculation of the eigenmode frequencies in a given frequency range.

For example, if we want to calculate the eigenmodes of a step-index dielectric cylindrical

optical fiber (see figure 2.1 a) we can use both the N-order FDTD-code or the FDFD-code.

Nevertheless, the first one gives a map of the EM spectral density (SD) over some range of

wavelengths where maxima of this SD correspond to the excitation of an eigenmode (see

figure 2.1 b). Now, if we want to determine the eigenmode properties at a desired value

of λ = 1.5µm, we have to make N-Order FDTD calculations over a wide range of k and

make a cross-section (the white dashed line) to determine the excited eigenmodes at this

value of λ. In fact, we don’t know in advance which k will give us the good eigenmode.

Consequently, this is obtained at the coast of many FDTD calculations by changing the

value of k and, simultaneously checking if the results correspond to the fixed operation

wavelength. This can be very time-consuming (16 hours in the case of figure 2.1 b for

instance). On the contrary, in FDFD code, we can directly fix the frequency (wavelength)

and make one simulation that gives us the propagation constants (i.e. the effective index

of the modes) corresponding to the excitation of the first N guided modes (N = 4 in 2.2)

at this wavelength. So, we chose FDFD method in our study because it is more suitable

and simple for our simulation .

Another drawback of the FDTD is related to the modeling of a nonlinear material due

to the apparition of a time convolution integral that needs to be calculated by storing
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Figure 2.1: (a): schema of the step-index dielectric cylindrical optical fiber. The radius
is set to R = 3µm, the cladding index is n1 = 1 and the core index is n2 = 1.45.
(b) N-order FDTD results showing a map of the spectral density as a function of the
propagation constant. The white dashed horizontal line correspond to the operation
wavelength (λ = 1.5µm). Intersections with high spectral density give the excited mode
propagation constants.

the values of the electric field components at all the grid nodes and for all the time steps

[33]. In the frequency-domain equation, this convolution turns into a simple product.

Consequently, FDFD seems to be more appropriate in this case.

According to the discrepancies between FDTD and FDFD, these two methods appear

to be complementary: FDTD being suitable for the determination of dispersion diagram

while FDFD can be faster in the case of monochromatic calculations.

In this chapter, we will introduce the finite-difference frequency domain method in

the context of the electromagnetic eigenproblem. We used the formulation of the FDFD

method in the framework of matrix operators over a Yee grid [34]. We will focus on the

Maxwell’s equations formulation and give overview as shown in the section (2.3). Because

the method uses frequency domain equations, the results yield only single frequency ω(λ),

a steady-state solution. Responses over large spectral domain are then determined by
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Figure 2.2: FDFD results giving the effective index of the first N = 4 guided modes inside
the fiber at λ = 1.5µm.

repeating the simulation for all desired values of the frequency. This is often the most

desirable solution to many problems, as many engineering problems involve quasi-steady

state field; this is much faster than transient broadband analysis as by FDTD [35]. For

all of these reasons, we developed the FDFD method and implemented a Matlab code.

2.3 Maxwell Equations

Around 1865, Maxwell has achieved a harmonious synthesis of various experimental laws

discovered by his predecessors (the laws of electrostatic, magnetostatic, Faraday’s law of
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induction ...), by expressing them in the form of a system of four equations coupled with

spatio-temporal partial derivatives. They were published in final form in 1873 in the book

"Electricity and magnetism". Maxwell’s equations, known as Maxwell-Lorentz equations

are fundamental laws of physics. They are the basic postulates of electromagnetism with

the expression of the electromagnetic Lorentz force. These equations translate, in local

form, different relationships (between the electric field E⃗, the magnetic field H⃗ and the

electric and magnetic excitations D⃗ and B⃗ respectively) that govern electromagnetism

and can be divided into two sets.

2.3.1 Topological equations (without source)

• Faraday Equation

∇⃗ × E⃗ = −∂B⃗

∂t
(2.1)

This gives the spatial variation of the electric field as a function of the temporal variation

of the magnetic field. This equation describes all induction phenomena and shows that a

time varying of the magnetic field can create a non-zero electric field circulation i.e. an

electromotive force.

• Conservation of the magnetic field

∇⃗ · B⃗ = 0 (2.2)

This reflects the fact that the flux of the magnetic field through any closed surface is

zero. This is an intrinsic property of B⃗ which shows that the magnetic field may differ

from points in space, or that there are no magnetic charges (no magnetic monopole).
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2.3.2 Metric equations (equations with source):

• Maxwell-Gauss equation

∇⃗ · E⃗ =
ρ

ε0
(2.3)

Where ρ is the volume charge density (source of the electric field). This equation

expresses the fact that the electric flux through any closed surface is equal to the sum of

interior charges; the Gauss theorem that is well-known in electrostatic.

• Maxwell-Ampere equation

∇⃗ × H⃗ = j⃗ +
∂D⃗

∂t
(2.4)

Where j⃗ and H⃗ represent respectively, the vector of surface current density and the

magnetic field. This equation relates the magnetic field sources and the electric field. In

steady system, we find Ampere’s theorem showing that the magnetic field rotates around

the currents. The additional term ε0
∂E⃗
∂t

called displacement current indicates that a

variable electric field behaves as a magnetic field source.

These four equations are governing the static and dynamic electromagnetic phenom-

ena. They couple the electric and magnetic fields through spatial and temporal local

differential equations. To these four Maxwell equations, two essential additional consti-

tutive equations which describe the response of the medium. In the case of LHI (linear,

homogeneous, isotropic) media they can be given by:

D⃗ = εE⃗ (2.5)

B⃗ = µH⃗ (2.6)
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Where ε =ε0εr is absolute permittivity. ε0, εr are vacuum permittivity and the

relative permittivity of the medium respectively. µ = µ0µr is the magnetic permeability of

a specific medium. µ0 µr are vacuum permeability and relative permeability respectively.

In the visible range, all the homogeneous materials are non-magnetic which leads to

µr = 1.

2.4 Matrix Form of Maxwell Curl Equations :case of

eigenmode calculations

As we work in harmonic regime let us call Ψ⃗ any electromagnetic field components E⃗, H⃗, B⃗

orD⃗ . It can be expressed as:

Ψ⃗(r⃗, t) = Ψ⃗0(r⃗)e
−iωt (2.7)

From Eq.2.7 we can get Maxwell curl equations for source-free media in the frequency-

domain:

∇× E⃗ = i ω µ0 H⃗ (2.8)

∇× H⃗ = −i ω ε0 εr E⃗ (2.9)
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More explicitly, in x,y,z Cartesian coordinate we rewrite these equations as shown:

∣∣∣∣∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

×

∣∣∣∣∣∣∣∣∣∣
Ex

Ey

Ez

= i ω µ0 ·

∣∣∣∣∣∣∣∣∣∣
Hx

Hy

Hz

(2.10)

∣∣∣∣∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

×

∣∣∣∣∣∣∣∣∣∣
Hx

Hy

Hz

= −i ω ε0 εr ·

∣∣∣∣∣∣∣∣∣∣
Ex

Ey

Ez

(2.11)

Where Hx, Hy, Hz, are three components of magnetic field. Likewise, Ex, Ey, Ez are

three components of electric field. Let us develop the cross products:

∂Ez

∂y
− ∂Ey

∂z
= i ω µ0 Hx (2.12)

∂Ex

∂z
− ∂Ez

∂x
= i ω µ0 Hy (2.13)

∂Ey

∂x
− ∂Ex

∂y
= i ω µ0 Hz (2.14)

∂Hz

∂y
− ∂Hy

∂z
= −i ω ε0 εx Ex (2.15)

∂Hx

∂z
− ∂Hz

∂x
= −i ω ε0 εy Ey (2.16)

∂Hy

∂x
− ∂Hx

∂y
= −i ω ε0 εz Ez (2.17)

Let us consider a 2D eigenproblem of an invariant structure along the z-direction. Our

problem is then to determine the structure modes that propagate along the z-direction

with a propagation constant β. Each component of the electromagnetic field can then be

expressed as:
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Ψm(r⃗, t) = Ψ0m(r⃗)e
i(βz−ωt) m ∈ [x, y, z] (2.18)

Thus, the equations (2.12) to (2.17) become as:

∂Ez

∂y
− iβEy = i ω µ0 Hx (2.19)

iβEx −
∂Ex

∂z
= i ω µ0 Hy (2.20)

∂Ey

∂x
− ∂cEx

∂y
= i ω µ0 Hz (2.21)

∂Hz

∂y
− iβHy = −i ω ε0 εr Ex (2.22)

iβHx −
∂ Hz

∂x
= −i ω ε0 εr Ey (2.23)

∂Hy

∂x
− ∂Hx

∂y
= −i ω ε0 εr Ez (2.24)

In order to solve this system of equations through finite-difference approximation, we

need to discretize the space with small cells (cubes in 3D or squares in 2D). After this

step, we approximate the partial derivatives (in time and in space) by their central finite-

difference expressions for each cell of the Yee’s mesh. For example, for 2D problem as in

figure 2.3, Eq 2.19 becomes:

E
(l,j+1)
z − E

(l,j)
z

∆y
− i βE(l,j)

y = i ω µ0 H(l,j)
x (2.25)

After discretizing all the six equations above, one obtains the two matrix-form equa-

tions:
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Figure 2.3: Yee - mesh 3× 3 in two dimensions. a)TE mode. b)TM mode
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I is identity matrix and β is the propagation constant. DE
x , D

E
y are matrices that

perform spatial derivative operations on electric fields. Likewise, DH
x , D

H
y are matrices
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that perform spatial derivative operations on magnetic fields. They are given by:

(DE
x E)l,j =

El+1,j − El,j

∆x
(2.28)

(DE
y E)l,j =

El,j+1 − El,j

∆y
(2.29)

(DH
x H)l,j =

H l−1,j −H l,j

∆x
(2.30)

(DH
y H)l,j =

H l,j−1 −H l,j

∆y
(2.31)

For a pure propagation along the z-direction, two polarization states can be studied

independently. Namely, the TM state that corresponds to a magnetic field that is per-

pendicular to the propagation direction (H⃗ is then in the xOy plane) and the TE state for

which the electric field is perpendicular to Oz axis. Figure 2.3 shows a small (3× 3) 2D

Yee mesh in these two cases of polarization (TM in figure 2.3 a) and (TE in figure 2.3 b).

Equations 2.26 and 2.27 become:

i ω µ0Hz = −DE
y Ex +DE

x Ey (2.32)

−i ω ε0 Ez = −DH
y Hx +DH

x Hy (2.33)
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DE
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0 0 0 0 −1 0 0 1 0

0 0 0 0 0 −1 0 0 1

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1



(2.35)
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DH
x =

1

∆x
·



1 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 −1 1 0 0 0 0

0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 −1 1



(2.36)

DH
y =

1

∆y
·



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

−1 0 0 1 0 0 0 0 0

0 −1 0 0 1 0 0 0 0

0 0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 1 0 0

0 0 0 0 −1 0 0 1 0

0 0 0 0 0 −1 0 0 1



(2.37)

Each of these matrices contains nonzero elements only along two diagonals leading to

very sparse matrices that can be constructed very quickly. The sparse matrices can be

stored efficiently in computers to reduce the amount of memory required for data storage.

In the case of a uniform meshing all diagonals are uniform except where quantities are
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written in red. These exceptions arise from the Dirichlet boundary conditions.

After developing eqs. 2.26,2.27 and after some algebra we arrived to a same formula

as for eigenproblem equation which is defined in general case by:

Γ× x = Λ× x (2.38)

Where x is the eigenvector, Λ is the eigenvalue equal to β2 in our case. So, for the

transverse electric case, the eq.2.38 becomes:

Pxx Pxy

Pyx Pyy


Ex

Ey

 = β2

Ex

Ey

 (2.39)

Where

Pxx = −ω−2 DE
x ε−1

r DH
y DH

x DE
y + (ω2 I +DE

x ε−1
r DH

x )(εr + ω−2 DH
y DE

y )

Pyy = −ω−2 DE
y ε−1

r DH
x DH

y DE
x + (ω2 I +DE

y ε−1
r DH

y )(εr + ω−2 DH
x DE

x )

Pxy = DE
x ε−1

r DH
y (εr + ω−2 DH

x DE
x )− ω−2(ω2 I +DE

x ε−1
r DH

x ) DH
y DE

x

Pyx = DE
y ε−1

r DH
x (εr + ω−2 DH

y DE
y )− ω−2(ω2 I +DE

y ε−1
r DH

y ) DH
x DE

y

(2.40)

Similarly, we can get an eigenvalue equation in terms of transverse magnetic fields:
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Qxx Qxy

Qyx Qyy


Hx

Hy

 = β2

Hx

Hy

 (2.41)

Qxx = −ω−2 DH
x DE

y DE
x ε−1

r DH
y + (εr + ω−2 DH

x DE
x )(ω

2 I +DE
y ε−1

r DH
y )

Qyy = −ω−2 DH
y DE

x DE
y ε−1

r DH
x + (εr + ω−2 DH

x DE
y )(ω

2 I +DE
x ε−1

r DH
x )

Qxy = −(εr + ω−2 DH
x DE

x ) D
E
y ε−1

r DH
x + ω−2 DH

x DE
y (ω2 I +DE

x ε−1
r DH

x )

Qyx = −(εr + ω−2 DH
y DE

y ) D
E
x ε−1

r DH
y + ω−2 DH

y DE
x (ω2 I +DE

y ε−1
r DH

y )

(2.42)

Under Dirichlet boundary conditions, we can verify that DH
x = −DE

x
T and DH

y = −DE
y
T

where the symbol T is indicate to the transpose operation. Then, it is clear from eqs.2.40

and 2.42, that:

Qxx = P T
yy , Qyy = P T

xx , Qxy = −P T
xy , Qyx = −P T

yx (2.43)

After constructing the matrices P and Q, we solved eqs.2.40 or 2.42 through the

function "eigs" of matlab. It provides us the effective mode index neff = β
k0

(where

k0 =
2π
λ

is the wave number in vacuum) and fields of the each guided mode.Through :

[Γ, v] = eigs(P or Q, nm,LR)

Γ contains all the eigenvectors of the (nm) modes that we are considering and sorting
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as largest real (LR). v is a vector that contains all the eigenvalue(β2). The effective index

can then be written as:

neff =

√
v

k0

Figure 2.4 shows the diagram of FDFD implementation used in our matlab code.

Also, we programmed our code by using Fortran language with LAPACK function which

Start Define
Nx,Ny, x, yΔ Δ

Compute Derivative Operators
Dx

E

, y x , yD D D
E H H

Solve Eigenproblem Equations
P ,P ,P ,P ,  Q ,Q ,Q ,Qxx xy yx yy xx xy yx yy

Create the 2D structure and
Compute

,ε rε

Compute eigenvalue
and eigenvectors E ,

β
2

x E ,H ,Hy x y
Stop

Figure 2.4: Block diagram of FDFD implementation

provides routines for solving eigenvalue problems. But we found that it takes more long

time and large memory in comparison to matlab code. So, matlab-code was used in our

simulations.
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2.5 Validation of FDFD matlab code

As mentioned before, we built FDFD matlab code by using formulations of Maxwell

equations in frequency domain and from the eigenvalue equation eqs.2.39,2.41 that allows

determination of the propagation constant, and then the effective index. To validate this

code, we did some tests and compared our results with already published ones made, for

the same method and second by other theories. Let us show here only 2 tests of(2D-WG).

2.5.1 Test 1: Step-Index Circular Optical Fiber (SIOF)

The first test was devoted to the determination of the effective index of a step-index

circular fiber which was studied in [1]. We used our FDFD matlab-code to calculate

the effective index of the first guided modes (5 modes here) of the fiber and compare

our results to the ones published in that reference [1]. The fiber core radius is fixed to

R = 3µm (see figure 2.5) with a refractive index of n1 = 1.45 and it is supposed to be

surrounded by air n2 = 1. This structure is discretized a uniform meshing schema. The

eigenmodes of the structure are determined at the operation wavelength of λ = 1.5µm.

We used different grid dimensions (30×30 to 120×120) to see the convergence of our code.

First, we observed that when the grid dimensions are equal to 70× 70 the calculation is

stopped because of lack of memory. This calculation was done on a personal computer

with processor Intel(R) Core(TM) i5-2520M CPU @ 2.59 GHz and 4 Go of memory. We

tried to do the calculations with number of grid more than 70× 70 by using workstation

in our lab where the calculator properties are: 4× 12 cores AMD Opteron(tm) Processor

6174, 256 Go of memory, Linux CentOS release 5.6 (Final) operating system. We got

results for large grid dimensions, (up to 120 × 120) with good accuracy but taking very

long time(15 hours).
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R=3 mm

n1

n2

Figure 2.5: Scheme of Step-Index Circular Optical Fiber

In order to faithfully describe the structure under study, a subgriding technique was

also employed as shown in figure 2.6. Comparison of the convergence for non subgriding

and subgriding technique was performed in the case of SIOF. Figure 2.7 a, shows the

obtained results neff in comparison with analytical value. We can observe very clearly a

more quick converge when we apply subgriding technique in our code. This is confirmed

through the calculations of the relative errors in both cases figure 2.7 b.

(a) (b) (c)

Subgriding Technique

Figure 2.6: Subgriding Technique.

Then we compared our result with Zhu et al [1] and with other methods such as

differential method developed by our team (Philippe Boyer). A good agreement between
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Figure 2.7: (a) Convergence studies. (b) Relative errors ratio

all results is found as shown in table 2.1. But, we can observe little difference in the value

of the fundamental mode between our results and the one obtained by the differential

method. This difference is caused by the staircase mesh, that appears on the edges of the

(circular optical fiber). In table 2.1, we list calculated fundamental mode index for two

different meshing parameters. The electric field distribution of different modes are also

given in figure 2.8.

Table 2.1: Fundamental mode index for step-index circular optical fiber
Nx, Ny Our work Differential method Zhu et al [1] Lusse et al [36]

60 1.43861 1.43860 1.43861 1.43854
120 1.43861 1.43861 1.43859

To decrease the simulations time without decreasing its accuracy calculation, we de-

veloped a FDFD-code with nonuniform mesh. We calculate the effective index of the

same step-index circular fiber with nonuniform mesh. The spatial step varies from 300

nm outsides the fibers to 150 nm in the region of the fiber as shown in figure 2.9 a. To

keep the same area as in the uniform mesh, we obtain Lx = Ly = 1.5 µm. Thus the

relative error smaller than the results obtained with uniform mesh as shown in figure 2.9

b. Nevertheless, the time memory was divided by 2.
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Figure 2.8: Electric field distribution for different modes index of step-index circular
optical fiber
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Thus with Nx = Ny = 120, the relative error can be considered negligible. So, that all

following calculations of mode with these parameters.
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2.5.2 Test 2: Air-Hole-Assisted Optical Fiber (AHAOF)

In the second test, we calculate the fundamental effective index of air-hole-assisted op-

tical fiber(AHAOF) [1]. It consists on a high-index guiding core with cylindrical shape

surrounded by six air holes placed at the corners of a regular hexagon as shown in figure

2.10. One interesting characteristic of the AHAOF is their polarization and dispersion

properties exhibiting a transmission loss lower than conventional optical fiber.

Silica

2r
0

2r
a

CoreAir

2ʌ

Figure 2.10: Scheme of Air-Hole-Assisted Optical Fiber

The geometrical and optical parameters of the structure are (see figure 2.10): core

index n = 1.45, silica cladding index nsi = 1.42, r0 = 2µm, ra = 2µm and Λ = 5µm with

uniform mesh. As in the first test, we have fixed the operation wavelength value to

λ = 1.5µm and calculated the eigenmode for different dimensions grid. Figure 2.11 shows

the comparison of AHAOF fundamental mode between our matlab-code result and the

result obtained in [1]. A qualitatively good agreement is obtained. In table 2.2, we list

calculated fundamental mode indices and figure 2.12 shows magnetic field distribution for

different guided modes of AHAOF. Our results are in a good agreement with the results

obtained by[1, 36].
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Figure 2.11: Magnetic field distribution of fundamental mode index of Air-Hole-Assisted
Optical Fiber.a) Our calculations results. b) Zhu et al [1] results.

Table 2.2: Fundamental mode index for air-hole-assisted optical fiber
Number of grid along X-axis Our work Zhu et al [1] Lusse et al [36]

60 1.43535 1.43535 1.43528
120 1.43525 1.43536 1.43533
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Figure 2.12: Magnetic field distribution for different modes index of Air-Hole-Assisted
Optical Fiber

2.6 Application of our FDFD code

We present here a study of two different configurations of waveguide made in lithium

niobate (LiNbO3). We named the first "slot waveguide (SW)" while the second is named

"ridge waveguide". These two types of waveguide were proposed by our team to support
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nanopatterned structure (photonic crystal for instance) in order to build tunable devices

such as electrooptical modulators. The first one was proposed in reference [11], "SW"

among other configurations of small waveguide. In parallel, the second was proposed in

reference [37] to handle an ultra short Bragg grating (only 8µm length) exhibiting high

reflectivity up to 50% for both TE and TM modes. In both cases, the geometries allow

light to be strongly confined inside a nanometer scale region of low refractive index (the

waveguide core). In addition, they are easy to manufacture enabling miniaturization,

integration with electronic, photonics and very convenient with nonlinear optical appli-

cations. In the following, we will consider each of them and find the optical properties of

its fundamental guided mode.

2.6.1 Study of the "slot waveguide"

In this paragraph, we present a study of the SW with the developed FDFD code to solve

the eigen modes of this waveguide. In 2004 the slot optical waveguides was proposed by M.

Lipson’s team at Cornell Nano photonics Center [23] and then experimentally fabricated

and characterized [38]. That group stunned the photonic researchers by discovering

this extraordinary structure geometry. In fact, light is confined inside very small (sub-λ)

low index slot region as a result of an electric field discontinuity. It was named "slot

waveguide" due to its physical shape, a low index slot surrounded by two high index

slabs (see figure 2.13). Slot waveguide structure has achieved a lot of interests and big

importance due to its ability to be applied in Nano-photonics. The large light confinement

can be exploited to exacerbate the optical non-linearity of the used materials (high or low

refractive indices). Our team planned to engrave a 2D photonic crystal (PC) on the top

interface of the SW. The transmission response of the whole structure (SW+PC) can then

be tuned with external signal such as electric or acoustic perturbation.
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Figure 2.13: a)Scheme of slot waveguide.b)Electric field distribution of fundamental mode
index of slot waveguide

Figure 2.13 a shows a view of a slot waveguide structure that comprises three slabs:

two Si ones with high refractive index nSi = 3.48 and a low refractive index slot made

of LiNbO3 formed in between the slabs. The three slabs are surrounded by air from the

top and lateral sides and by LiNbO3 from down. This configuration is consistent with

technological constraints of a lithium niobate wafer available by NANO-LN company

[39]. A parametric study on this kind of SW was performed in the reference [11]. We only

show here an example of result obtained in a specific configuration that allows very high

light confinement. Consequently, the LiNbO3 slot width is fixed to Ws = 150 nm, the

silicon side walls width is Wsi = 200 nm and the height of the structure is H = 150 nm.

Numerical simulations are performed using uniform mesh ∆x = ∆y = 25 nm over an area

of 3 × 3µm2. Only TE polarization (electric field along the propagation direction) leads

to a large confined guided mode in the LiNbO3 slot. As mentioned before, this is due

to the electric field discontinuity on the LiNbO3-Si interfaces. Consequently, the electric

field of the mode must be oriented perpendicularly to those interfaces. Here E⃗ is mainly
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along the x-direction. In such a case, the normal electric field component EN suffers a

large discontinuity (only DN is continuous) due to the refractive index contrast between

LiNbO3 and Si. FDFD results yield to a fundamental mode with neff = 2.008 with the

electric field distribution shown on figure 2.13 b. Reader can refer to reference [11] for

more details about the optimization of this configuration. Table 2.3 gives the effective

indices of the first 5 guided modes in the structure.

Table 2.3: The effective indices of the first five guided modes of the slot waveguide
Effective indices of guided modes

1 2 3 4 5
2.008 1.9248 1.9113 1.8386 1.7962

2.6.2 Study of the "ridge waveguide"

The ridge waveguide, as shown in figure 2.14 a, is a common waveguide structure. This

work was theoretically and experimentally studied by our team in the references [40,

37]. The ridge waveguide was fabricated from 500µm thick lithium niobate wafer. A Ti

indiffusion process is first performed in order to gradually modify the refractive index of

LiNbO3 along the wafer thickness (planar waveguide is obtained). Then, a 48µm height

ridge is obtained by optical-grade dicing to get lateral confinement 2.14 b. The obtained

ridge waveguide is then located at the top of the ridge where the refractive index gradient

exists. The fundamental guided mode of the structure is excited inside this top region

such that there is no need to consider all the 48µm ridge height. In our simulations, the

modeled region has 4µm×7µm size along x and y directions respectively. Uniform meshing

is applied with ∆x = ∆y = 50 nm. The eigenmodes of the structure are determined at

an operation wavelength of λ = 1.5µm.

Table 2.4 gives the effective indices of the first 5 guided modes in the structure. The

spatial distribution of electric field amplitude of the fundamental guided mode is presented
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Figure 2.14: a)Scheme of lithium niobate ridge waveguide. b) The refractive index varia-
tions along the vertical direction of the lithium niobate ridge waveguide.

Table 2.4: The effective indices of the first five guided modes of the ridge waveguide
Effective indices of guided modes

1 2 3 4 5
2.1270 2.1249 2.1173 2.1202 2.1114

in figure 2.15 a. One can observe the high confinement of electromagnetic field at the

top of the ridge waveguide leading to excellent guiding properties (vertical and lateral

confinement). In comparison, we also performed simulations in the case of step-index

ridge waveguide (without Ti indiffusion). Figure 2.15 b shows the fundamental guided

mode electric field distribution where the guided mode appears far from the top of the

ridge. This result demonstrates the need of Ti indiffusion to bring up the light confinement

in order to enhance its interaction with a possible nano-structuration (PC) on the top of

the ridge. In the next, we study how the mode center moves vertically as a function of the

index gradient. For this purpose, we keep the same gradient behavior and we only varies

the value of its maximum (nmax). This experimentally may correspond to modifying

the Ti dose or the time of the indiffusion process. Figure 2.16 shows the fundamental

guided mode center displacement δ as a function of nmax with ∆ = 0 corresponding to a

step-index ridge waveguide (no gradient). For small variation of nmax, figure 2.16 show a

quite linear behavior of δ with a slope of ∆δ
nmax

≃ 19 µm
RIU

. This results can be exploited to

determine the Ti indiffusion process parameters to be compatible (efficient interaction)
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with a given nano-patterning depth on the top of the ridge. As a conclusion, the FDFD

developed code seems to be a powerful tool for the study of dielectric waveguides whatever

their geometries.
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Figure 2.15: a)Electric field distribution of fundamental mode for lithium niobate ridge
waveguide index gradient.b)Electric field distribution of fundamental mode for lithium
niobate ridge waveguide without index gradient.c)

2.7 Conclusions

In this chapter, we explained all concepts and theoretical fundamentals (basics of finite

difference approximation, numerical tools,...) to understanding the method that was used

for the theoretical study of waveguide. The FDFD method is depending on use a Yee

grid. The FDFD method offers the following advantages: (1)The simulation by using the

frequency domain method is very faster because its response for a few required frequencies.

(2) It depends on the properties of materials such as dispersion. Also, a lot of literature
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on finite-difference time-domain (FDTD) methods applies to FDFD, especially subjects

on how to represent materials and devices on a Yee grid. We verified our code with other

published results. We achieved excellent guided mode for all tests and applications and

good agreement with their results was obtained. Consequently, the FDFD method is

suitable and very simple. But as it has advantages also it has drawbacks, it has some

difficulties such as the large dimensions grid more than (120 × 120) takes long time for

calculations and large memory. The modeling metallic nano structures will be described

in following chapters.
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Chapter 3

Electromagnetic Force

3.1 Introduction

The electromagnetic force is one of the four basic forces in nature, being weaker than the

strong nuclear force but stronger than the weak nuclear force and the gravity. So, the

electromagnetic force is the second strongest force. The action of light on object has been

known for a long time. In fact, around 1616, Johannes Kepler observed that the comet tail

is always pointed in the opposite direction from the sun position, he assumed that this is

a result of radiation pressure exerted by sun light on ice crystals and dust constituting the

comet tail [41]. This force will be later called "radiation pressure" [42]. Even before the

contrivance of lasers, observations with detailed experimental devices proved the existence

of radiation pressure qualitatively and quantitatively [43]. This phenomenon led the

researchers to exploit the electromagnetic force for particles manipulation. In our work

we will use two type of the nanoantenna as optical tweezers. Let us see in the following

section optical tweezers evolutions.
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3.2 Introduction of optical tweezers

Optical micro manipulation as a mean to selectively trap and move small particles, how-

ever it requires very high intensity gradients that are only possible with laser light sources.

This field of activities was begun almost 40 years ago by Ashkin in his innovative paper

on acceleration and trapping of particles by radiation pressure [44], who used a weakly

focused laser beam in order to guide particles. He not only observed the acceleration

of microscopic particles by the radiation force but also noticed a gradient force, pulling

transparent particles with an index of refraction higher than the host medium towards

the beam axis.

Furthermore, he suggested and demonstrated the notion of counter-propagating opti-

cal trapping, where the opposed radiation pressure of two laser beams leads to the stable

three-dimensional confinement of particles. Soon, other stable optical traps were demon-

strated, including the optical levitation where gravitational forces are compensated by the

radiation pressure [44, 45]. The main achievement in the field of optical micro manipula-

tion was the demonstration of a single beam gradient force trap, which is nowadays known

as optical tweezers [2, 46] as shown in figure 3.1. In optical tweezers, a single laser beam is

very strongly focused through a high numerical aperture lens, this means achievement of

gradient forces that counterbalances the scattering forces in propagation direction. This

simple and elegant implementation of an optical trap allows the stable three-dimensional

optical trapping of dielectric particles. Based on these essential findings, a whole field of

optical micro manipulation has been advanced.

This latter have attracted intense research interests in the past years due to their

unique ability to manipulate tiny objects without contact. Optical tweezers have been

successfully used in manipulating a large panel of physical object and biological entities
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Figure 3.1: Schema of optical trapping system of Mie and Rayleigh particles in water by
a single-beam gradient force radiation-pressure trap [2]

[47]. However, optical tweezers are often restricted, both in size of trapped particles and

in compactness, to being generated by diffraction limited bulky optics, and it remains a

key fundamental challenge to realize optical tweezers capable of manipulating sub-micron

particles in a versatile and flexible configuration. A way of addressing this issue is to make

use of optical fibers which avoid the use of complex bulky optics to direct photons. An

alternate configuration involving an apertureless metal probe and a dielectric nanosphere

illuminated in total internal reflection regime, has been investigated by Chaumet et al [3]

as shown in figure 3.2. All these authors have theoretically analyzed and demonstrated

the possibility of using the metal tip to pick up and move particles above a substrate.

On the one hand, optical tweezers have been further developed towards multilateral,

multifunctional tools by means of time-sharing approaches, holographic beam-shaping,

and an uncountable number of technological refinements[48, 49]. One the other hand, a

wide range of another approaches has appeared that go beyond the concept of single or

multiple detached optical tweezers but supply optical landscapes, designed to a specific

problem. Manipulation of small particles by immaterial probes such as intense light
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Figure 3.2: a)Tungsten probe of an apertureless near-field microscope.b) Z-component
of the force experienced of by the sphere versus the distance between the tip and the
sphere.c) Force along-z experienced by the sphere as a function of the lateral position of
the probe. The sphere is at the origin.[3].

beams has attracted a lot of researches both theoretically and experimentally [50, 51,

52]. If we neglect the radiation pressure that is inadequate for optical trapping, the

electromagnetic forces generated on such micro-structures mainly depend on the spatial

gradient of the electro-magnetic field. More spatially localized the light confinement is,

higher the gradient is and more intense the force is. Consequently, Scanning Near-field

Optical Microscopy (SNOM) facilities were proposed till 1997 by Novotny et al. [4] to use

the electric field enhancement (tip effect) at a metallic tip apex as optical tweezers to trap

nanometer-sized dielectric particles. Figure 3.3 shows the potential energy in xz-plane for

nanoparticle having radius only 10 nm where the potential well which was obtained is

equal to 25 kT/W along x,z direction respectively as shown in figure 3.3 b,c.

.

A similar theoretical result was obtained by [53, 54, 55] for a nanoparticle placed near a

sub-wavelength aperture made in metallic film. Unfortunately, the resonance wavelength
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Figure 3.3: Trapping potential of a particle (d = 10nm,ϵ = 2.5) in the vicinity of the
tip. (a) Potential energy surface in the (xz) plane (the tip is indicated by the shadow
on the bottom plane). (b),(c) Normalized potential energy evaluated along the x and z
directions, respectively[4].

of the particle depends on its size (volume) and on its dielectric constant through the

expression of its polarizability. Thus, it is necessary to adapt the operation wavelength,

i.e. the particle dimensions and metal nature, to the fluid that must have small absorp-

tion at this wavelength. Nonetheless, conventional homogeneous electromagnetic fields

are inconsistent with single particle trapping when the dimensions of the latter is small

compared to the wavelength. This obstacle, related to the diffraction limit given by the

Rayleigh criterion, can be bypassed by the consideration of non propagative waves such as

evanescent ones created by diffraction of light by sub-wavelength features [56]. All these

authors have theoretically analyzed and demonstrated the possibility of using the metal

tip to pick up and move particles above a substrate.

On the other hand, some studies proposed to use optical tweezers to perform fine
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positioning of nanoshells inside human tissues [57, 58] in view of use in nanomedicine.

However, optical tweezers are now designed for a large range of applications covering

several domains such as physics, chemistry and medicine. Recently, researchers have

demonstrated the ability to surpass the limits imposed by free-space diffraction by tai-

loring the optical and structural properties of a medium [59]. For example, Grigorenko

et al [60] utilized the strongly enhanced and localized optical near-fields of closely spaced

metallic nanostructures. Similarly Yang et al [61] were able to demonstrate optical trap-

ping and transport of dielectric nanoparticles by exploiting the strong field confinement

within slot waveguides [23, 62, 63]. The strength of optical traps can be enhanced by

the strong confinement of the optical field and it can also be improved by exploiting the

field amplification within an optical resonator. Interesting numerical study [5] of the light

emitted by a single coaxial aperture figure 3.4a demonstrated a stable optical trapping

of dielectric particle as small as 2 nm diameter. Figure 3.4 b shows transverse trapping

potential produced by the transverse optical force components (Fx and Fy) as well as

the pulling force (Fz) on a 10 nm dielectric particle (index n = 2) placed 20 nm away

from the coaxial aperture, normalized by 100 mW of the power transmitted through the

coaxial aperture. The cross sections of the transverse optical trapping potential (Uxy)

shows potential well achievement equal to 25 kT/100 mW as shown in figure 3.4 c .

Thereby, it is well known that small dielectric spheres can be trapped by conventional

gaussian beams while metallic ones are ejected out from the center of the beam [64,

65]. In fact, in the case of micro-sized particles, the light cannot penetrate inside the

particle and the radiation pressure becomes predominant. Recently, optical trapping of

micro particles was demonstrated inside hollow optical fiber [66] and also by using a

dual tapered fiber tweezers [67, 6]. Figure 3.5 shows Optical trapping of 12 nm silica

spheres using a double nanohole at 15 nm tip separation. In that paper, the authors

showed the possibility of trapping simultaneously more than one particle and they also
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(a) (b) (c)

Figure 3.4: (a)Schematic of the coaxial plasmonic aperture and the potential well in the
xOy transverse plane.(b) Transverse trapping potential on a 10 nm dielectric placed at 20
nm away from the coaxial apertur. (c) Cross sections of the transverse optical trapping
potential (Uxy) along x = 0 nm and y = 67 nm. The trapping potential full-width at
half-maximum is indicated in each direction [5].

established a metastable regime. Thus, far-field measurements are usually performed to

prove this trapping through the detection of a near-field information that can be linked to

the particle position (Rayleigh scattering, fluorescence, ...). However, nano-sized metallic

particles trapping is possible but needs to excite the particle resonance (resonant trapping)

[68].

Maxwell stress tensor can be considered as powerful method for optical force calcu-

lations. In fact, this method was qualified as critical for practical force calculations in

numerical codes. There are three reasons making the MST more appropriate than other

methods: (1)The accuracy of the result is not affected by the current density distribution

inside the object. (2)The enclosed surface of the object does not need to be compatible

with its surface. (3) The integral depends only on the field distribution outside the ob-

ject. Moreover, it is not necessary to know the electromagnetic field distribution within

complex anisotropic or nonlinear materials. Consequently, MST method will be applied

in all our following calculations of optical forces.
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(a)
(b)

(c)

Figure 3.5: Schema of the nanoscale double-hole. b) SEM image of the double-hole on
Au film taken normal to the surface. c) Optical trapping of 12 nm silica spheres using a
double nanohole at 15 nm tip separation [6].

One of the most innovative method to solve the Maxwell’s equations is the finite

difference time-domain (FDTD). The FDTD method is now widely employed to simulate

light-matter interaction in nanooptics [69, 70, 71, 72, 73]. As well, the FDTD method

is used to calculate the total electromagnetic field in any computational volume that

contains the structure under study. As it will be shown, optical forces are then derived

through the determination of the Maxwell stress tensor which can be easily calculated

through the knowledge of the EM field surrounding the particle. This field is a priori

determined by FDTD. In this chapter, we will present some basic of mechanical action of

light and electromagnetic theory and show how optical forces arise on dielectric particles.

The developed numerical tools are then tested and results are compared to literature to

demonstrate the validity of our codes.
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3.3 Mechanical action of light and gradient force

The light is composed of photons with energy and a quantity of movement. When a

photon hits a particle, there is a transfer of momentum. The light exerts on the particle

known as a radiation pressure [46, 2] that is essentially directed toward the propagation

direction. In addition, if the illumination is non homogeneous, transverse force can be

induced. Thus, optical forces are derived of two essential component: the gradient force,

which pushes the particle in the opposite direction of the incidence light propagation, or

towards the focus of the laser beam. The scattering force, which pushes the particle in

the direction of the incidence light propagation, or away from the light source. In figure

3.6 we can see that when A incident laser beam meet the interface, some is reflected and

some is refracted. The focus of the cone of light is on the point Fg inside the sphere.

Fg
FB FA

FB'

Fs

A' B'

FA'

A B

Laser Beam

B A

Figure 3.6: Scattering and gradient forces created by non homogeneous optical illumina-
tion on a dielectric particle.

In the case of a focused laser beam, this force pulls the particle radially into the axis
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of the beam as well as axially into the focal point of the beam. In order to achieve the

gradient force, the axial component must be greater in magnitude than the axial scattering

force (see figure 3.7 a). This can be fulfilled in the case of highly focused beams as shown

on figure3.7 a. Otherwise, if the scattering force is greater in magnitude than the axial

component of the gradient force the laser guidance is realized and weakly focused beam

causes particle to be pushed (guided) along the beam axis as shown in figure 3.7 b.

Optical Trapping Laser Guidance

F > Fgradient scattering F < Fgradient scattering

(a) (b)

Fg

Incident light Incident light

Fs

Figure 3.7: (a) Optical trapping. (b) Laser guidance.

Light-matter interaction at the nano-scale leads basically to light confinement at the

edges of nano-structures (SNOM tip apex for instance or any resonance type). This

very enhanced electromagnetic field gradient can be exploited to locally generate efficient

optical forces able to trap small nanoparticles.
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3.4 Basics of the electromagnetic Force

The electromagnetic force (or Lorentz force) is the force that will undergo a charged

particle placed in an electromagnetic field. It causes all electric and magnetic interactions.

An electromagnetic field exerts on a particle having a non-zero electric q charge, a total

force that is given by the sum of two terms: an electric term (Coulomb force) and a

magnetic term (Lorentz force):

F⃗ = q (E⃗ + v⃗ × B⃗) (3.1)

Where E⃗ and B⃗ are respectively the electric and the magnetic fields, v⃗ represents the

velocity of the particle with respect to a defined Galilean reference system. Thus, for a

small dielectric particle placed in homogeneous electromagnetic field, two Coulomb forces

appear and act on detached charges in opposite directions (induced dipole) even if the

electric field oscillates (dipole direction changes). So, when the particle is illuminated by a

plane wave (PW), the EM field around it presents two different characteristics: (1) lateral

distribution remains symmetrical so lateral forces compensate each other while (2) axial

distributions are necessary non-symmetrical (due to the illumination). Thus, the induced

dipoles on the two axial lobes of the particle are different and their resulting action tends

to push the particle in the propagation direction. Figure 3.8 explicitly illustrates the two

cases of uniform and nonuniform lateral electric field. The same schema can be applied for

axial forces. To take into account the redistribution of the EM field around the particle

(due to light-matter interaction), FDTD simulations were performed and corresponding

results are shown on figure 3.9. Both PW and Gaussian incident beams were considered.

For the latter, off-centered illumination of the spherical particle is also studied in order to

point out the apparition of lateral gradient force component. On the contrary, when the
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electric field is non-uniform (Gaussian beam for example) and has a gradient along one

direction, then Coulomb forces do not compensate each other anymore. In this case the

resulting force [which is called gradient force] is not equal to zero, and pushes the particle

towards the stronger field intensity position as shown in figures 3.8 c,d and 3.9 c.
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Figure 3.8: A dielectric particle polarization in accordance with:(a,b) uniform field
(c,d)non uniform electric field; c) and d) shows that at change of the electric field sign
the direction of the gradient force does not change.

Nevertheless, a scattering force also exists and tends, generally, to drive the particle in

the propagation direction. In order to get a stable optical trapping, the scattering force

must be smaller than the gradient one. As an example, for a small particle (n=1.65)

of 95nm diameter immersed in water, the gradient force becomes 3 times larger than

the scattering force if the Gaussian beam spot size is equal to w0 = 0.75λ = 260nm

[2]. For such a small particle (Rayleigh regime) illuminated by Gaussian or Gaussian-

Hermite beams, the determination of the optical forces can be conducted analytically
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Figure 3.9: Numerical simulation of a dielectric particle is illuminated with:a) Plane wave.
b) Gaussian Beams. c) Off-centered spherical particle illuminated by Gaussian Beams.

[74, 75]. Unfortunately, for the general case where bigger particles having any shape and

in presence of any electromagnetic field distribution, the determination of the optical force

becomes difficult and numerical tools are generally needed. The latter are derived from

the expression of the electromagnetic force eq. 3.1 through Maxwell equations.

3.4.1 Electromagnetic force per unit volume: Formulation of MST

expression

Let us consider a charge distribution, with volume density ρ, submitted to an elec-

tromagnetic field (E⃗, B⃗). The force exerted on an elementary charge dq = ρdτ con-

tained within an elementary volume dτ , moving at the overall velocity v⃗, can be written

df⃗ = (ρE⃗ + j⃗ × B⃗)dτ where j⃗ is the current surface density given by j⃗ = dq · v⃗. Thus, we

define the force per unit volume for an unknown charge distribution as:

f⃗ = ρE⃗ + j⃗ × B⃗ (3.2)
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Next, ρ and j⃗ can be replaced by the fields E⃗ and B⃗, using Gauss’s and Ampere’s

laws:

f⃗ = ε(∇ · E⃗)E⃗ +
1

µ
(∇× B⃗)× B⃗ − ε

∂E⃗

∂t
× B⃗ (3.3)

This expression of the electromagnetic force involves both electric and magnetic fields

and the properties of the medium (ε, µ).

The last term, which is a time derivative, can be rewritten differently in order to be

interpreted physically. In fact, by injecting the Poynting vector (P⃗ = E⃗ × B⃗
µ
) and using

the product rule :

∂

∂t
P⃗ =

∂E⃗

∂t
× B⃗ + E⃗ × ∂B⃗

∂t
(3.4)

=
∂E⃗

∂t
× B⃗ − E⃗ × (∇× E⃗) (3.5)

By using Maxwell-Faraday equation eq. 2.1 we get finally:

f⃗ = ε
[
(∇ · E⃗)E⃗ − E⃗ × (∇× E⃗)

]
+

1

µ
[−B⃗ × (∇× B⃗)]− ε

∂

∂t
(P⃗ ) (3.6)

In order to get symmetrical expression in E⃗ and B⃗, we insert the term (∇· B⃗)B⃗ which

is zero and get:

f⃗ = ε
[
(∇ · E⃗)E⃗ − E⃗ × (∇× E⃗)

]
+

1

µ

[
(∇ · B⃗)B⃗ − B⃗ × (∇× B⃗)

]
− ε

∂

∂t
(P⃗ ) (3.7)
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At first glance, this expression is difficult to be interpreted. To simplify it, we can use

the vector identity:

1

2
∇⃗A2 = A⃗× (∇× A⃗) + (A⃗ · ∇⃗)A⃗ (3.8)

From this expression, we deduce that:

E⃗ × (∇× E⃗) = −(E⃗ · ∇⃗)E⃗ +
1

2
∇⃗E2 (3.9)

and

B⃗ × (∇× B⃗) = −(B⃗ · ∇⃗)B⃗ +
1

2
∇⃗B2 (3.10)

By substituting these last equations 3.9,3.10, in the equation 3.7, we get:

f⃗ = ε
[
(∇ · E⃗)E⃗ + (E⃗ · ∇⃗)E⃗

]
+

1

µ

[
(∇ · B⃗)B⃗ + (B⃗ · ∇⃗)B⃗

]
− 1

2
∇⃗(εE⃗2 +

1

µ
B⃗2)− ε

∂

∂t
(P⃗ ) (3.11)

Finally, to simplify this equation 3.11 we can rewrite it as:

f⃗ = ∇·
↔
T −ε

∂

∂t
(P⃗ ) (3.12)

Where the tensor
↔
T , named the Maxwell Stress Tensor, satisfies the expression:
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↔
T ij= ε(Ei · Ej −

1

2
δijE⃗

2) +
1

µ
(Bi ·Bj −

1

2
δijB⃗

2) (3.13)

Consequently, the electromagnetic field in a linear medium of relative dielectric per-

mittivity εr and magnetic permeability µ is represented mathematically by this Maxwell

stress tensor
↔
T which is (3× 3) matrix. Let us recall that δij is the Kronecker symbol for

i, j = x, y, z.

We arrive at a simple relation expressing the electromagnetic forces per unit volume

based on the divergence of MST and Poynting vector which gives us the energy flow

eq.3.12. So, let us see in next section how we can calculate the total optical force exerted

on an illuminated particle.

3.4.2 Total force on a particle included in a volume V

To calculate the total force exerted by electromagnetic fields on a particle (see figure 3.10),

we have simply to apply the integration of the force density over all its volume as follows:

F⃗ =
y
Ω

(∇·
↔
T −ε0

∂

∂t
(E⃗ × B⃗)) dτ (3.14)

where Ω is particle volume. The first term, we apply Ostrogradski-Green theorem,

which express the equality between this integral and the flux of
↔
T through the boundary

of the volume V (which is a surface integral). This can be expressed as:

∀ V ⊃ Ω,
y
V

(∇·
↔
T ) dτ =

{
S

↔
T ·⃗ n ds (3.15)
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Figure 3.10: A particle included in a volume V.

n⃗ represents the local normal vector to the surface. Consequently, the expression of

the total force becomes:

F⃗ =
{
S

↔
T · n⃗ ds− ε0

∂

∂t

y
V

E⃗ × B⃗dτ (3.16)

The electromagnetic forces on a volume can be determined from the knowledge of

the Maxwell stress tensor only calculated over the surface delimiting the same volume.

The latter involves electric permittivity and magnetic permeability of the medium at the

surface (outside the volume itself) .

Since the number of field lines generated the charge q depends only on the magnitude

of the charge, any arbitrarily shaped surface that encloses q will intercept the same

number of field lines. So, we are finally able to calculate the total force applied to a

volume V knowing only the field on a surface S surrounding this volume. S is then any

bounded surface delimiting the volume V that encloses the particle. One notice that S
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must be completely located in the same medium surrounding the particle and cannot

intersect any other one. For sake of simplicity, we assume a cube centered on the particle

and we only record the electromagnetic field over its six faces. This condition on the

choice of the surface will limit the calculation of the force to the contactless cases between

the particles and another material (substrate or nano-antenna for example).

In our work, the electromagnetic field exhibits very rapid oscillations so that only the

average effects over a period are observed. Thus :

∂

∂t
<

y
V

E⃗ × B⃗ dτ >= 0 (3.17)

And the force expression becomes :

F⃗ =
{
S

<
↔
T> · n⃗ ds (3.18)

As we can see, the force can be calculated through the value of electromagnetic field

over any external closed surface containing the whole volume on which it is exerted. In

this regime and working in complex notations, the expression of the Maxwell stress tensor

becomes:

↔
T=


T11 T12 T13

T21 T22 T23

T31 T32 T33

 (3.19)

Where:
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T11 =
1

4
[ ε0 (| Ex |2 − | Ey |2 − | Ez |2) +

1

µ0

(| Bx |2 − | By |2 − | Bz |2) ]

T12 =
1

2
[ ε0 ·Re(ExE

∗
y) +

1

µ0

·Re(BxB
∗
y)]

T13 =
1

2
[ ε0 ·Re(ExE

∗
z ) +

1

µ0

·Re(BxB
∗
z )]

T21 =
1

2
[ ε0 ·Re(ExE

∗
y) +

1

µ0

·Re(BxB
∗
y)]

T22 =
1

4
[ ε0 (| Ey |2 − | Ex |2 − | Ez |2) +

1

µ0

(| By |2 − | Bx |2 − | Bz |2) ]

T23 =
1

2
[ ε0 ·Re(EyE

∗
z ) +

1

µ0

·Re(ByB
∗
z )]

T31 =
1

2
[ ε0 ·Re(ExE

∗
z ) +

1

µ0

·Re(BxB
∗
z )]

T32 =
1

2
[ ε0 ·Re(EyE

∗
z ) +

1

µ0

·Re(ByB
∗
z )]

T33 =
1

4
[ ε0 (| Ez |2 − | Ex |2 − | Ey |2) +

1

µ0

(| Bz |2 − | Bx |2 − | By |2) ]

Where E∗
y , E

∗
z , B

∗
y , B

∗
z are complex conjugates of Ey, Ez, By, Bz respectively.

This definition of the force through the Maxwell stress tensor is, of course, consistent

and valid in both electrostatics and magnetostatics. The next section is dedicated to ana-

lytically demonstrate the equivalence between equation 3.18 and the well-known Coulomb

(electrostatics) and Lorentz (magnetostatics) forces. (3.4.3).

3.4.3 The electro and magneto statics force

In the case where a static electric field E⃗ is applied on a charge distribution of density ρ

over a total volume V , the force density and the total force are given through the Coulomb
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law, eq.3.2 by:

dF⃗ = E⃗(r)ρ(r)dV (3.20)

and F⃗ =

∫
V

E⃗(r)ρ(r)dV (3.21)

respectively, where the volume of integration is any volume including all the charges. By

replacing ρ with div(E⃗) to get:

F⃗ = ε
{
V

E⃗(r)∇ · E⃗dV (3.22)

Given the fact that the derivatives are in fact a vector operator, we have to be a bit

careful in treating them as simple derivatives. This is done by using the standard "Vector

Formulas", through:

∇ · [ΨC] = C · ∇Ψ+Ψ∇ · C (3.23)

There is however a complication: the scalar quantity in this formula (Ψ) is, in the

equation we want to transform, the vector E⃗. Consequently, we need to transform the

vectorial equation into 3 scalar ones since: E⃗ = Ex .⃗i + Ey .⃗j + Ez .⃗k. The vector formula

above will be applied three times taking as scalar functions the three components of E⃗.
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F⃗ = ε

∫
V

[⃗
iEx(∇ · E⃗) + j⃗Ey(∇ · E⃗) + k⃗Ez(∇ · E⃗)

]
dV (3.24)

F⃗ = ε[⃗i

∫
V

(
∇ · (ExE⃗)− E⃗ · ∇Ex

)
dV

+ j⃗

∫
V

(
∇ · (EyE⃗)− E⃗ · ∇Ey

)
dV + k⃗

∫
V

(
∇ · (EzE⃗)− E · ∇E⃗z

)
dV ] (3.25)

Using Ostrogradsky theorem, we obtain:

F⃗ = ε
{
S

[⃗iExE⃗ · n⃗

+ j⃗EyE⃗ · n⃗+ k⃗EzE⃗ · n⃗]dS − ε

∫
V

[⃗i(E⃗ · ∇Ex) + j⃗(E⃗ · ∇Ey) + k⃗(E⃗ · ∇Ez)]dV (3.26)

F⃗ = ε[
{
S

E⃗(E⃗ · n⃗)dS −
∫
V

(E⃗ · ∇)E⃗dV ] (3.27)

The first term of the last equation eq.3.27 is easy to understand. The second term is

less easy: we need the use of two Vector formula:

(A · ∇)C = Ax
∂C

∂x
+ Ay

∂C

∂y
+ Az

∂C

∂z
(3.28)

and

∇(A⃗ · C⃗) = (A⃗ · ∇)C⃗ + (C⃗ · ∇)A⃗+ A⃗× (∇× C⃗) + C⃗ × (∇× A⃗) (3.29)
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to express

∇(E⃗ · E⃗) = 2(E⃗ · ∇)E⃗ + 2E⃗ × (∇× E⃗) (3.30)

Knowing that for electrostatics case, ∇× E⃗ = −∂B
∂t

= 0 leads to:

∇(E⃗ · E⃗) = 2(E⃗ · ∇)E⃗ (3.31)

By replacing in the last expression for F⃗ eq. 3.27

1

2
∇(E⃗ · E⃗) = (E⃗ · ∇)E⃗.

we obtain:

F⃗ = ε0[
{
S

E⃗(E⃗ · n⃗) dS − 1

2

∫
V

∇(E⃗2) dV ] (3.32)

By using one time again the Ostrogradsky theorem to express the second integral of

eq.3.32, we get:

F⃗ = ε0
{
S

[E⃗(E⃗ · n⃗)− 1

2
E⃗2 · n⃗]dS (3.33)

If we write separately the three components of this vector equation, we see that it can be

written in the form:

F⃗ =
{
S

↔
TE ·n⃗ dS (3.34)

Where the newly introduced quantity
↔
TE is the Electrostatic stress tensor Maxwell.
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↔
TE= ε0


Ex

2 − E2

2
ExEy ExEz

ExEy Ey
2 − E2

2
EyEz

ExEz EyEz Ez
2 − E2

2

 (3.35)

The last formula shows that the force exerted on all the charges contained in a volume V

is equal to the integral on the surface S which encloses the volume V of the product of

the electrostatic stress tensor with the unit vector normal to the surface. Similarly, for

the magnetostatics case, the Maxwell stress tensor can be derived from its general form

and leads to:

↔
TM= µ0


Hx

2 − H2

2
HxHy HxHz

HxHy Hy
2 − H2

2
HyHz

HxHz HyHz Hz
2 − H2

2

 (3.36)

Let us notice that, in presence of charges and currents both electrical and magnetic

forces exist and the total force will be determined by the Maxwell stress tensor
↔
T=

↔
TE

+
↔
TM . Equation 3.19 is similar to the sum of the electric and magnetic stress tensors in

equations 3.35 and 3.36. This suggests that the total force on an isotropic, linear dielectric

object, as for incompressible fluid, can be found by applying equation 3.19 that requires

the only knowledge of the permeability, permittivity and field values on a enclosed surface

surrounding the object.

Let us now recover the well-known relationship of the Coulomb force (giving the force

between two charges) from the Maxwell stress tensor. For this purpose, we consider a

positive charge on the left at a distance 2d from the negative charge (see figure 3.11). We

enclose one charge (the negative charge for instance) by an hemispherical surface whose

plane side lies along the middle plane between the two charges. If we let the radius of the
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+q -q2d

dr

Er

r

R
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r +d
2

2

Eq+

q

d d

Figure 3.11: Hemisphere enclosing one of the two charge to find the force on charge
enclosed.

hemisphere grow, the field at hemispherical boundary becomes that of a dipole, αR−3.

The surface integral then varies as R−4. Taking the hemisphere to ∞ makes this part of

the surface integral vanish. At the middle plane:

Eq+ =
2q

4πε0(r2 + d2)
cosθ (3.37)

Eq+ =
2q

4πε0(r2 + d2)

d√
r2 + d2

(3.38)

Eq+ =
2qd

4πε0
√
r2 + d2

3 (3.39)
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Thus

E2
q+ =

(
2qd

4πε0

)2
1

(r2 + d2)3
(3.40)

Where the transverse component of the fields of the two charges just neglected. The

ninth element T33 of stress tensor is ε0(Ex
2 − 1

2
E2), and the surface element is dSx =

−2πrdr. The force on the charge from the stress tensor at the middle plane is then:

Fx = −
∫ ∞

0

−1

2
ε0E

2(−2πrdr) (3.41)

Fx = −1

2
ε0

4q2d2

(4πε0)2

∫ ∞

0

(2πrdr)

(r2 + d2)3
(3.42)

Fx = − q2d2

4πε0

∫ ∞

d

dS

S5
(3.43)

Fx = − q2

4πε02(d)2
(3.44)

Where we have defined S2 = r2 + d2 to perform the integration. The result obtained

is of course exactly the result given by Coulomb’s law.

In the general case of a any geometrical shape particle immersed in an electromagnetic

field, the calculation of the force needs the determination of the field in the presence of

the particle. This is a very hard task that we will address numerically through an adapted

tool based on Finite Difference Time Domain (FDTD) method for the solving of Maxwell

equations. Consequently, the next section is devoted to the presentation of the FDTD

principle.
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3.5 Numerical simulation tool (FDTD)

3.5.1 Principle of FDTD

The FDTD (Finite Difference Time Domain) method is a numerical approach that allows

discretization of Maxwell’s equations in space and time. We have selected simulation in

time domain, according to the finite difference method, because it has the advantage of

allowing a characterization in a broad frequency band for a structure through a single

simulation. By applying a Fourier transform over the recorded time signals, it is possible

to determine the optical response of the structure.

The application of the FDTD method to solve Maxwell’s equations in free space was

first introduced by Yee in 1966 [34]. The method consists in approximating the par-

tial spatial and temporal derivatives appearing in Maxwell’s equations by centered finite

differences. Yee proposed scheme that allowed to overcome the difficulties due to simulta-

neous coupling between electric E and magnetic H fields . Indeed, an explicit numerical

scheme is obtained for the calculation of the electromagnetic field throughout the stud-

ied volume versus time. The components of electric and magnetic fields are interleaved

both in time and space. They are never calculated at the same location nor at the same

time. By choosing a broad frequency band excitation, one may obtain electromagnetic

characterization of the studied structure by Fourier transform of the time signal (near or

far fields, transmission, reflection, ...).

Later, in 1975, Allen Taflove, who attempts to solve the problem of penetration of

the microwaves inside human eye (many cataracts were observed on radar technicians

during the second World War), decides to use the Yee algorithm. From the end of the

80s, the computer revolution has widespread the use of the FDTD method. This success
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is explained mainly by the simplicity of its numerical implementation.

3.5.2 3D Illustration of FDTD

The starting point of the finite difference method is the differential form of Maxwell’s

equations given by:

∇⃗ × H⃗ =
∂εE⃗

∂t
(3.45)

∇⃗ · E⃗ = −µ
∂H⃗

∂t
(3.46)

Let us mention that the resolution of these two equations can be performed in dif-

ferent coordinates systems (cylindrical, spherical,...) depending on the symmetry of the

solutions. In our case where no particular symmetry is involved, we consider solutions in

Cartesian coordinates. In addition, we consider that involved materials in our case are

linear and isotropic. Nonetheless, the case of dispersive materials, such as noble metals in

the visible spectral range, will be addressed differently. We will limit our investigations

to the case of LI materials that can be dispersive or not. Let us first consider the simplest

case of LIND material. In this case, Maxwell-Ampere equation can be written:

∂Ex

∂t
=

1

ε(x, y, z)

(
∂Hz

∂y
− ∂Hy

∂z

)
(3.47)

∂Ey

∂t
=

1

ε(x, y, z)

(
∂Hx

∂z
− ∂Hz

∂x

)
(3.48)

∂Ez

∂t
=

1

ε(x, y, z)

(
∂Hy

∂x
− ∂Hx

∂y

)
(3.49)
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and :

∂Hx

∂t
= − 1

µ

(
∂Ez

∂y
− ∂Ey

∂z

)
(3.50)

∂Hy

∂t
= − 1

µ

(
∂Ex

∂z
− ∂Ez

∂x

)
(3.51)

∂Hz

∂t
= − 1

µ

(
∂Ey

∂x
− ∂Ex

∂y

)
(3.52)

To numerically implement these equations, temporal and spatial derivatives must be

expressed as centered finite differences through the Taylor expansion. In addition, Yee

demonstrated that numerical stable schema needs to evaluate the 6 components of the

electromagnetic field for different positions (spatially) and at different times (temporally).

Yee proposed his well-known discretization schema presented on figure 3.12 where the

three components of the magnetic field are located at the centers of each unit cell faces

while the electric ones are placed at the middle of the edges. The unit cell is then a

parallelepiped with ∆x,∆y and ∆z side lengths.

Dx

Dy

DzEz

Ey
Ey

Ex

Ex
Hz

Hx

Ey

Ez

Ex

Hy
Ez

Figure 3.12: 3D Yee discretization schema (unit cell in Cartesian coordinates).

According to the Yee schema and assuming that fields are temporally interleaved,
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equations 3.46 becomes:

∂Ex

∂t
=

Ex(t+
∆t
2
)− Ex(t− ∆t

2
)

∆t
=

1

ε(x, y, z)

(
Hz(y +

∆y
2
)−Hz(y − ∆y

2
)

∆y
−

Hy(z +
∆z
2
)−Hy(z − ∆z

2
)

∆z

)
(3.53)

∂Ey

∂t
=

Ey(t+
∆t
2
)− Ey(t− ∆t

2
)

∆t
=

1

ε(x, y, z)

(
Hx(z +

∆z
2
)−Hx(z − ∆z

2
)

∆z
−

Hz(x+ ∆x
2
)−Hz(x− ∆x

2
)

∆x

)
(3.54)

∂Ez

∂t
=

Ez(t+
∆t
2
)− Ez(t− ∆t

2
)

∆t
=

1

ε(x, y, z)

(
Hy(x+ ∆x

2
)−Hy(x− ∆x

2
)

∆x
−

Hx(y +
∆y
2
)−Hx(z − ∆y

2
)

∆y

)
(3.55)

∂Hx

∂t
=

Hx(t)−Hx(t−∆t)

∆t
=

− 1

µ

(
Ez(y +

∆y
2
)− Ez(y − ∆y

2
)

∆y
−

Ey(z +
∆z
2
)− Ey(z − ∆z

2
)

∆z

)
(3.56)
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∂Hy

∂t
=

Hy(t)−Hy(t−∆t)

∆t
=

− 1

µ

(
Ex(z +

∆z
2
)− Ex(z − ∆z

2
)

∆z
−

Ez(x+ ∆x
2
)− Ez(x− ∆x

2
)

∆x

)
(3.57)

∂Hz

∂t
=

Hz(t)−Hz(t−∆t)

∆t
=

− 1

µ

(
Ey(x+ ∆x

2
)− Ey(x− ∆x

2
)

∆x
−

Ex(y +
∆y
2
)− Ex(y − ∆y

2
)

∆y

)
(3.58)

∆t is then the time delay between the upgrading of the electromagnetic field for each

Yee cell. As mentioned before, the magnetic field components are calculated at times

multiple of ∆t while the electric field is calculated at half time between two magnetic

ones. In order to illustrate the algorithm of the FDTD, we consider the case of a TM

(Transverse Magnetic) field that illuminates a 2D sample (invariant along the z-direction

see figure 3.13). In this case, the electric field has only two components (Ex and Ey and

the magnetic field is scalar and has only y− component). Consequently, equations 3.53

to 3.58 become:
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Hn+1
z,(i,j) −Hn

z,(i,j)

∆t
= − 1

µ


E

(n+ 1
2
)

y,(i+ 1
2
,j)

− E
(n+ 1

2
)

y,(i− 1
2
,j)

∆x

−

E
(n+ 1

2
)

x,(i,j+ 1
2
)
− E

(n+ 1
2
)

x,(i,j− 1
2
)

∆y


 (3.59)

E
n+ 1

2

x,(i,j+ 1
2
)
− E

n− 1
2

x,(i,j+ 1
2
)

∆t
=

1

ε

(
Hn

z,(i,j+1) −Hn
z,(i,j)

∆y

)
(3.60)

E
n+ 1

2

y,(i+ 1
2
,j)

− E
n− 1

2

y,(i+ 1
2
,j)

∆t
= −1

ε

(
Hn

z,(i+1,j) −Hn
z,(i,j)

∆x

)
(3.61)

Hz(i,j)Ey(i-1/2,j) Ey(i+1/2,j)

Ex(i,j+1/2)

Ex(i,j-1/2)

y

xz

Figure 3.13: Circulation of E⃗ around H⃗

In this peculiar case, the Yee schema is reduced to a planar one (rectangular shape)

where the magnetic field occupies its center and the two electric components are placed

at the middle of the sides (Ex along the x−parallel side and Ey along the y−parallel one)

as shown on figure 3.13.

The temporal schema is similar to the spatial one except that all the electric field

component are calculated for the same moment (n + 1
2
)∆t being the time step) while

the magnetic components are calculated at moments n∆t (∆t, half a time step after the

electric ones. This arrangement ensures an iterative process that is entirely explicit as

shown in the following schema (3.14):

Thus, the data of the electric field at any spatial location are calculated at a given
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n

Hn En+0.5 Hn+1 Hn+2En+1.5

n+1 n+2n+0.5 n+1.5

t=n t

Figure 3.14: Calculating H⃗ at time n∆t and E⃗ at time (n+0.5)∆t , where n is an integer.

time from the surrounding magnetic field components previously calculated and stored.

Then the magnetic field is calculated at the next time through the values of electric field

that has just recorded, and, even up to a specified value of temporal steps insuring a

complete light-matter interaction (permanent regime).

3.5.3 Stability criteria

Numerical FDTD algorithm stability problems have been studied by Courant Friedrich

and Lewy (CFL) [76] and Von Neumann, from a rigorous mathematical approach. This

study shows that the explicit diagram based upon the Yee’s scheme is stable under a

temporal criterion called the CFL condition that is given by [77]:

∆t ≤ c

[√
1

∆x2
+

1

∆y2
+

1

∆z2

]−1

=
1

c
√

3
∆2

=
∆

c
√
3

(3.62)

Where ∆t is time delay, c is speed of light, ∆x = ∆y = ∆z are spatial step. Due to

the fact that most of the modeled structures involve large window calculation volume, a

non-uniform meshing will be used meaning that ∆x,∆y and ∆z are now function of x, y

and z respectively. Even if the CFL condition expression changes in this case, we choose

to use the same definition of ∆t giving in Eq. 3.62 after replacing ∆ by δ which is the

smallest value of the spatial step (δ = Min(∆x(i),∆y(j),∆z(k)).
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In addition of the instability problem, the discretization of the Maxwell equations can

generate numerical dispersion problems (due to the errors induced by the deformation

of the signal phase). To overcome this problem, Taflove et al.[77] studied the numerical

stability using a complex-frequency analysis and found a criterion that bounds the spatial

step as following:

Max(∆x,∆y,∆z) ≤ λmin

n
(3.63)

where λmin is the minimum wavelength of the spectral range over which we wish to

make our study and n is the number of cell per wavelength. The more the n value is

big, the more the numerical error is small. In our case where a non uniform meshing

is applied, the value of n was set between 70 and 215 while a value of 16 or 20 is large

enough to insure a phase error of 10−2 [77]. In fact, in nanooptics, small values of n are

currently used to accurately describe the structure geometry under consideration (small

details such as the metal thickness, the 25 nm gap size of a nano-antenna,...).

Nonetheless, we must keep in mind that these two criteria given by Eq. 3.62 and 3.63

must always checked whatever the geometry and dielectric constant of the considered

structures.

3.5.4 Dispersion

For a faithful modeling of light-matter interaction phenomena, it is essential to take

account of actual EM properties of the materials. In our case, all dielectric media are

supposed to be non dispersive while this assumption becomes no more valid in the case

of noble metals in the visible and IR spectral ranges. Even if metals are non magnetic in

this domain, their dielectric permittivity greatly depends on the frequency. The charge

densities and currents (electric conduction) do not appear explicitly in the calculation
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because they are integrated in the expression of the dielectric constant. Direct calculation

of the electric and magnetic fields components is then not obvious through the FDTD

algorithm due to the need of the calculation of a convolution integral for the determination

of the electric displacement vector given by :

D⃗(t) = ε(t)⊗ E⃗(t) (3.64)

D⃗(t) =

∫ t

−∞
ε(t́).E⃗(t− t́)dt́ (3.65)

The fastidious calculation of this integral can be bypassed in the case where the per-

mittivity can be analytically expressed as a function of the frequency. One of the simplest

expression is the Drude model that is described below.

3.5.4.1 Drude model

The Drude model was developed at the beginning of the 20th century by Paul Drude.

It came a three years after J.J. Thompson who discovered the electron in 1897. Drude

model is based on the kinetic theory of electrons in a metal. This particularly simple

theory successfully represents the optical and thermal properties of some metals. In this

model, the metal is considered as positive ions immersed in a free electron gas [78].

The frequency dependence of the medium permittivity can be derived from the equa-

tions of motion. In the absence of relativistic effects (such as the Lorentz force) and in

the presence of external electric field, The equation of the motion of an electron can be

described as follows:

Ẍ(t) + γẊ(t) = − e

m
E(t) (3.66)
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m represents the mass of the electron, e its charge and γ a damping term equal to the

inverse of mean free path (γ = 1
τ
). The expression γẊ indicates the presence a damping

force that can be attributed to different collisions. One notice that the model takes into

account only the contribution of the electrons of the conduction band and it is adapted

to alkali and noble metals.

Knowing that the model takes into account only the contribution of conduction elec-

trons. After solving the equation 3.66, the expression of the dielectric permittivity can

be written as:

εD = ε∞ − ω2
D

ω2 + iγDω
(3.67)

Where ωD is plasma frequency of electrons have mass m and charge e defined by

ωp = Ne2

mε0
. ε∞ represents the relative permittivity of the metal at infinite frequencies

generally taken equal to 1. In our study, these parameters must be changed in FDTD

code according to the operation wavelength. Experimental data taken from Palik [79] are

used to adapt the Drude model (ωD and γD values) in our FDTD calculations.

3.5.5 Boundary conditions: PML principle

To prevent reflections caused by the scattering of waves from the domain boundaries,

a lot of methods were considered [80, 81, 82, 83, 84, 85, 86, 87] but they are still not

very accurate. The perfectly matched layers (PMLs) was originally formulated in 1994 by

Berenger [88] and it is now commonly used to truncate computational regions in numerical

methods to simulate problems with open boundaries especially in the FDTD method. The

PMLs technique based on the principle of impedance adaptation at the interface between
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two media that have the same index but one of these media is absorbent with electric and

magnetic conductivities. This adaptation condition can be written as:

σ

ϵ
=

σ∗

µ
(3.68)

Where σ,σ∗ are electric and magnetic conductivity respectively. The PMLs have the

property that the EM waves are gradually absorbed in the layers before they reach the

outer boundaries. In this way, there will be no reflections that can disturb the propaga-

tion of the source wave in the calculation window. The PML absorption must then be

anisotropic in the sense that it will be non-zero for waves propagating along the perpen-

dicular direction to the interface between PMLs and the main window (x axis in figure

3.15) while no absorption is needed along the interface direction (y axis in figure 3.15). In

the PML medium, the wave is split into two unphysical waves: 1) a wave propagating at

normal incidence and satisfies the equation eq 3.68. This wave is attenuated and absorbed

by the PML medium and undergoes only a very low reflection. 2) A second wave at graz-

ing incidence that propagates without absorption in the PML medium. This wave does

not suffer any reflection and PML must exhibit identical properties to that of the main

window. This anisotropy is then transposed to the absorption coefficients (σ and σ∗) by

defining three different components for each one (σx, σy, σz, σ
∗
x, σ

∗
y and σ∗

z). The non-zero

components are not constant but their values gradually increase from 0 (absorption of the

main medium) to a maximum value σmax through polynomial law of p degrees:

σx(i) = σmax

(
δx
L

)p

(3.69)

where δx is the distance between the considered cell center and the PML-medium
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Figure 3.15: Principle of perfectly matched layers (PMLs) operating in medium.

interface and L is the PML thickness. We set the value of p to 2 and the σmax value so

that the maximum allowed reflection by the PMLs is fixed to 10−6.

The thickness of the absorbent layer may be chosen as large as desired to minimize

the reflections at the edge of the calculations window. For example, in our calculation,

for Rmax = 10−6 and an operation wavelength equal to λ = 1300 nm a PMLs thickness

equal to 150 nm is sufficient.

3.6 Validation of our code

3.6.1 Test: Optical force calculations of dielectric nanoparticle

As mentioned before, we used available home-made FDTD codes that we modified in

order to integrate detectors which record the six electromagnetic field components over
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the six faces of a cubic or, more generally, parallelepiped box surrounding the particle on

which we are calculating the optical force. These field values are then processed through

a Matlab code to numerically evaluate the Maxwell stress tensor. Optical forces are then

determined by integrating the flux of the MST over these six faces. In fact, as we work in

a harmonic regime, only time average value of the MST is involved in the force expression.

FDTD codes working in complex notation are considered to compute the electromagnetic

fields. In this case, numerical simulations require 2 times more CPU time and 2 times

more memory than the calculation in real notation but have the advantage to directly

give time average values.

x

z

Figure 3.16: A microlens biconvex, curvature radius r = 4µm, thickness t = 1µm and
index nlens = 2 is placed in front of a Gaussian beam to accentuate the focus on the Np.

The first example we studied is similar to the experiment that was conducted by Ashkin

to prove the possible trapping of particles by optical beams. For this purpose, we consider

a dielectric spherical Np of radius R = 600nm, with refractive index ns = 1.7. The Np
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is assumed to be surrounded by vacuum nair = 1 and illuminated by a Gaussian beam of

width sw = 2000nm. We placed a micro biconvex lens in front of the Gaussian beam with

radius of curvature r = 4µm and thickness t = 1µm and lens index nlens = 2, to obtain

higher focus on the Np. The wavelength is fixed to λ = 632.8nm. The main calculation

window extends over 320 cells in the x and y− directions and over 384 cells in the z

direction with uniform mesh (∆x = ∆y = 15nm). The calculation window, in which

the Np and the lens are located, is limited by the Berenger PML absorbing boundary

conditions [88] to avoid parasitic reflections. The total dimensions of the computational

window are (4.8, 4.8, 5.76)µm in the x, y, z directions respectively. The scheme of the

studied configuration is given in figure 3.16.

One FDTD simulation is performed per Np position. This later was displaced in a

longitudinal plane (xOz) and 2838 sphere positions (33×86) were considered in this plane

symmetrically arranged with respect to the lens axis. The three components of the optical

force are then calculated where in figure 3.17 a we presented 3D view of Fx component for

each position of the Np. As seen in figures 3.17 a,b the component Fx of force are perfectly

antisymmetric while, from the figures 3.18 a and b, the component of Fz is symmetrical

with respect to the x-position (Fy component in xOz plane is always equal to zero due to

the structure symmetry). One emphasizes the fact that, for specific lens to Np distance

(here d=2513 nm),Fz passes through a minimum negative value when the Np approaches

the z-axis which corresponds to an attractive force. Thus, for this position, the Np is

both attracted toward x = 0 and z = d. This corresponds to efficient trapping. Figure

3.19, explicitly shows this trapping through the drawing of the force calculated for each

Np position. The trapping zone is pointed out with a black square where both Fx and

Fz are minimum. Consequently, when the Np is placed at the vicinity of this zone, the

optical force tends to move it (see white arrows on the same figure) toward this trapping

position.
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Figure 3.17: a)3D map of the optical force Fx in the xOz plane in front of the lens.

b)cross-section made over the figure (a), along the Ox-axis for d=2513.
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Figure 3.18: a)3D map of the optical force Fz in the xOz plane in front of the lens.

b)cross-section made over the figure (a), along the Ox-axis for d=2513.
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Figure 3.19: Map of the force amplitude (in color level) exerted by the focused light
passing through the microlens. The white arrows give the force direction and amplitude.
The black square shows the trapping zone.

3.6.1.1 Validation of the conservative character of the optical force

A force is qualified by "conservative" when the work of this force is independent from the

path and is equal to zero when the path is a closed loop. It depends only on the initial and

final positions. In other words, a Np located at the same physical location in a closed loop

must have the same kinetic energy at all times if it is within a conservative system. When

applied to our case, this means that the force (the flux of the Maxwell stress tensor) is

constant whatever is the closed surface that surrounds the Np. This property was verified

through the calculation of the force for different sizes of the box surrounding the spherical

Np as shown in the figure 3.20 a.
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Figure 3.20: (a) Schema of a biconvex microlens with sphere surrounded by different
boxes. (b),(c),(d) values variations of Fx, Fy, Fz respectively.

We calculated the force for each box dimension and we achieved a good results, that

are presented on figure 3.20 b,c,d, where the three force components are plotted versus

the box size. As shown, the variations of these component amplitudes are very small

and a maximum deviation of Fx = 0.39% A.U, Fy = 0.17% A.U, Fz = 0.0165% A.U is

obtained. This clearly demonstrates the conservative character of the optical force. This

proves that our code is valid with logical results.

3.7 Conclusions

In this chapter, we described all concepts and theoretical fundamentals (basics of elec-

tromagnetic theory, numerical tools, Yee algorithm,...) to understand the method used

to model light-matter interaction (FDTD algorithm) and to deduce the MST expression
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that leads to the determination of optical forces. We also made texts and verified our

code and all the numerical tools we used. These theoretical tools will be exploited in the

next chapter to compare experimental results of optical trapping against simulations.
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Chapter 4

Application 1: Optical tweezers based

on fibred Bowtie Nanoaperture

Antenna (BNA)

4.1 Introduction

This chapter deals with the 3D optical trapping of submicron particles. The originality

of this work deals with the use of a fibred nanotweezers based on a Bowtie Nanoaperture

Antenna (BNA). We show here optical trapping of nano-objects still observable with a

conventional microscope without fluorescence imaging techniques (preliminary step be-

fore switching to smaller particles). This study represents, to our knowledge, the first

demonstration of an all-fiber optical nano-tweezer (which is not limited by diffraction).

Optically-induced heating of the tip is weak enough to not affect the particle motion

within the close environment of the tip. This represents promising perspectives in the

optical manipulation of physical and biological entities down to the nanoscale. The re-
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cent achievement of optical trapping with plasmonic nano-antennas [89, 90] introduces

the prospect of the manipulation of deeply sub-wavelength entities in a highly controlled

and reproducible manner. However, the resulting optical architectures proposed so far are

limited to nano-antennas fabricated on planar surfaces and optically excited with bulky

optics(microscope objectives, polarizers, diaphragm, ...).

One notices that 3D optical trapping of polystyrene nanoparticle (diameter of 50 nm)

was proposed very recently [7] using a quite similar configuration based on the combination

of a BNA and a SNOM tip. No theoretical investigations on the optical forces were

presented in that paper. Trapping was demonstrated through far-field measurements of

the fluorescence emission modifications induced by the particle position as shown in figure

4.1.

Figure 4.1: Schema of the experimental configuration of BNA tip. (b) Experimental
time traces showing the transmission through the BNA at 1064 nm (red curved) and the
fluorescence from the trapped bead (blue curve). The increase in both transmission and
fluorescence corresponds to the trapping of a single 20 nm PS bead.[7]

Various optical tweezers involving fiber microtips [91, 63], and multicore lensed fibers

[92] have been demonstrated for the 3D optical trapping of particles of a few micron size.

The 3D optical trapping of sub-micron particles with a fiber system has recently been

achieved with the development of fiber 3D bottle beams [93] and plasmonic lenses [94]
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which are techniques based on diffraction limited focusing (Rayleigh criterion).

Our theoretical study is done in parallel with experimental study in our team by

Thierry Grosjean and Ali El Eter. Let us see in the following section(4.2) the reasons of

using BNA.

4.2 Bowtie Nanoaperture Antenna properties

The choice of the BNA is motivated by the fact that, at resonance, it exhibits high

electromagnetic field confinement together with electric intensity enhancement in its gap

zone. These two characteristics are necessary to expect optical force enhancement leading

to a possible trapping of very small nanoparticles. When engraved at the apex of a metal

coated tapered optical fiber, this BNA can be used both a nano-emittor [95]or a nano-

collector [96]. Its polarization properties are of interest due to the fact that its resonance

can only be induced with electric field directed along its axis (metallic arms direction).

Consequently, this BNA on tip was proposed as an efficient near-field optical probe [51]

that allows selective detection of the electric near-field components. As mentioned before,

the Nano-Optics team of FEMTO-ST also proposed this BNAT as a nano-tweezers to

trap microsized latex particles.

The resonance properties of BNA antennas were studied in [97] where a guided mode

inside the BNA was demonstrated to be at the origin of this resonance that occurs at

the cutoff wavelength of the fundamental guided mode. The latter is polarized along the

metallic arms of the BNA and it can only be excited by an incident beam having the

same polarization. Consequently, the BNA acts as a nanopolarizer with axis direction is

parallel to the metallic arms.
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4.3 Bowtie Nanoaperture Antenna design on fiber SNOM

tip

In order to make faithful numerical simulations, we have considered the exact fabricated

BNAT geometry to be introduced in our model. Experimentally, a polymer tip (30 mi-

crometer long, radius of curvature of 0.5 micrometer at tip apex) was considered to receive

the BNA at its apex. This kind of tip is now commercially manufactured by LOVALITE

startup based in Besançon. The tip is first obtained by photopolymerization at the cleaved

end facet of a monomode (λ ≃ 1064 nm wavelength) glass fiber[98]. The angle of the

tip body is about 14o. Next, the probes are metal coated with a few nanometer thick

titanium adhesion layer followed by a 150 nm thick aluminum layer to ensure robustness

to optically-induced heating due to in-fiber illumination figure 4.2 a. Aluminum is chosen

for its high conductivity at infrared frequencies leading to a strong antenna effect.

The metal layer thickness was measured to be 100 nm at the tip apex. Note that

the uncertainty of the metal layer thickness has no incidence onto the BNA resonance

properties [97]. To avoid surface roughness at the tip apex, the metal layer is abraded

over a thickness of about 70 nm by beam (FIB) from the tip side and inspected by scanning

electron microscopy (SEM). The FIB system used for this experiment is a dual beam FEI

Helios 600i with a Raith Elphy Multibeam attachment. This procedure, tested on several

tips, has a good reproducibility. These results in a flat homogeneous surface at the tip

apex that is a few hundreds of nanometers wide figure 4.2 b. Finally, a 165 nm wide BNA

with square gap of about 45 nm large and 45 flare angles is fabricated at the apex of the

tip by FIB milling. Figures 4.2 c,d display scanning electron micrographs of the resulting

fiber device.
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Figure 4.2: (a-d) SEM micrographs of the fiber-integrated nano-tweezer based on a BNA
fabricated at the apex of a SNOM tip: side view of the fiber metal-coated SNOM tip
(a) before and (b) after initial FIB processing to flatten the tip apex: the rough metallic
surface of the rounded apex is milled from the side to be finely polished. (c) and (d) side
and top views of the BNA at the tip apex, respectively (obtained by FIB milling from
the top) [8].

The BNA is to be resonant at a wavelength of λ ≃ 1064 nm when it is immersed

in water (refraction index n of 1.315). This wavelength is located in a transparency

spectral window of water. In our theoretical study, the design process is performed using

three-dimensional "Finite Difference Time Domain" method (3D FDTD) [69] and the

permittivity of the metal (aluminum) is defined with a Drude model. Figure 4.3 b shows

the resonance spectrum of the fiber-integrated BNA in water. The BNA is excited with

an incoming gaussian beam inside the tip (fundamental guided mode of the fiber). We

only modeled the last 2 micrometers of the tip body before the apex.

The input beam is polarized along the symmetry axis of the BNA that passes through

each metal triangles tip (called polarization axis of the BNA), and described by a single

temporal pulse. The time-varying optical fields are calculated at a single grid cell at
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Figure 4.3: (a)Schema of the end part of a polymer tip with half angle cone of 14o and
apex radius of 480 nm. The polymer has an optical refractive index n = 1.52 and the tip is
supposed to be coated by a 100 nm -thick aluminum layer. The permittivity of the latter
is defined with a Drude model where the plasma frequency is set to wp = 1.973×1016 and
the dumping term to Γ = 2.198× 1014rad/s. The geometrical parameters of the BNA are
: Dx = 135 nm,Dy = 165 nm and the gap g = 45 nm. b) Calculated near-field (at 15 nm
above the BNA) electric intensity enhancement of the BNAT shows a maximum of 90 at
λ ≃ 1064 nm.

the middle of the BNA feed gap. The spectrum of the electric field is then calculated

by Fourier-transforming this result (I(λ)) (where I = |E|2) and normalizing it by the

spectrum calculated with the same procedure without metal with only the polymer tip

(Iv(λ)). This leads to the definition of the electric intensity enhancement factor χe as:

χe =
I

Iv
(4.1)

We see that the BNA induces at λ ≃ 1064 nm a maximum χe = 90 enhancement of

the optical electric intensity.
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(c) (d)

(a) (b)

0 1

Figure 4.4: (a,b) Simulation of the distribution of optical electric field (amplitude) in a
transverse plane (perpendicular to the tip axis) taken 15 nm away from the tip (λ = 1064
nm), for two perpendicular polarization directions of the incoming waves (see arrows in
insets). (c,d) Far-field experimental images of the fiber tip output for two perpendicular
polarization directions of the in-fiber illumination (BNA on and off resonance, see arrows
in the insets)[8].

Figures 4.4 a and b show the simulation of the electric-field distribution (amplitude)

produced by the BNA at λ ≃ 1064 nm for an incident polarization parallel (on-resonance)

and perpendicular (off-resonance) to the polarization axis of the BNA, respectively. The

fields are calculated at a transverse (XY )-plane (perpendicular to the tip symmetry axis

(Oz)) 15 nm away from the tip apex. The electric field enhancement is induced at

the BNAs feed gap by a resonant optical capacitive effect in-between the two closely

spaced metal triangles of the BNA, which leads to a charge distribution in the gap zone

corresponding to an oscillating electric dipole [96, 99].
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The dipolar properties of the BNA, which are common to all gap-based nano-antennas,

associate the generation of a tiny "hot spot" to a high polarization sensitivity of the

nanostructure: the tight optical confinement is canceled and the intensity maximum over

the antenna is greatly reduced when the BNA is excited with optical waves polarized

perpendicularly to its polarization axis see figure 4.4 b. It achieved good agreement with

experimental results as shown in figures 4.4 c,d [8]. Also, the spatial distributions of

the electric intensity of the BNAT in longitudinal planes xOz and yOz are presented on

figure 4.5. It confirms the strong confinement inside the BNA gap. Instead of plotting the

electric intensity, we plot its fifth root in order to get clear insight on the confinement.
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Figure 4.5: Fifth root of the electric field intensity distributions in longitudinal planes :
xOz and yOz passing through the tip axis.

4.4 Experimental set-up

The experimental set-up developed in the frame of this study is shown in figure 4.6. The

BNA on fiber SNOM tip is mounted vertically onto a manual microstage. It is immersed

in a cuvette filled with a suspension of 0.5-micrometer large polystyrene latex beads

(Alfa Aesar) in water. To stay monodisperse, the particles are inserted into a cationic
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surfactant solution of cetyltrimethylammonium bromide (CTAB, > 99% pure, Merck) at

a concentration of 5× 10−4 M [100]. The cuvette is designed to provide 0.17 millimeter-

thick flat and transparent walls at two opposite sides and at the bottom for a double

cross imaging procedure. The overall system is mounted onto an inverted microscope,

equipped with a (×40, NA = 0.5) objective, for imaging the light spot at tip apex with a

CCD camera. Note that the fiber SNOM tip is placed close to the cuvette walls to limit

aberrations of the imaging systems. A polarization converter is used to define and modify

the orientation of the incident polarization on the BNA. The fiber is carefully fixed on

holders to prevent polarization changes during experiments. The fiber polarizer is set-up

to achieve successively the two desired perpendicular polarization states, which lead to the

maximum and minimum tip optical signal outputs. During this adjustment procedure, the

tip emission spot is imaged with the vertical far-field imaging channel shown in figure 4.6.

The two polarizer adjustments leading to the two orthogonal polarizations are recorded

for the following trapping experiments.

4.5 Numerical study

Before discussing trapping experiments, we will show the numerical results that we ob-

tained from FDTD simulations with respect to the configurations experimentally consid-

ered. We start by the study of the force calculation exerted by the BNA on tip on a

polystyrene bead of 250nm radius. Second, we will extend our numerical investigations

to point out the efficiency of the BNAT to trap smaller particles. For this purpose, the

trapping of R=30nm latex bead is studied. Finally, the potential is determined in order

to quantify the trapping efficiency by comparing it to the Brownian one and effect of the

particle weight is also discussed.
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Figure 4.6: Schema of the experimental setup used to the visualization of the particle
trapping with the BNAT. Two illumination sources are used: first one thanks to laser
@ λ = 1064 nm that is injected inside the fiber to induce the BNA resonance. The
second is a white-light source used to directly illuminated the bowl that contains the
suspended particles in water. The visualization of the particle position is obtained through
a conventional optical system combining a microscope objective with a CCD camera.

4.5.1 Study of large particle trapping R = 250 nm

4.5.1.1 Optical force calculations

First, we study the optical force produced on 250 nm-radius latex particle (n = 1.45).

The calculation window dimension is (2.4, 2.4, 2.58)µm in x, y and z directions respectively

and it is delimited by perfectly matched layer (PML) absorbing boundaries conditions. A
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uniform 3D meshing with ∆x = ∆y = ∆z = 15 nm is applied to describe the structure

(BNAT + dielectric bead). A subgriding technique is employed to faithfully characterize

the permittivity of the dielectric nano-bead [101]. The three components of the optical

force are then calculated through the eq. 3.18 as mentioned previously in (3.4.2) for

different positions of the particle when the latter is moving in a xOz and yOz longitudinal

planes.
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Figure 4.7: Calculated optical forces for latex nanoparticle of radius R = 250 nm. (a)
Distribution of the force amplitude (0.8 power in order to better see the large variations
at small distances) in the yOz plane as a function of the BNAT-latex particle distance
d.(b) same as (a) but in the xOz plane.

These results are presented on figure 4.7 a and b where the tangential component F⃗T

(F⃗xz in (a) and F⃗yz in (b)) is indicated by black arrows. We have considered 961 different

positions of the particle (i.e. 961 3D-FDTD simulations) where each simulation needs

10 hours CPU-time and more than 5.9Go memory. The color background corresponds

to |F⃗T |0.8 where the 0.8 power is chosen in order to soften the large variations at small

distances. Note that normal component (F⃗y in (a) and F⃗x in (b)) falls to zero. We can

observe in figure 4.7 a and b, the arrows converge towards the center of (BNAT) due

to gradient pulling force even if the latex nanoparticle is far from the tip axis in both
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xOz and yOz. The normalization of the optical force was done by dividing it by the

total energy of the incident guided mode inside the tip (Poynting vector flux through a

transverse section of the fiber). In order to point out 3D trapping and trajectories of the

particle before it is trapped, we also calculate the optical force in two transverse planes

(xOy) at two different BNAT to bead distances.

We first consider that the particle is located at small distance (d = 45 nm). The

obtained three components (Fx, Fy, Fz) of the exerted force by the BNAT are shown in

figure 4.8 a where the Fz component is mapped in color level while the black arrows

indicate the transverse component (Fx, Fy). Figure 4.8 b show the cross-sections made

over the figures 4.8 a, along the Oy−axis which corresponds to the direction of the BNA

metallic arms (i.e. to the incident beam polarization direction that induces the BNA

resonance). As it can be seen, for d = 45 nm, an efficient lateral trapping is obtained

in the central zone where all arrows converge toward the center of the figure i.e. the

tip axis. In addition, the vertical component (Fz) is positive (as obtained previously in

figure 4.7) meaning an attractive force between the BNAT and the latex spherical bead.

Unfortunately, the lateral force becomes centrifugal outside a rectangular-shaped area

(see the rectangle in black dashed line on figure 4.8 a) meaning a leakage of the particle

away from the BNAT. The symmetry of this zone can be deduced from the convolution

of the electromagnetic near-field gradient more precisely the Maxwell stress tensor which

has the same symmetry properties as the BNA (C2v) by the particle circular symmetry

(projection of the spherical symmetry on the xOy plane).

The result has then a (C2v )symmetry properties. The dimensions of this rectangle

exactly corresponds to the particle positions for which the vertical projection of the par-

ticle on the tip contains the electromagnetic near-field of the BNA. In other terms, if we

assume that this near-field is only localized at the BNA edges, the particle positions arise
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Figure 4.8: (a) is map of the optical force in the plane located at d = 45 nm from the tip .
The arrows indicate the tangential force component in xOy plane while the color level is
associated with the vertical component. (b) Is cross-sections made over the Figures (a),
along the Oy−axis which corresponds to the direction of the BNA metallic arms (i.e. to
the incident beam polarization direction that induces the BNA resonance).

from (x = −R+Dx/2) to (x = R−Dx/2) in the x-direction and from (y = −R+Dy/2) to

(y = R−Dy/2) in the y-direction leading to a rectangle sides of (Lx = 2R−Dx = 365 )

nm and (Ly = 2R − Dy = 335 ) nm. Nevertheless, there are many oscillations (in-

stabilities) that appear outside this rectangular area. They are directly linked to the

BNA-particle interaction when the curved edge of this latter intersects the BNA electro-

magnetic near-field. The width of these oscillations is linked to the spatial extension of

the electromagnetic near-field around the BNA. In a first approximation, this corresponds

to the BNA dimensions (Dx, Dy).

Let us now consider large BNAT to nano-bead distance (d = 195 nm). In this case,

we have exploited the symmetry of the structure so that only 1
4

part of the total area

is considered. This leads to decrease the total number of simulations from 961 to only

256. We can note that the oscillations (instabilities) disappear as result of less direct

interaction between the BNA and the particle. Moreover, we achieve stable trapping at

this distance. We can see very clearly that arrows are always directed toward the center

of the BNAT due the gradient force.
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Figure 4.9: (a) is map of the optical force in the plane located at d = 195 nm from the tip
. The arrows indicate the tangential force component in xOy plane while the color level is
associated with the vertical component. (b) Is cross-sections made over the Figures (a),
along the Oy−axis which corresponds to the direction of the BNA metallic arms (i.e. to
the incident beam polarization direction that induces the BNA resonance).

To determine if this force is sufficient to overcome the Brownian motion, we should

calculate the corresponding potential as it will be shown in the following section (4.5.1.2)

4.5.1.2 Potential calculations

The conservative character of the optical force allows to express it through: F⃗ = − ⃗grad(U).

Where U is the potential that is defined to vanish at infinity. From this equation, the

potential can be numerically calculated as:

U(r0) = −
∫ r0

∞
F⃗ (r) d⃗r (4.2)

To evaluate this integral we need to calculate the force along a continuous path from

the infinity to the considered position of the bead. This is clearly impossible. We have

made the assumption that infinity distance corresponds to the largest tip-to-bead distance

allowed by the FDTD simulations (due to the finite size of the calculation window) and
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verifying that, at this position, the force value is very weak compared to small BNAT -to-

bead-distance. Consequently, the calculated potential value will be larger than the exact

one. We used eq.4.2 to calculate the potential well in two longitudinal planes xOz and

yOz. The potential is presented in the two planes in kT units where k = 1.3806488J.K−1

is the Boltzmann constant and T is the absolute temperature taken to be T=298oK.
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Figure 4.10: Calculated potential well for latex nanoparticle of radius R = 250 nm. (a)
The associated potential showing a 180 kT well at d = 120 nm in yOz plane. (b) same
as (a) but in the xOz plane.

Thus, we did integration of trajectory started from farthest position of latex nanopar-

ticle in the longitudinal planes xOz and yOz (at the corner of the calculation window).

Currently, efficient trapping requires a minimum of 10 kT [4, 5] potential well if the par-

ticle weight is neglected. This last point will be discussed in the following. In our case,

this can be achieved with less than 6 mW incident power inside the fiber (see figure 4.10

a and b). One notice that this power is of the same order of magnitude as in the case of

coaxial plasmonic aperture studied in [5].
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4.5.1.3 Buoyancy calculations of the nanoparticle

The trapping efficiency can also be discussed in terms of force strength without considering

the potential. In fact, the maximum theoretical value of the vertical force is Fmax
z =

12 pN/100mW corresponding to a particle-BNA distance of d = 45 nm see figure 4.13.

However, trapping is obtained with a minimum light power that can, at least, induce an

optical force that allows compensation of the residual weight of the latex sphere in water.

The latter is calculated, through the Archimedes’ principle that is illustrated in figure

4.11.

Gravity

g ρO V

g ρf V

Buoyancy

ρf
(density of the fluid)

ρO
(density of the object)

Figure 4.11: Archimedes’ principle

The residual weight Pr of the latex sphere in water is calculated by using the following

equation:

Pr = Po − Pf (4.3)
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Where Po and Pf are the weight of the object "gravity force" and weight of displaced

fluid "buoyancy force" respectively. These two quantities satisfy the two following equa-

tions:

Po = g · ρo · V

Pf = g · ρf · V

Where g = 9.8 N
m2 is gravitational acceleration, ρo = ρlatex = 2.634 g/cm3 and ρf =

ρwater = 1g/cm3, are volumetric mass densities of latex sphere and water respectively,

V = 4
3
· π · R3 is the volume of latex sphere. Thus, we found the residual weight of the

latex sphere in water to be equal to Pr = 1.048 × 10−15 N. Practically, optical forces

must be greater to inhibit the Brownian motion of the particle. Consequently, an injected

power of only 1 mW leads to an optical force hundred times larger than Pr.

4.6 Experimental vs numerical results

Our theoretical results are in a very good agreement with experiments done by our team

[8] where similar BNA on tip was used to successfully trap latex nanoparticles of 250 nm

radius. As shown on figure 4.12, optical trapping is obtained when the BNA resonates

with injected light power of only 1.2 mW.

In fact, this value is smaller than 3.3 mW that corresponds to the theoretically cal-

culated one needs to get a potential well of 10 kT. Indeed, the latter was determined for

a distance d = 45 nm instead of a BNA-particle contact. Also from the experimental

results, the trapping was never been achieved when the particle comes from the lateral
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BNA on-resonance
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t=0s t=1s

BNA on-resonance

Trapping

Figure 4.12: Time evolution of the trapping process showing four different positions of
the latex particle when the BNA resonates.

side. In fact, the particle was first ejected upwards and then it went down to get into

the potential well following a quasi-axial path in front of the tip. This is in very good

agreement with results of figures 4.7 a,b and 4.10 a,b which clearly show that 3D trapping

can be achieved except if the nanoparticle approaches the tip from the lateral side (see

also figure 4.8). The privileged trapping path is then along the tip axis due to efficient

attractive vertical force.
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In addition, additional experiments were done by T. Grosjean and A. El Eter to

qualitatively study the trapping as a function of the light power. Due to the polarization

sensitivity of the BNA’s resonance, one experimentally modified the light energy near the

BNA by manipulating the polarization of the incident beam. The trapping occurred but

the particle directly leaved the BNAT. They have estimated the effective power of the

light part that is incident on the BNA to 0.7 mW. This theoretically corresponds to a

potential well of only 2.1 kT at a tip-particle distance of d = 45 nm that is not sufficient

to keep the particle in trap.

Due to the high spatial confinement of light in the BNA gap, one can expect possi-

ble trapping of smaller particles. Nevertheless, experiments were first done with bigger

particles in order to make a direct visualization of the trapping through conventional op-

tical system (diffraction limited beams) as shown on figure 4.12. Nonetheless, trapping of

smaller nano-particles by BNAT will be theoretically studied in the following.

4.7 Comparison between conventional metal coated SNOM

and BNAT as optical tweezers

Usually, SNOM probes are made of metal coated tapered optical fibers where a cylindri-

cal hole is engraved at their apexes. Such probes were proposed as optical tweezers [4].

Nevertheless, as it will be discussed later, large aperture radius is needed to get electro-

magnetic resonance inside the cylindrical hole. This kind of SNOM tips are commonly

not used because they induce small resolution in the near-field imaging process.

Nonetheless, we have performed numerical simulations to compare the optical forces

generated by such a hole aperture tip with the BNAT ones. Let us first emphasize the
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force behavior along the BNAT axis. As shown on figure 4.13 a, efficient and monotonic

pulling force is obtained for small distances meaning that the trapping corresponds to a

bead pressed against the BNA with a potential well of almost 300 kT as shown on figure

4.13 b. This potential well value is sufficient to over-come of Brownian motion and allows

to trap nanoparticle.
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Figure 4.13: (a) Numerical results of vertical force of R = 250 nm as a function of the
BNAT-particle distance when the latter moves along the tip axis. Smaller values of d are
considered in order to quantify the pulling force near the tip apex (F = 12 pN/100mW
@ d = 45 nm). (b) the corresponding potential showing a well of 300kT at d = 45 nm.

Two different configurations of hole apareture tip (HAT) are considered: Let us em-

phasize that the force exerted by a cylindrical aperture having the same opened area as

the BNA and larger one exhibiting the same resonance wavelength as the BNAT. Figure

4.14 a presents the electric near-field enhancement factor in both cases. One can clearly

see that the small HAT (R = 56 nm) did not show any resonance (see solid blue line) in

the considered spectral range (λ ∈ [700− 1300] nm). Consequently, no light confinement

is obtained and very small optical force is obtained at λ = 1064nm along the tips axis

(see solid blue line on figure 4.14 b). On the contrary, if we increase the aperture hole



4.7. Comparison between conventional metal coated SNOM and BNAT
as optical tweezers 113

radius to R = 150 nm, electric near-field resonance (see dashed red line on figure 4.14 a)

appears around λ = 1064 nm resulting from the excitation at its cutoff wavelength of the

fundamental guided mode of the hole aperture waveguide [102]. Consequently, efficient

gradient force can be obtained along the tip axis at this resonance but it remains 2 times

smaller than the BNAT one. Unfortunately, the transverse spatial extension of the EM at

resonance plays a negative role if we attempt to trap a single particle. For all the above

reasons, BNAT seems to be more appropriate to act as both optical tweezer and NF probe

with resolution estimated to its gap dimension [96].
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Figure 4.14: (a) Calculated near-field (at 15 nm above the HAT) electric intensity enhance-
ment of the HAT in two case:1) HAT =56 nm blue solid line not show any resonance.2)
HAT=150 nm shows a maximum of 0.023 at λ ≃ 1064 nm. (b)Numerical results of ver-
tical force of R = 250 nm as a function of the cylindrical aperture-particle distance when
the latter moves along the tip axis.Green curve corresponds to same opened area as the
BNA, blue curve corresponds to same resonance of BNA

In fact, the light confinement in this case is very weak compared to the BNAT case

but the transmitted light power is larger because the opened area is 7 times greater. Note

that such a large diameter cylindrical aperture tip can hardly be used in a SNOM imaging

experiments because it allows very low resolution and can hardly lead to a good lateral

trapping of small particles.
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4.8 Study of small particle trapping

As presented previously in(4.5.1.1) and (4.5.1.2) for the calculation of the optical force and

the potential for the large radius, we used the same procedures to numerically study the

case of two smaller spherical latex particles with radius of R = 100 nm and R = 30 nm

respectively. First, the numerical simulation in longitudinal planes xOz and yOz are

performed. Obtained results for the force and potential are presented on figures 4.15 and

4.16. The trapping is demonstrated for both particles. Nevertheless, the force gradients

are different from one to the other. For the particle of radius R = 100 nm, one can see

the occurrence of a non monotonic evolution of the force versus the distance d as shown

in figure 4.15 c with a depletion between d = 45 nm and d = 135 nm at d = 75 nm.

Nevertheless, as seen on the figure 4.15 c, a small potential well (only U = −140 kT)

is obtained, leading to a pulling force that will press against the BNAT similarly to the

case of 250 nm-radius particle. This becomes completely different for the smallest studied

particle of radius R = 30 nm as shown in figure 4.16. A change of the vertical force sign

occurs for d < 139 nm meaning a repulsive force on the particle see figure 4.16 c. At this

distance, the potential exhibits a well of U = −47 kT meaning a trapping of the particle

without tip contact as shown on figure 4.16 d. We believed that this can only be due to an

increase of the radiation pressure relative to the gradient force. In fact, the particle is too

small to induce a modification of the spatial distribution of the EM near-field generated

by the BNAT. In this case, the particle can be seen as completely opaque so that gradient

force decreases (as for a metallic particle).

Then, we calculated the optical force exerted on the particles in a transverse plane

xOy placed at two different distances from the BNAT. In both cases, these distances

correspond to a stable trapping position of the particle along the z-axis. The R = 100nm
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Figure 4.15: Calculated optical forces for latex nanoparticle of radius R = 100 nm. (a)
bottom : distribution of the force amplitude (0.8 power in order to better see the large
variations at small distances) in the yOz plane as a function of the BNAT-latex particle
distance d. (a) top : the associated potential showing a 100 kT well at d = 120 nm. (b)
same as (a) but in the xOz plane.(c) vertical force as a function of the BNAT-particle
distance when the latter moves along the tip axis. Smaller values of d are considered in
order to quantify the pulling force near the tip apex (F = 3.5 pN/100mW @ d = 45 nm).
(d) the corresponding potential showing a well of 140kT at d = 45 nm.

particle is located at small distance (d = 45 nm) and for the smaller particle R = 30 nm

at the distance (d = 105 nm). The obtained three components (Fx, Fy, Fz) are shown

in figures 4.17 a and 4.18 a where the Fz component is mapped in color level while the

black arrows indicate the transverse component (Fx, Fy). Figures 4.17 b,4.18 b show the

cross-sections made over the figures 4.17 a,4.18 a, along the Oy−axis which corresponds

to the direction of the BNA metallic arms (i.e. to the incident beam polarization direction

that induces the BNA resonance). As the same calculation of the particle R = 250 nm, we

have considered 961 different positions of the particles (i.e. 961 3D-FDTD simulations).
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Figure 4.16: Calculated optical forces for latex nanoparticle of radius R = 30 nm. (a)
bottom : distribution of the force amplitude (0.8 power in order to better see the large
variations at small distances) in the yOz plane as a function of the BNAT-latex particle
distance d. (a) top : the associated potential showing a 40 kT well at d = 120 nm. (b)
same as (a) but in the xOz plane.(c) vertical force as a function of the BNAT-particle
distance when the latter moves along the tip axis. Smaller values of d are considered in
order to quantify the pulling force near the tip apex (F = 1.2 pN/100mW @ d = 105 nm).
(d) the corresponding potential showing a well of 47kT at d = 105 nm.

As it can be seen from figure 4.17, the particle with radius R = 100 nm shows not

efficient lateral trapping in the central zone where all arrows converge toward the rectangle

edge. This happens as result of the interaction between the BNAT and the particle. Since,

the particle has small radius and at small distance from the tip apex the electromagnetic

field leads to instability of optical trapping. For the R = 30nm radius particle, the xOy

plane is placed at d = 105nm that correspond to a stable trapping along the z-direction as

mentioned before. The obtained force components in this plane are plotted in figure 4.18a

(bottom) where all arrows are also indicating efficient lateral trapping of the particle. In

addition, the vertical component (Fz) minimum in this plane at d = 105 nm.
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Figure 4.17: (a) is map of the optical force in the plane located at d = 45 nm from the tip
of R = 100 nm. The arrows indicate the tangential force component in xOy plane while
the color level is associated with the vertical component. (b) is cross-sections made over
the figure (a), along the Oy−axis which corresponds to the direction of the BNA metallic
arms (i.e. to the incident beam polarization direction that induces the BNA resonance).
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Figure 4.18: (a) The optical force in the plane located at d = 105 nm from the tip of
nanoparticle with R = 30 nm where the arrows indicate the tangential force component in
xOy plane. (b) is cross-sections made over the figure (a), along the Oy−axis which corre-
sponds to the direction of the BNA metallic arms (i.e. to the incident beam polarization
direction that induces the BNA resonance).
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4.9 Conclusion

In summary, we have theoretically and numerically studied the optical trapping of polystyrene

latex particles thanks to a standalone fibred optical tweezers based on the combination

of a metal coated SNOM probe and a bowtie nanoaperture antenna engraved at its apex.

Experiments well agree with numerical simulations performed within a latex particle ra-

dius of R = 250 nm where trapping has been studied as a function of the illumination

light power. Supplementary numerical simulations show that this configuration is able to

trap smaller particles even if the involved potential wells are lower. We continue our the-

oretical and experimental investigations to highlight and better understand the trapping

process in the case of nanosized particles where it is expected but under certain constraints

(appropriate initial spatial position of the particle and substantial light power) without

risking destruction of the BNAT by optical heating for example.
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Chapter 5

Application 2: Optical tweezers based

on Diabolo Antenna (DA)

5.1 Introduction

In this chapter, we are interested to address another kind of nano-antenna as efficient op-

tical tweezers. In fact, even if monopole, dimmer, bowtie-shaped or bowtie nano-aperture

antennas are good candidates to confine light down to the nano-scale, only electric field

confinement occurs within such structures. To exacerbate the optical force, it is possi-

ble to increase both the electric and the magnetic field confinement. Metallic nanorings

[103, 104] or diabolo nano-antenna (DA)[105] were recently proposed as magnetic field

detectors due to their specific magnetic properties. The DA was recently proposed to

generate huge magnetic near-field when illuminated by linearly polarized wave along its

axis. The Nano metal structure able to generate greatly enhanced electromagnetic fields

in order to their form and composition [10, 106]. Recent demonstrated in nano optics

is nano-antenna, bowtie Nano antenna (BA) [107, 55] and Bowtie Aperture Antenna
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(BAA) [108], which can confine and enhance the electric field. Additionally, in recent

study confinement and enhancement magnetic field by applying Babinets principle, in

near infrared by using the complement of a Bowtie Aperture Antenna (BAA) called di-

abolo antenna (DA) [9] have been investigated. Figure 5.1 c shows optical plasmonic

trapping of 350 nm polystyrene particles with nanoblock pairs. The plasmonic trapping

takes place in the red cycles of (c). Bright scattered light is observed around pairs. When

nanoparticles pass sufficiently close to pairs, they get trapped and appear as bright scat-

tering centers [9].

(a) (b)

(c)

Figure 5.1: (a) SEM of pairs of gold nanoblocks with 5 nm gaps. (b) Calculated near-field
distributions near a model gold nanoblock pair at an 800-nm incident wavelength. Block
size= 80 × 80 × 30nm and gap distance = 5 nm for xz plane yz plane on the pair as
shown to the left side of panels respectively. (c) Optical plasmonic trapping of 350 nm
polystyrene particles with nanoblock pairs [9].

Babinets principle is a traditional concept of the light wave theory. It had been
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used to make simple analysis of some diffraction problems [109, 110] and implemented

as an approximation for meta materials with limited thickness [111, 112]. By using nano

designed plasmonic dipole antennas, gold nanoparticles with 10 nm trapped [113, 60,

114]. The study of Diabolo Antennas (DA) interested of the electric and magnetic field

enhancement. It contribute of increase the optical forces which generated on dielectric

nano particles to exploited it for optical trapping.

Numerical 3D-(FDTD) simulation results demonstrate the high confinement of the

electromagnetic field in the vicinity of the DA. We propose here to exploit this enhance-

ment of the magnetic field for the trapping of Nps as small as 25nm radius. Results

show that, by adjusting the DA geometry, it is possible to get a double electro-magnetic

confinement in the vicinity of the DA gap zone. Moreover, the trapping process depends

on the Np dimensions and that, for specific geometries, trapping without contact can

be achieved. This doubly resonant structure opens the way for the design of a novel

generation of efficient optical nano-tweezers.

5.2 Diabolo nano-Antenna (DA) properties

The diabolo antenna is inspired by the principle of Babinet, which specifies that electro-

magnetic field diffraction by any aperture in an infinitely thin layer of perfect metal, are

the same as those diffracted by the complementary structure [115], provided replacing the

magnetic field by the electric field and vice versa. To numerically check this principle,

we consider the case of a DA for which the complementary structure is a BNA as shown

in figure 5.2 a and b. BNA allows electric field enhancement 1 due to a capacitive effect

(charge accumulation at the edges of the metallic arms (see figure 5.2 c)) while the DA

1Let us recall that electric or magnetic enhancement factors (χe and χm) are defined, as in the previous
chapter, as the ratio of the square modulus of the field with DA to the same quantity without DA
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can be seen as an inductive component allowing charge to travel between these arms (see

figure 5.2 d). Let us note that the two above effects (capacitive or inductive) are induced

by the EM field component that is directed along the antenna-axis that is defined by the

metallic arm axis. Numerical simulations were performed in two different cases: DA and

BNA made on perfect conductor or on real metal (gold for instance). Near-field (5 nm

above the NA) enhancement spectra of the electric and magnetic fields are presented on

figure 5.3 for D=135nm, G=15nm and T=20nm. As it can be seen, the Babinet principle

is almost verified in the near-field only for perfectly conductor while a discrepancy appears

in the case of gold. This can be attributed to the EM field penetration inside the metallic

part of the NA.

(b)(a)

+ ++

Q

---

E B

j

(c) (d)

BNA

DA
T

GD

Figure 5.2: (a) 3D view BNA and (b) its complementary DA nano antenna. (c, d) Phys-
ical principles of EM field confinement appears in the bowtie nanoaperture and diabolo
nanoantennas.

5.3 Optimization of the diabolo antenna geometry

As mentioned in the previous chapter, optical trapping is commonly performed in liquid

in order to compensate the particle weight by the buoyancy. Consequently, we have

performed 3D simulation of DA placed in water as function of DA geometrical dimensions.
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Figure 5.3: Near-field electric and magnetic spectral responses of Diabolo nanoantenna
(DA) and its complementary structure Bowtie nanoaperture antenna (BNA) .(a) Perfect
metal.(b) Real metal.

The figures 5.4 a,b show the electric and magnetic spectral responses of different DA

length D with fixed G = 25 and T = 20 nm. Four different values of D are considered:

D = (135, 145, 155, 165) nm to point out the influence of this parameter on both the

enhancement factor and the resonance wavelength value. The results demonstrate very

clearly the high magnetic field enhancement compared to the electric field one as shown in

figure 5.4 a,b. We note from this figure that electric and magnetic resonances occur at the

same wavelength value whatever the NA length. This result is very important since we

attempt to get simultaneous electric and magnetic confinement. In addition, the electric

field enhancement factor seems to be independent of the D parameter while the magnetic

one linearly increases with D.

Similar studies were performed by varying, first, the gap size G (see figure 5.5) keeping
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Figure 5.4: (a)Magnetic and (b)Electric spectral responses as a function of length D with
fixed value of G = 25 and T = 20 nm of a gold DA immersed in water.

D = 135 nm and T = 20 nm and, second, the thickness T (see figure 5.6) for fixed values

of D = 135 nm and G = 25 nm. We can notice, that in both cases, the resonance

wavelength evolves by decreasing G and/or when T increases. In addition, the grow of

the resonance wavelength (RW) is always accompanied by an increasing of the electric

and magnetic field enhancements. Results of figures 5.4,5.5,5.6 can be exploited to fix the

geometry of the DA as a function of the desired value of the RW. To elucidate the relation

between the RW/enhancement factor and these geometrical parameters, we took the RW

and maximum factor of enhancement values varying with DA geometrical parameters as

shown in figure 5.7 a,b,c. The obtained results showed almost linearly behaviors in each

DA parameters except DA thickness T.

From these studies, and according to the technological constraints and optical sources

that are available in our team, we have fixed the DA geometry to a total length D =

135 nm.

Let us notice that this geometry can be adapted as function of the surrounding media.

The DA resonance wavelength evolves linearly with the refractive index of the media
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Figure 5.5: (a)Magnetic and (b)Electric spectral responses as a function of gap G with
fixed value of D = 135 and T = 20 nm of a gold DA immersed in water.
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Figure 5.6: (a)Magnetic and (b)Electric spectral responses as a function of gap T with
fixed value of D = 135 and G = 25 nm of a gold DA immersed in water.

(λH2O
res × nair = λair

res × nH2O) as it can be seen form figure 5.8 where the cases of air and

water are compared. The enhancement factors of the magnetic and electric fields are

given in figure 5.8 a and 5.8 b respectively when the illumination is a plane wave linearly

polarized along the DA axis (magnetic resonance is induced). As expected, both fields

are efficiently enhanced over a broadband spectral range (resonance with small quality

factor ∼ 10). Indeed, one obtains χair
e = 171.7 and χH2O

e = 120.3 at λair
res = 1112 nm
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and λH2O
res = 1458 nm respectively. Moreover, the magnetic field responses presented in

figure 5.8a show larger enhancements than for the electric field with χair
m ≃ 285.8 and

χH2O
m ≃ 197.2 at the resonance wavelengths.
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Figure 5.8: (a)Magnetic and (b) electric spectral responses of a gold DA with D = 135
nm, G = 25 and T = 20 nm immersed in air (black dashed lines) and in water (red solid
lines).

Figure 5.9 a presents the distribution of magnetic and electric fields in water at

(λwater
res = 1458 nm) along a transverse (xOy) plane 5 nm above the DA (transmission

side). As expected, an enhanced magnetic field is obtained all around the metal gap while

the enhancement of the electric intensity arises mainly at the corners of the nanoantenna.

The highly confined distribution of the magnetic field around the metal gap shows that

the resonance mode (probably a localized plasmon resonance) incurred by the diabolo

nanoantenna is linked with an effective wavelength much smaller than the vacuum wave-

length. This property may be happened as result of the triangular geometries of the

diabolo nanoantenna since triangular and conical structures are known to support plas-

mon modes of very small wavelengths [116, 117]. The equivalent field distributions in a

vertical xOz and yOz are presented on figure 5.9 c,d,e,f respectively. They confirm the

strong confinement of the magnetic field all around the gap zone while the electric field is

slightly more confined at the corners than at the DA center. The white arrows of figure

5.9 f show the direction of the tangential magnetic field that is rotating around the DA

axis as due to the presence of an oscillating electric current between the DA metallic arms

inside the metal gap.
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5.4 Optical force calculations with the diabolo antenna

In this paragraph, we first study the optical force exerted by a plane wave on a self-

suspended DA in air and in water. We will show how the EM field redistribution, induced

by the DA resonance, acts on the DA and enhances the radiation pressure. In a second

part, we consider the DA as a nano-tweezer deposited on a flat interface substrate to trap

spherical nano-beads.

5.4.1 Optical force on self-suspended diabolo antenna

First, we have calculated the optical force generated on the DA when it is illuminated by

a plane wave linearly polarized along its axis (x-axis here to induce the DA resonance)

and along the perpendicular direction (off-resonant DA). Indeed, the redistribution of the

EM field around the DA due to its resonance can lead to enhance the radiation pressure.

This is verified through the results presented in figure 5.10 where longitudinal (along the

illumination direction) resulting force, per unit of incident power (here 100mW ) on the

DA, is shown for the two cases as a function of the wavelength. A maximum of force

only appears when the DA resonates and its value is almost 121 times greater than the

off-resonance case for a DA immersed in air and 91 times larger in water.

The same phenomenon exists for other Np geometries provided electromagnetic (elec-

tric and/or magnetic) resonance of the Np. Indeed, the more is the scattering cross section

of the Np, the more the modification of the electromagnetic field around it is important

and the more the radiation pressure can be large. In order to exploit this field redistri-

bution (high confinement at the gap zone), we will consider a tied DA to a flat substrate

in order to see how it can act as a tweezer for the trapping of Nps.
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Figure 5.10: Numerical results of the optical force of DA immersed in air (black dashed
lines) and in water (blue solid lines) as a function of the wavelength in two cases: 1) DA
on resonance 2) DA off resonance.

5.4.2 Optical force exerted by a diabolo antenna on nanoparticle

After these preliminary results on the DA itself, we propose to use it as an efficient optical

tweezers where forces are exalted by doubly increasing and confining the electric and the

magnetic fields. From the last section (5.3), we obtained large enhancement factors of

both electric and magnetic fields that could lead to increase the optical forces exerted

on Nps placed in front of the DA. A sketch of the proposed gold Diabolo antenna is

shown in figure 5.11. The Diabolo antenna is supposed to be deposited onto a glass

substrate ns = 1.49 and surrounded by a liquid (water nwater = 1.315) that holds the

NPs. As mentioned previously, the presence of the liquid is essential to compensate the

Np weight by the buoyancy. First, we have calculated electric and magnetic near field

spectral response of the DA on substrate. Figure 5.12 give the enhancement factors of

the magnetic and electric fields respectively when the incident polarization is directed

along the DA axis. The magnetic field enhancement presented in figure 5.12 shows larger

efficiency than for the electric field with χm ≃= 169.3.5 and χe ≃= 126.1 at the resonance
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Figure 5.11: Schematic of the diabolo nano-antenna D is the total length in both x and
y directions, G is the gap size and T is the thickness in z direction onto a glass substrate
and Np as sphere with radius R surrounded by water.

wavelengths that passes from λ = 1458 nm in the case of self-suspended DA in water to

λres = 1523 nm for the DA on substrate. This variation of the RW is similar to what it

was theoretically expected [118] and experimentally observed [119] with another kind of

nano-antenna, namely a BNA made in aluminum.
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Figure 5.12: Magnetic and electric spectral near-field responses of a gold DA with D = 135
nm , G = 25 and T = 20 nm deposited on a glass substrate and immersed in water.
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At the first glance and compared to the enhancement of the electric field generated

at the vicinity of the BNA, the DA seems to be more able to act as a nanotweezer.

Unfortunately, there is a major discrepancy between the two nano-antennas: contrarily

to the BNA, the electromagnetic field exerted on the Np presents a predominant part

(radiation pressure) when it is far from the nano-antenna. Thus, we expect an efficient

trapping only for small DA-to-Np distances. In addition, the effect of this background

illumination may lead, according to the Np dimension, to a trapping position without

contact (compensation of the radiation pressure by the gradient force). To investigate

all these assumptions, we have made extensive simulations to quantify the force exerted

on dielectric Np. We presents here three different studies where only the Np position

along the vertical axis passing by the DA center (perpendicular to the substrate plane) is

considered. The calculated vertical force Fz (the only non zero component of the force) is

normalized by the total energy impinging the DA. In the first study, the radius of the Np

is fixed while its position varies together with the illumination wavelength. In the second

study, the distance S is fixed and the two other parameters vary (R and λ). Last study

is done when fixing the wavelength and varying R and S. The corresponding results are

shown of figures 5.13, 5.14 and 5.15.

We found that optical trapping of the Np depends on all these parameters. For each

case, two different zones, the attractive and the repulsive ones, are pointed out with a

separation line of zero vertical force corresponding to the trapping of the Np. According

to the coordinate system in figure 5.11 a negative value of Fz corresponds to an attractive

force while positive one leads to push the Np away from the DA.

In figure 5.13, four values of the Np radius are considered: R=30, 40, 55 ,70 and 90

nm. For R=30 nm, figure 5.13 a shows that attractive force occurs at small distance S

for small values of the wavelength (<1800 nm). The yellow line represents the separation



5.4. Optical force calculations with the diabolo antenna 133

between the two zones. One notes that when trapping occurs, it corresponds necessarily

to a contact between the DA and the Np because the potential well is located on the DA.
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Figure 5.13: Map of vertical force numerical results presented as a function of the DA-to-

Np distance S and the wavelength illuminations λ for different Np radius: a) R=30 nm.

b) R=40 nm. c) R=55 nm. e) R=70 nm. f) R=90 nm. d)Show the potential well of Np

with R=55 nm.
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If we increase the radius value to R=40nm, the attractive zone becomes limited to

wavelengths smaller than λres. In fact, as shown on figure 5.13 b, Fz vanishes at resonance.

This can be due to the fact that the radiation pressure becomes larger while the gradient

force is kept the same. According to figures 5.9 a and b, the trapping is then induced

by the magnetic field confinement that occurs at the DA center. For R=55 nm (see

figure 5.13 c), a very interesting phenomenon appears for λ ∈ [1300; 1470] nm where the

attractive zone is surrounded by a repulsive one when S increases. This means that a

stable trapping can be obtained without contact. Figure 5.13 d presents the potential

corresponding to figure 5.13 c where a potential well (U = −150kT/100 mW) is obtained

only for small values of S. We have verified that this trapping at distance phenomenon is

also obtained for R ∈ [50, 65] nm but for different wavelength intervals as it will be shown

in the following. When the Np radius increases (see figures 5.13 e and f), the attractive

zone shifts toward larger values of the wavelength due to the efficient overlap between the

Np and the electric field of the DA generated at its corners. By the way, another value

of R exists for which the vertical force vanishes at resonance (here R=70 nm as seen on

figure 5.13 e).

In figure 5.14, four values of the DA-to-Np distance are considered: S=15, 55, 95 and

155 nm. For S=15nm, figure 5.14 a shows that attractive force occurs at small distance S

for all Np radius and small values of the wavelength λ ∈ [1000, 1800]nm. The attractive

zone and repulsive zone are separated by the red line. When we increase the distance S

from 55nm to 95nm, the attractive zone becomes smaller and it is globally blue-shifted

as shown on figures 5.14 b and c. The maximum of the repulsive force always appears at

the resonance wavelength due to the funnel effect (see figure 5.14 c) induced by the DA

and leading to an increase of the radiation pressure on the Np. For larger distance values

S (>155nm) the attractive zone almost vanishes in the considered wavelength range and

the Np is pushed away from the DA as shown in figures 5.14 d. This phenomena, as
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expected, occurs as result of the background illumination.
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Figure 5.14: Map of vertical force numerical results presents as a function of the Np radius
R and the wavelength illuminations λ for different DA-to-Np distance S: a) S=15. nm b)
S=55. nm c) S=95. nm d) S=155 nm.

Experimentally, it is more adequate to set the operation wavelength and to see how

the trapping can occur as a function of the Np radius. For this purpose, we present on

figure 5.15 the variations of the vertical force for three different values of the wavelength

when both R and S vary. Figure 5.15 a corresponds to a wavelength smaller than the

resonance one. In this case, a stable trapping at distance (red solid line on figure 5.15

a) may occur for R ∈ [50nm; 65nm] providing smaller initial DA-to-Np distance than

100nm. This can be ensured by increasing the concentration of Nps in the liquid.

At the RW, the repulsive zone spreads over almost the total window and two small
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attractive areas remain for R>70nm and R<40nm only at S< 90 nm. At this peculiar

wavelength, only trapping with contact may occur and Nps such R ∈ [40, 70nm] are

never trapped figure 5.15 b. This configuration can be exploited to make a Np sorting

with respect to their dimension. For larger wavelength value (here λ = 1800nm), only

repulsive zone exists due to the absence of any light confinement. The radiation pressure

is then predominant and only pushing force acts on the Np as shown in figure 5.15c.
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Figure 5.15: Map of vertical force numerical results presents as a function of Np radius
and DA-to-Np distance S for different operation wavelengths: a)λ = 1397 nm b)λres =
1523 nm c)λ = 1800 nm.

To get more physical insight on the DA-Np interaction at the resonance wavelength,

we plot on figure 5.16 a cross-section made on the result of along figure 5.14 a. This plot

gives the optical force exerted on the Np as a function of its radius (R) when it is placed

in front of a resonant DA (at λ = 1523 nm) and at a fixed distance S = 15 nm. This will
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Figure 5.16: Numerical results of vertical force presents as a function of the size of the Np
placed at 15 nm far from the DA along its axis. One notice that the permittivity of the
Np is modeled with a subgriding technique in order to accurately describe its geometry.

give us the Np radius for which trapping occurs (corresponding to zero vertical force) at

this specific distance. The first value (R=40 nm) almost corresponds to the quarter of

DA length while the second (R=70 nm) is obtained for a Np size that almost corresponds

to the DA one (D = 135nm). These two values are indicated by red and blue arrows

respectively in figure 5.16.

In order to point out a possible manipulation of a Np by a DA, we extract three differ-

ent senarios that correspond to (a) a pushing, (b) trapping at distance or (c) trapping at

contact that can exist for a given Np (fixed R) only by changing the operation wavelength.

Four values of the Np dimension are considered (R=50, 55, 60 et 65) in the range where

trapping at distance can occur. As shown in figure 5.17 where the potential is plotted

as a function of S, one can always find a wavelength value to induce each senario. In

all cases, the trapping at distance exhibits a potential well larger than 10kT providing

an illumination power larger than 5mw. The latter value correspond to the energy part
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nm shows three case of the optical trapping with different operation wavelength:1) Red
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solid lines are no trapping (radiation pressure).

that is incident on the DA. High focusing system will be probably required to fulfill this

condition. In all figures, the red curves represent the trapping at distance process where

a potential well exists for S ̸= 0 while green curves represent the case of trapping with

contact where the potential well occurs for S<15nm. Along this axis, there is no lateral

components of the force and the vertical one is non zero. Where, this potential well value

is sufficient to over come of Brownian motion and trap Np at a distance as shown in figure

5.17. On the contrary, the blue curves correspond to wavelength values for which the NP

is pushed away from the DA (no trapping).



140 5. Application 2: Optical tweezers based on Diabolo Antenna (DA)

5.5 Conclusion

In summary, we have theoretically and numerically studied the optical trapping of polystyrene

Nps by using Diabolo nanoantenna (DA). This later show that this configuration is able

to confine the two electromagnetic fields (electric and magmatic fields) with high factor

of enhancement. Numerical simulations are performed to determine the mechanical inter-

action between the DA and a polystyrene Nps. Optical force exerted on the NP has been

studied as a function of size, wavelength and distance. This study show the ability to trap

small Nps with different cases: trapping at a distance, trapping at contact and trapping

at resonance wavelength for small (R<40nm) or big (R>70nm) NPs. This study demon-

strate that it is possible to manipulate NPs by simply changing the operation wavelength.

The design of the DA can be optimized to fulfill the experimental constraints (sources

and detectors) with respect to the NP dimension.
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Chapter 6

General Conclusion and perspectives

This PhD work can be divided into two major parts dedicated to study some features of

the interaction between electromagnetic waves and nanostructures.

In the first part, we implemented the Finite Difference Frequency Domain (FDFD) to

calculate the eigenmodes of dielectric nanostructures. This method appears to be com-

plementary to the already developed codes based on FDTD algorithm for the resolution

of eigenproblems in electromagnetic wave. In fact, contrarily to the FDTD, it can handle

any frequency dependent properties of materials such as dispersion and the simulations

in frequency domain are faster when only responses for a few frequencies are required.

Several tests were performed to validate our FDFD-matlab code by comparing with other

published results. Exploitation of this code was done through the optimization of the

design of waveguides exhibiting high confinement in the core such as slot waveguide or

ridge waveguide. In addition, the FDFD algorithm is useful for the analysis of light

behavior in PC (Photonic Crystal) structures. It is very easy to extend the code by in-

cluding the periodic boundaries (Bloch-Floquet) conditions that can also be implemented

in the derivative operators instead of Dirichlet or Newmann boundary conditions. But,



142 6. General Conclusion and perspectives

the simulation takes very long time in comparison with Plane Wave Expension method

(PWE) [16]. In fact, the band diagram is obtained by varying the wavevector along the

edge of the first reduced Brillouin zone. Thus, for each propagation constant value that

must correspond to the edge of the first reduced Brillouin zone, the CPU-time calculation

exceeds 20 minutes so that a band diagram of only 100 points spends over more than 3

hours while the same band diagram is obtained in 15 seconds with the PWE.

The second part was devoted to the study of the optical forces exerted by nanos-

tructures on nano-particles. This theoretical study was performed through a numeri-

cal code developed within our research team. This later is based on the resolution of

Maxwell’s equations by the method of finite differences in the time domain (FDTD). We

have adapted the FDTD code to record all the electromagnetic fields components over

the six faces of the box that enclosing the nanoparticle. We built a matlab-code to cal-

culate the optical force through Maxwell’s stress tensor. After validation of our code

through some tests and comparison with published results, our first application addressed

the modeling of experiments of optical trapping conducted by Ali El Eter and Thierry

Grosjean from our research team. We modified our FDTD code to integrate the used

configuration that is composed of a fibred optical tweezers based on the combination of a

metal coated SNOM probe and a Bowtie Nanoaperture Antenna (BNA) engraved at its

apex. Geometrical parameters of the BNA were optimized theoretically to get a resonance

wavelength at λ = 1064 nm. The same designed BNA tip was fabricated and used to

trap polystyrene latex particles. Our theoretical results achieved good agreement with

experimental one for the trapping of latex nanoparticle with radius R = 250 nm showing

a potential well of 3 kT/mW . Supplementary numerical simulations were performed to

investigate the ability of such configuration to smaller particles R = 100, 30 nm. Ob-

tained numerical results showed smaller potential well (140kT /100 mW and 47kT/100

mW) respectively meaning that higher power illuminations are needed.
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The second application was dedicated to study other nanoantenna namely the metal-

lic Diabolo nanoantenna (DA). This specific nanoantenna can exhibit large enhancement

and confinement of both magnetic and electric near-fields. This doubly resonant struc-

ture opens the way for the design of a novel generation of efficient optical nano-tweezers.

Through the same method as in the first application, we calculated the optical force ex-

erted on small size nanoparticle. Two cases of resonant and non-resonant DA (according

to the illumination polarization direction) were studied in order to point out the effect

(enhancement) of the DA resonance on the radiation pressure exerted on the DA itself.

This configuration showed the ability of nanoparticle manipulation. Furthermore, the

obtained results showed that the trapping process greatly depends on the particle param-

eters (size, DA-to-particle distance, wavelength illumination). For specific geometries, we

can get trapping without contact, trapping at contact or nanoparticle pushed away from

the DA. The design of the DA can be optimized to fulfill the experimental constraints

(sources and detectors) with respect to the nanoparticle dimension.

Perspectives: As it is common to all thesis in physics, the developed work is never

completely finished and some perspectives should be considered. For example, the FDFD

code that was exploited to calculate the properties of dielectric waveguides must be ex-

tended to the case of metallo-dielectric structures such as coaxial or plasmonic nano-

waveguides [70, 102]. On the other hand, theoretical and experimental investigations

should be performed to highlight and better understand the trapping of nanosized par-

ticles that is expected only under certain constraints (appropriate initial spatial position

of the particle and substantial light power) without risking destruction of both nanoan-

tenna and particle by optical heating for example. In addition, there is a very interesting

challenging study of optical trapping of resonant (dielectric or metallic) particles. In this

case, the coupling between the nanoantenna and the nanoparticle can not be neglected

and resonance wavelength shift may occur affecting the trapping process. Different cou-
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pling regimes can be studied according to the mismatching between the resonances of the

nanoantenna and the nanoparticle. Experiments must also be done in parallel to valid

the theoretical studies.
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Résumé :

Cette thése constitue un ensemble de travaux et de réflexions sur la question de la modélisation d’expériences en nano-optique utilisant

la méthode des différences finies dans le domaine fréquentiel (FDFD) et la méthode des différences finies dans le domaine temporel

(FDTD). D’abord, un code FDFD bidimensionnel, dédié au calcul de modes propres de guides d’ondes optiques, à été mis en œuvre

et testé à travers une comparaison avec des résultats publiés. Dans une deuxième grande partie, nous étudions le piégeage optique

de petites particules (de taille microscopique) à l’aide d’une antenne à nano-ouverture papillon (BNA) gravée à l’extrémité d’une sonde

de microscope optique métallisée. Le confinement de lumière obtenue à la résonance de la nano-antenne permet un piégeage 3-D des

nanoparticules de latex. Une étude systématique à été menée pour quantifier la puissance de la lumière incidente nécessaire pour un

piégeage stable. Un bon accord entre les résultats expérimentaux et numériques à été obtenu dans le cas d’une BNA opérant dans l’eau

à λ = 1064 nm pour le piégeage de particules de latex de 250 nm de rayon. En outre, les résultats numériques pour de plus petites

particules sont présentés et montrent qu’une telle configuration est capable de piéger des particules avec des rayons aussi petits que

30 nm. Troisièmement, nous avons étudié le processus de piégeage optique basé sur l’amélioration du confinement, non seulement du

champ électrique comme dans le cas de la BNA, mais aussi du magnétique que peut exhiber l’antenne métallique type diabolo (DA).

Cette dernière à été récemment proposée car elle présente une résonance avec un fort confinement magnétique. Nous avons amélioré le

design afin qu’une double résonance, électrique et magnétique, ait lieu au centre de la nano-antenne. Ce double confinement à ensuite

été exploité pour exalter le gradient de champ au voisinage de l’antenne et ainsi aboutir à de meilleures efficacités de piégeage (moindre

puissance). De plus, les résultats des simulations montrent que le processus de piégeage dépend fortement des dimensions des particules

et que, pour des géométries particulières, un piégeage sans contact peut être réalisé. Cette structure doublement résonnante ouvre la

voie à la conception d’une nouvelle génération de nano-pinces optiques à forte efficacité.

Mots-clés : FDFD, Mode propre, Guide d’onde, FDTD, Force optique, Piégeage optique, Nano ouverture, BNA, DA, Double réso-
nance, Piégeage à la distance.

Abstract:

This thesis is a set of work and reflections on modeling the experiments in nano-optics by using the finite difference method in the

frequency domain (FDFD), and in time domain (FDTD). First, a two-dimensional code FDFD, dedicated to the calculation the eigenmodes

of optical waveguides, has been implemented and tested through a comparison with results found in the literature. In a second large part,

we study the optical trapping of small particles (of microscopic size) by using a bowtie nanoaperture antenna (BNA) engraved at the end

of a metal-coated near-field optical microscope tip. The confinement of light obtained at the resonance of the nano-antenna allows 3-D

trapping of latex nanoparticles. A systematic study was conducted to quantify the power of incident light necessary for stable trapping.

Good agreement between the experimental and numerical results was obtained in the case of a BNA operating in water at λ = 1064 nm for

the trapping of latex particles having a radius of 250 nm-radius. In addition, numerical results for smaller particles are presented and show

that such configuration is capable of trapping particles with radii reaching 30 nm. Third, we studied the optical trapping process based

on improved confinement of the electric field as in the case of the BNA, but also of the magnetic field, by using a metallic diabolo shape

antenna (DA). This latter has been recently proposed because it exhibits resonance with a strong magnetic field confinement. We have

improved the design in such a way that a double resonance, electric and magnetic, takes place in the center of the nano-antenna. This

dual confinement was then used in order to enhance the field gradient in its vicinity and thus obtain better efficiencies of the trapping (less

power). In addition, the simulation results show that the trapping process is greatly dependent of the particles size, and also show that, for

specificl geometries, a trapping without contact can be achieved. This doubly resonant structure opens the way to the conception of a new

generation of optical nano-tweezers with high efficiency.

Keywords: FDFD, Eigenmode, Waveguide, FDTD, Optical force, Optical trapping ,Nanoaperture ,BNA ,DA , Double resonance,
Trapping at distance
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