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We study the spontaneous temporal symmetry breaking instability in a coherently-driven passive
optical Kerr resonator observed experimentally by Xu and Coen in Opt. Lett. 39, 3492 (2014). We
perform a detailed stability analysis of the Lugiato-Lefever model for the optical Kerr resonators
and analyze the temporal bifurcation structure of stationary symmetric and the emerging asym-
metric states as a function of the pump power. For intermediate pump powers a pitchfork loop is
responsible for the destabilization of symmetric states towards stationary asymmetric ones while at
large pump powers we find the emergence of periodic asymmetric solutions via a Hopf bifurcation.
From a theoretical perspective, we use local bifurcation theory in order to analyze the most unstable
eigenmode of the system. We also explore a non-conservative variational approximation capturing,
among others, the evolution of the solution’s amplitude, width and center of mass. Both methods
provide insight towards the pitchfork bifurcations associated with the symmetry breaking.

I. INTRODUCTION

Spontaneous symmetry breaking (SSB) is the basis for
many phase transitions and account for effects includ-
ing ferromagnetism, superconductivity, and convection
cells [1, 2]. SSB has been widely observed in nonlinear
optics and is at the heart of numerous fundamental phe-
nomena including, but not limited to, asymmetric dy-
namics in coupled mode models [3], optical waveguide
arrays [4], coupled nonlinear micro-cavities [5], and pho-
tonic lattices [6]. For a detailed exposition of numerous
recent directions within the subject from the perspec-
tive of nonlinear phenomena, see Ref. [7]. SSB is not
restricted to Hamiltonian (conservative) systems. For
instance, over the past few years, it has also played a
prominent role in the context of parity-time, so-called
PT, symmetric systems [8, 9] bearing a balanced inter-
play between gain and loss. There, it is responsible for
the emergence of “ghost” states both in the case of dimers
(and more generally oligomers) [10], but also in that of
continuous media [11, 12], where they can be responsible
for the destabilization and bifurcations associated with
solitary waves and vortices.

A remarkable example of SSB in a dissipative system
was observed by Xu and Coen in Ref. [13] where a sys-
tem composed of a synchronously-pumped passive optical
resonator filled with a Kerr nonlinear material was exper-
imentally explored. This system exhibits a temporal SSB
instability in which the discrete time-reversal symmetry
is broken and symmetric states become unstable in fa-
vor of stable asymmetric states. It is the purpose of the
present manuscript to complement the experimental and
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numerical analysis of Ref. [13] by putting forward a thor-
ough analytical (and partially numerically assisted) un-
derstanding of the origin and manifestation of SSB (and
additional possible, such as Hopf) bifurcations in this
system.
We consider, as in Ref. [13], a model for a passive Kerr

resonator in an optical fiber ring cavity described by a
single partial differential equation (PDE), resulting from
an averaging procedure, of the nonlinear Schrödinger
(NLS) equation-type, known as the mean-field Lugiato-
Lefever (LL) model [14, 15]. The LL equation, taking
into account gain and loss in the system, can be cast, in
non-dimensional form, as [13, 16, 17]:

∂E(z, τ)

∂z
=

[

−1 + i(|E|2 −∆)− iη
∂2

∂τ2

]

E + S(τ), (1)

where z is the slow evolution variable of the intracavity
field E over successive normalized cavity round-trips and
τ describes the temporal variable in the dependence of
the intracavity pulse envelope. The terms in the right-
hand-side of Eq. (1) correspond, respectively, to cavity

losses (−E), Kerr nonlinearity (i |E|2 E), cavity phase

detuning (−i∆E), chromatic dispersion (−iη ∂2

∂τ2E), and
external pumping (S(τ)). Within this non-dimensional
form [16, 17], the cavity phase detuning corresponds to
∆ = δ0α, where α is half the fraction of power lost
per round-trip and the cavity finesse is F = π/α, and
δ0 = 2mπ − φ0 where φ0 is the overall cavity round-
trip phase shift and m is the order of the closest cavity
resonance. The sign of the group-velocity dispersion co-
efficient of the fiber is η which is taken as η = −1 for
our analysis with self-focusing nonlinearity. The field
envelope of the external pump pulses, S(τ), is mod-
eled by a symmetric chirp-free Gaussian pulse given by
S(τ) =

√
X exp

[

−(τ/T0)
2
]

, with T0 = 2.3 as in the ex-
periments of Ref. [13].
For the SSB instability of the passive Kerr cavity,
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the pump pulse field profile is temporally symmetric,
S(τ) = S(−τ), and the model is symmetric under a time
reversal transformation, τ → −τ , yet it admits asymmet-
ric solutions, as described in Ref. [13]. The associated
pitchfork bifurcation illustrates that at low pump peak
power X , the solutions are symmetric in time; however,
above a certain pump peak power threshold the sym-
metric states become unstable while stable asymmetric
states emerge. The particular experimental parameters
of Ref. [13] generate, as X is increased further, a re-
verse pitchfork as well, in which the asymmetric states
collide and disappear while the symmetric state recovers
its stability. We examine this SSB-induced instability in-
terval in the passive Kerr resonator modeled by Eq. (1)
by means of a non-conservative variational approxima-
tion (NCVA) [18] and further through a center manifold
reduction [19] enabling the analysis of the dominant asso-
ciated eigenmodes (responsible for determining the spec-
tral stability of the system). It is relevant to mention at
this point that a thorough bifurcation analysis for a LL
equation in the case of constant external pumping was
recently carried out in Ref. [20], showing quite complex
bifurcation scenarios in both the anomalous and normal
dispersion regimes.

In the NCVA context, our aim is to apply a varia-
tional method based on well-informed ansätze in the cor-
responding Lagrangian of the system. The ansätze re-
duce the complexity of the original infinite-dimensional
problem to a few degrees of freedom capturing the prin-
cipal, static and dynamic characteristics of the system.
This method attempts to project the infinite-dimensional
dynamics of Eq. (1) into a low-dimensional dynamical
system that qualitatively and, to some extent, quantita-
tively captures SSB bifurcations and the solutions em-
anating from it. However, it is important to note that
traditional variational methods rely on the existence of a
Lagrangian or Hamiltonian structure for closed systems
for which equations of motion can be derived. Nonethe-
less, recently, Galley [21] offered an approach allowing
to extend the method to open, non-conservative systems
which in turn was generalized to dissipative (containing
gain and loss) NLS-type systems in Ref. [18] inspired by
the work of Ref. [22] on the extension of Galley’s formal-
ism to PT-symmetric variants of field theories. It is this
variant of the NCVA that we will explore in the present
setting.

Our analysis of the observed SSB will be complemented
by center manifold reductions. The latter are extensively
used in the analysis of local bifurcations. Starting from a
dynamical systems formulation of the bifurcation prob-
lem, the reduction to a center manifold provides the low-
est dimensional dynamical system which fully describes
the original dynamics close to a bifurcation point. We
use this method to analyze the two pitchfork bifurcations
which arise in Eq. (1) as X is increased. As a result we
obtain, in both cases, a reduced scalar ordinary differ-
ential equation which captures the bifurcating dynamics.
The first two coefficients in the expansion of the reduced

scalar field, which are computed numerically here, deter-
mine the type of the bifurcation. They are also essential
in the computation of the bifurcating asymmetric states
and of the local temporal dynamics.
The paper is organized as follows. In Sec. II we iden-

tify the equilibria and study their stability by means of
a spectral analysis of the linearization problem; this is
a perspective that was absent in the original work of
Ref. [13] and which, we argue, provides a more systematic
insight into the stability (and the potential instabilities)
of the system. In doing so, we recover the forward and
reverse pitchfork bifurcations (i.e., a pitchfork loop) ob-
served in Ref. [13] as well as identify a Hopf bifurcation
for larger pump power giving rise to asymmetric, stable,
periodic solutions; the latter is an important feature of
dynamical interest in its own right and should be, in prin-
ciple, observable in suitable extensions of the experiments
of [13]. Section III is devoted to the NCVA approach. In
Sec. III A we provide a brief description of the NCVA
approach and its formulation within the LL model. Sec-
tion III B is devoted to the application of the NCVA to
capture the SSB bifurcation for physically relevant pa-
rameters values of the system as in Ref. [13]. In Sec. IV
we complement our understanding of the pitchfork loop
bifurcation by giving the local bifurcation analysis which
is effective towards qualitatively and quantitatively de-
scribing the emerging asymmetric solutions close to the
pitchfork bifurcation points. Finally, in Sec. V we sum-
marize our findings and we provide possible avenues for
future research.

II. THE FULL MODEL: EQUILIBRIA,

STABILITY AND BIFURCATIONS

In this section, we follow the various equilibria of
Eq. (2) as the peak pump power, X , is varied and de-
termine their stability. Let us recast Eq. (1) into the
simpler form

iuz + uττ + (|u|2 −∆)u = −iu+ iS(τ), (2)

which corresponds to the NLS with additional non-
conservative terms (namely the terms in the right-hand
side). In what follows, we identify stationary solutions,
u(z, τ) = u0(τ) of Eq. (2) by numerically solving the
steady-state equation

u0,ττ + (|u0|2 −∆)u0 = −iu0 + iS(τ). (3)

It is relevant to mention that since the forcing (pump)
term in Eq. (1) is independent of the field’s wavefunction,
it is necessary for the steady state to be independent of z
(i.e., here the detuning parameter ∆ plays the role of the
frequency). It is also worth mentioning that the steady
state is, in general, complex which, as we will see below,
is crucial for the steady state to sustain itself through a
stationary flow from the gain to the loss portions of the
solution.
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Let us now consider the stability of a steady state u0

by means of a spectral stability analysis. Specifically,
small perturbations of order O(ǫ), with 0 < ǫ ≪ 1, to
the stationary solutions are introduced in the form:

u(z, τ) = u0(τ) + ǫ[a(τ)eλz + b∗(τ)eλ
∗z],

and substituted into Eq. (2). Then, the ensuing lin-
earized equations are solved to O(ǫ), leading to the eigen-
value problem:

iλ

(

a(z)
b(z)

)

=

(

M1 M2

−M∗
2 −M∗

1

)(

a(z)
b(z)

)

, (4)

for the eigenvalues λ and associated eigenvector ξ =
(a(z), b(z))T, where (·)∗ denotes complex conjugation
and M1 and M2 are the following operators:

M1 = −∂2
τ − 2|u0|2 + (∆− i),

M2 = −u2
0. (5)

The stationary solutions are linearly unstable provided
Re(λ) > 0. When unstable, the dynamics of the respec-
tive instabilities can be monitored through direct numer-
ical simulations of Eq. (2).
Figure 1 depicts the linearization spectrum for the

symmetric stationary solution [see (red) dashed line in
panels (c) and (d) of Fig. 2] as a function of the pump
peak power. The spectrum in Fig. 1 evidences the exis-
tence of two unstable branches: (i) a pitchfork bifurca-
tion loop containing a forward pitchfork bifurcation, see
point P1 at X ≈ 4.6, and a reverse pitchfork bifurcation,
see point P2 at X ≈ 10.6, and (ii) a Hopf bifurcation,
see point H at X ≈ 15.1. The pitchfork bifurcation,
see thick (green) line between the points P1 and P2 in
Fig. 1, is responsible, as the pump power is increased,
for the loss of stability of the symmetric state towards
a pair of asymmetric states (one to the left and one to
the right) at P1. As the pump power is increased, a re-
verse pitchfork at P2 is responsible for the collision (and
annihilation) of the two asymmetric states towards the
symmetric state that recovers its stability. A sample of
the dynamic destabilization of the (unstable) symmetric
state for a pump strength X = 8, namely between the
two pitchfork points, is depicted in Fig. 2(a). As the
figure shows, the symmetric state [see dashed (red) line
in Fig. 2(c)] destabilizes towards the stable, asymmetric
state [see solid (blue) line in Fig. 2(c)]. On the other
hand, the instability due to the Hopf bifurcation branch,
see the thick (magenta) line emanating from the point H
in Fig. 1, is responsible for the instability of the symmet-
ric state towards a periodic (in z) solution. A sample of
the evolution for the symmetric state towards the stable
periodic solution is depicted in Fig. 2(b). The periodic
solution contains three “humps” in its τ dependence: a
central one performing left-to-right oscillations while the
side “humps” oscillate alternatively up-and-down. Snap-
shots for the asymmetric states when the side “humps”
have the largest magnitude are depicted in panel (d) cor-
responding to the times depicted by a horizontal white
line in panel (b).
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λ
)

P1 P2
H
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H

FIG. 1: Linearization spectrum for the symmetric and asym-
metric steady state solutions of the Lugiato-Lefever equation
(2) as the pump power X is varied for ∆ = 0.92 and T0 = 2.3.
The top and bottom panels depict, respectively, the real and
imaginary parts of the eigenvalues. Stable symmetric solu-
tions bearing Re(λ) < 0 are depicted by small (red) dots in
the top panel while unstable symmetric solutions are depicted
with thick solid lines. The thick (green) solid line between the
points P1 and P2 represents the unstable solutions through
forward (P1) and reverse (P2) pitchfork bifurcations. The
thin (black) curve between the points P1 and P2 corresponds
to the stable asymmetric solution branches created through
the pitchfork bifurcation. (The small black dot next to the
point P1 is the stable eigenvalue used for the slope computa-
tion in Fig. 8.) The thick (magenta) solid line to the right of
the Hopf bifurcation point H indicates the onset of instability
for the symmetric state and the existence of an asymmetric
periodic solution.

It is important to mention that, due to the cavity loss
term (−iu), the real part of the spectrum is symmetric
with respect to Re(λ) = −1 (see Sec. IV for details).
Therefore, tuning the cavity loss parameter is crucial to
the existence of the SSB bifurcation as higher values of
this parameter shift the real part of the spectrum down
precluding the possibility of eigenvalues crossing the ori-
gin and leading to such bifurcations. By the same token
reducing the value of the cavity loss parameter will in-
duce more eigenvalues to cross the origin and thus leading
to richer and more complicated bifurcation scenarios. A
detailed analysis of the bifurcations as the cavity loss pa-
rameter is varied is outside of the scope of the present
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FIG. 2: (a), (b) Examples for the density evolution of un-
stable symmetric states and (c), (d) snapshots for the cor-
responding states. (a) Evolution of the unstable symmetric
state for X = 8 between the two pitchfork bifurcations P1 and
P2 depicted in Fig. 1. The initial symmetric state, see dashed
(red) line in panel (c) evolves towards the asymmetric steady
state depicted in solid (blue) in panel (c). (b) Evolution of
the unstable symmetric state towards a periodic breathing so-
lution for X = 16 (i.e., to the right of the Hopf bifurcation
point H in Fig. 1). The initial symmetric state [dashed (red)
line] and two snapshots of the density for the periodic solution
[solid (blue and light blue) lines] separated by half a period,
at the times corresponding to the white vertical lines in panel
(b), are depicted in panel (d).

manuscript and will be studied in a future work.

III. NON-CONSERVATIVE VARIATIONAL

APPROXIMATION

A. Preliminaries

To employ the NCVA, we consider two sets of depen-
dent variables u1 and u2. As proposed by Galley and
collaborators [21, 23], these are fixed at an initial time
(zi), but are not fixed at the final time (zf ). After ap-
plying variational calculus for a non-conservative system,
both paths are set equal, u1 = u2, and identified with the
physical path u, the so-called physical limit (PL). The ac-
tion functional for u1 and u2 is defined as the total action
integral of the difference of the Lagrangians between the
paths plus the action integral of the functional R which
describes the generalized non-conservative forces and de-

pends on both paths:

S =
∫ zf

zi
dz

∫ ∞

−∞
dτ [L(u1, u1,z, u1,τ , . . . , z) (6)

−L(u2, u2,z, u2,τ , . . . , z) +R],

where the z and τ subscripts denote partial derivatives
with respect to these variables. The above action defines
a new total Lagrangian density:

LT ≡ L1 − L2 +R, (7)

where the first two terms represent the conservative La-
grangian densities for which Li ≡ L(ui, ui,z, ui,τ , ..., z),
for i = 1, 2, and R contains all the non-conservative
terms. For convenience, u+ = (u1 + u2)/2 and u− =
u1 − u2 are defined in such a way that at the physi-
cal limit u+ → u and u− → 0. Then, the modified
Euler-Lagrange equations for the effective Lagrangian
L =

∫∞
−∞ LT dτ yield

∂L

∂u
− d

dt

(

∂L

∂u̇

)

+

∫ ∞

−∞

[

∂R
∂u−

]

PL

dτ = 0. (8)

Through this method we recover the Euler-Lagrange
equation for the conservative terms and all the non-
conservative terms are folded into [ ∂R

∂u−

]PL. It is crucial

to construct the term R such that its derivative with
respect to the difference variable u− = u1 − u2 at the
physical limit gives back the non-conservative or gener-
alized forces. This part concludes the field-theoretic for-
mulation of the non-conservative problem and so far no
approximation has been utilized. The latter will stem
from the use of an approximate ansatz for the solutions
within the variational method for this extended (to the
non-conservative case) Lagrangian formulation.
One key aspect of any variational method is the proper,

judicious, choice of ansatz. In this paper, we compare
two different ansätze with four and six parameters (i.e.,
degrees of freedom). We apply the NCVA to Eq. (2) to
verify if the reduced dynamical system is able to qualita-
tively (and quantitatively) capture the SSB instability by
following all temporally symmetric and asymmetric solu-
tions to the reduced system of ODEs given by Eq. (8).
The conservative Lagrangian density for the NLS, namely
Eq. (2) with the right-hand-side equal to zero, is

L =
i

2
(u∗uz − uu∗

z)− |uτ |2 +
1

2
|u|4 −∆ |u|2 . (9)

Here, we construct [∂R/∂u−]PL = −iu+iS(τ), by choos-
ingR = (−iu+ + iS(τ)) u−. Therefore, the relevant non-
conservative Lagrangian density can be written as

L =
i

2

(

u∗
1u1,z − u1u

∗
1,z

)

− |u1,τ |2 +
1

2
|u1|4 −∆ |u1|2

− i

2

(

u∗
2u2,z − u2u

∗
2,z

)

+ |u2,τ |2 −
1

2
|u2|4 +∆ |u2|2

+ (−iu+ + iS(τ)) u−, (10)
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where u1 = (2u+ + u−) /2 and u2 = (2u+ − u−) /2. For
reasons of brevity, we chose to express the Lagrangian
density above in 1,2 coordinates. Writing the Lagrangian
in ± coordinates lends itself to lengthier expressions but
to more straightforward implementation of the physical
limit where the (+) variables directly coincide with the
physical variables [and the (−) variables are eliminated].
From L, we can derive, through the Euler-Lagrange equa-
tions (8), the full LL model at the PDE level. In order
to, however, obtain an analytical insight in the dynamics
of the model, our aim is to use an ansatz approximation
of the pulse reducing its Lagrangian to a Lagrangian over
effective (yet time-dependent) properties of its form, like
the amplitude, the width and its center of mass, among
others. Then for these effective properties, in the spirit
of Refs. [18, 22], a coupled system of ODEs approximat-
ing the dynamical evolution will be derived and, per-
haps more importantly for our considerations, their cor-
responding steady states and possible bifurcations will be
amenable to analysis.

B. Bifurcation Analysis Using the NCVA

Approach

Applying the NCVA methodology described above to
the LL model (2) where [∂R/∂u−]PL = −iu + iS(τ),
yields R = (−iu+ + iS(τ)) u−. We first choose the fol-
lowing simple Gaussian ansatz

ūj = aj exp

[

− (τ − ξj)
2

2σ2
j

]

exp(i bj), j = 1, 2 (11)

where height a, center position ξ, width σ, and phase
b are the variational parameters. The ansatz was se-
lected as the simplest localized waveform with freedom
to move left or right in order to capture, in the simplest
sense, a possible asymmetry in the solution of the origi-
nal LL model. Applying the NCVA method with this,
arguably over-simplified, four-parameter ansatz, leads,
through the Euler-Lagrange equations, to a system of al-
gebraic differential equations for which the derivatives of
the variational parameters cannot be solved for explicitly.
Nonetheless, it is possible to obtain algebraic equations
for the corresponding steady state (ȧ = ḃ = ξ̇ = σ̇ = 0)
solutions of the form:







































a2√π

2σ2 + 1
4a

4
√
2π +∆a2

√
π =

a sin(b)T 2
0 β

(T 2
0 +2σ2)

,

2a2σ
√
π = a cos(b)σβ,

−a
√
π

σ
+ a3

√
2πσ + 2∆aσ

√
π = sin(b)σβ,

0 = −aξ sin(b)β
σ

,

(12)

where β = 2T0

√
2πX/

√

T 2
0 + 2σ2.

Figure 3 depicts the comparison of the bifurcation di-
agrams for steady state solutions obtained from the orig-
inal LL model (2) and the NCVA approach for ∆ = 0.92

and T0 = 2.3 by monitoring |u(τ = 0)|2 as a function
of pump peak power X , in line with the earlier work
of Ref. [13]. Both solutions for the original LL model
and the algebraic NCVA system are obtained by numer-
ical continuation using a standard fixed point iteration
(Newton-Krylov). The solutions for the LL model are de-
picted by the thick curves while the corresponding NCVA
approximations by the thin curves. Solid and dashed cor-
respond, respectively, to stable and unstable solutions.
The insets in the figure depict pulse temporal intensity
profiles |u|2 for X = 4 (symmetric), X = 8 (symmetric
and asymmetric), and X = 11 (symmetric) for both the
LL model (thick curves) and the NCVA reconstructions
(thin curves). For completeness, the insets also show
the corresponding linearization spectra. As it is evident
from the figure, the NCVA with a four-parameter ansatz
agrees very well with the symmetric branch of LL model
(see black and blue curves). However, for the asymmet-
ric branch there seems to be a large discrepancy between
the LL model and its NCVA approximation. In fact,
the asymmetric NCVA branch is unstable while it is sta-
ble for the original LL model. Upon further inspection
(details are omitted for brevity), the instability of the
asymmetric NCVA branch stems, instead of a pitchfork
bifurcation, from a Hopf bifurcation that creates a stable
limit cycle in the variational parameters.
It is evident that the four-parameter ansatz is unable

to predict the existence of the pitchfork loop of the orig-
inal LL model and, furthermore, although it is able to
predict a SSB bifurcation, it fails to give an accurate es-
timation for its threshold (i.e., the critical pump power
needed to observe asymmetric states). However, this
over-simplified ansatz gives two valuable insights regard-
ing how to make a more judicious choice for our ansatz.
Firstly, the ansatz (11) has an inherent complication in
that its corresponding Euler-Lagrange equations lead to
a degenerate system of differential-algebraic equations
which can only be explicitly written for the steady state.
This degeneracy can be circumvented, as we will show
below, by proper balancing of the variational parame-
ters in an ansatz with more degrees of freedom. Sec-
ondly, and more importantly, the four-parameter ansatz,
by construction, only corresponds to real solutions (up to
a global phase shift) that lack a τ -dependence on their
phase. This lack of τ -dependence on the phase is re-
sponsible for the ansatz solution’s lack of internal flow of
the field u along the τ -direction.1 As we explain below,
the asymmetric solution is supported by a delicate bal-

1 We remind the reader that when transforming the NLS equation
through the Madelung transformation u =

√
ρ eiφ (i.e., writing

the wavefunction in terms of its density ρ and phase φ), one
obtains an evolution equation for the density that corresponds
to an inviscid Eulerian fluid (incorporating the so-called quantum
pressure term that is not important for the current argument)
with the fluid velocity v given precisely by v = ∇φ. Thus, the
fluid velocity for the system can be obtained by computing the
gradient of the phase of the solution at hand. Therefore, a lack
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FIG. 3: Bifurcation for steady states of the LL model (2) (thick curves) and their approximation using the NCVA methodology
with the over-simplified four-parameter ansatz (11) (thin curves) as the pump strength X is varied for ∆ = 0.92 and T0 = 2.3.
Stable (Unstable) branches are depicted with solid (dashed) lines. The (red and green) branches bifurcating from the main
branch (blue and black lines) correspond to asymmetric solutions. The insets depict the pulse temporal intensity profiles
obtained for X = 4 (symmetric), X = 8 (symmetric and asymmetric), and X = 11 (symmetric) for the original LL model
(thick curves) and their NCVA approximation (thin curves). The insets also depict the corresponding stability spectra for these
solutions where stable eigenvalues are depicted in blue and unstable eigenvalues in red.

ance of the internal flow within this steady state solution.
The presence of the underlying flow is clear after careful
examination of the (numerically) exact solutions of the
original LL model as depicted in panels (a) and (b) of
Fig. 4. These panels depict the density (blue) and phase
(red) of the solution where the arrows indicate the re-
gions where the fluid velocity, as defined by the gradient
of the phase, has different directions. The central den-
sity maximum, for both the symmetric and asymmetric
solutions, stems from an inward flow towards the center
[which corresponds to a sink of flow due to high density
through the loss term iu in Eq. (2)] while the “wings”,
again for both symmetric and asymmetric solutions, are
supported by sources of the underlying flow maintained
by the pump. In contrast, the NCVA four-parameter
ansatz (11) lacks a phase profile and, therefore, lacks any
internal flow as depicted in panels (c) and (d) of Fig. 4. It
is then clear that the four-parameter ansatz (11) should
be inadequate for capturing the important effects of the
underlying current flows of the solutions.

It is important to mention at this stage that steady
state solutions (for the density) in NLS-type settings in-

of a phase variation in the solution implies a lack of internal flow
of the solutions.

corporating loss and gain terms must necessarily involve
underlying flows that carry “mass” from the gain regions
towards the lossy regions. Therefore, in these settings,
variational methods should be based on ansätze that in-
corporate the appropriate underlying current. Inspired
by the appreciation of the presence of such underlying
flows (and their delicate balance in the steady state solu-
tions) let us choose an ansatz that is capable of support-
ing such flows. Based on this observation, we introduce
a six-parameters ansatz of the form:

ūj = aj exp

[

−(τ − ξj)
2

2σ2
j

]

× (13)

exp
[

i(dj(τ − ξj)
2 + cj(τ − ξj) + bj)

]

,

where, in addition to the parameters height a, center
position ξ, width σ, phase b, we have also introduced ve-
locity c and chirp d as variational parameters. Following
again the NCVA methodology for this improved ansatz,
we obtain the following system of ODEs of the variational
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FIG. 4: Understanding the importance of including fluid ve-
locity terms in the NCVA ansatz. The different panels depict
an overlay of (i) the temporal intensity profile of the pump
pulse |S(τ )|2 (green dashed line), (ii) the pulse intensity pro-
file |u|2 (blue), and (iii) its corresponding fluid velocity (red,
×50) for (a,b) the LL model (top), (c,d) the four-parameter
NCVA (middle), and (e,f) the six-parameter NCVA (bottom)
for symmetric X = 8 (left) and asymmetric X = 8 (right)
steady state solutions. The (red) arrows indicate the direc-
tion of the fluid velocity which drives the SSB bifurcation
between the symmetric and asymmetric solutions.
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ȧ = 1
4
−4a2σ3√π+3σ2Ib−8a2dσ3√π−2Id

aσ3
√
π

,

ḃ = − 1
8
8a2√π−5a4

√
2
√
πσ2−4Iσσ

2+6Iaσa−8a2c2
√
πσ2

a2σ2
√
π

+σcIc−a2∆
√
πσ2

a2σ2
√
π

,

ċ = − cIb+Iξ
a2σ

√
π
,

ḋ = 1
4
4a2√π−16a2d2σ4√π−a4

√
2
√
πσ2−4Isσ

2+2Iaσa
a2σ4

√
π

,

σ̇ = − 1
2
σ2Ib−8a2dσ3√π−2Id

a2σ2
√
π

,

ξ̇ = 2a2σc
√
π+Ic

a2σ
√
π

,

(14)

where the over-dot denotes derivative with respect to z.
Although it is possible to explicitly solve for the deriva-
tives of the variational parameters, the resulting NCVA
ODEs are cumbersome in that they include the terms
Ia, Ib, Ic, Id, Iξ, and Iσ which involve integrals that can-
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FIG. 5: Linearization spectrum for the reduced NCVA ODE
(14). The notation is the same as the spectrum for the orig-
inal LL model depicted in Fig. 1. The reduced ODE model
displays a degenerate bifurcation consisting of simultaneous
pitchfork (P) and a Hopf (H) bifurcations and thus the asym-
metric steady state (see thin black solid lines) is unstable from
its inception.

not be explicitly evaluated:







































































































Ia =

∫ ∞

−∞
E sin(Φ) dτ,

Ib =

∫ ∞

−∞
aE cos(Φ) dτ,

Ic =

∫ ∞

−∞
aE(τ − ξ) cos(Φ) dτ,

Id =

∫ ∞

−∞
aE(τ − ξ)2 cos(Φ) dτ,

Iσ =

∫ ∞

−∞

aE

σ3
sin(Φ) dτ,

Iξ =

∫ ∞

−∞

[

aE (−2d(τ − ξ)− c) cos(Φ)

+
aE(τ − ξ)

σ2
sin(Φ)

]

dτ,

where Φ = d(τ − ξ)2 + c(τ − ξ) + b and E =

2
√
Xe−

(τ−ξ)2

2σ2 e
− τ2

T2
0 . Nonetheless, for our numerical stud-

ies it suffices to evaluate numerically these integrals as
we seek stationary states or as we follow the dynamics of
the parameters as z changes.
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FIG. 6: Bifurcation diagram as in Fig. 3 but for the more complete six-parameter ansatz (14). Same layout and meaning as in
Fig. 3.

Figure 5 depicts the linearization spectrum for the re-
duced NCVA six-parameter ODE model (14) that should
be compared to the linearization spectrum of original LL
model depicted in Fig. 1. It is clear that both spec-
tra share some of the bifurcation structure but, at the
same time, they have notable differences. For instance,
although the reduced NCVA ODE is able to capture the
SSB at X ≈ 3.8, reasonably close to the actual bifur-
cation of the original model at X ≈ 4.6, the bifurca-
tion, instead of being a pitchfork one, is a degenerate
one comprising simultaneous pitchfork and Hopf bifurca-
tions. This is the reason why the reduced ODE NCVA
model transitions directly from a stable symmetric so-
lution to a stable (asymmetric) limit cycle instead of
a stable asymmetric steady state as in the original LL
model. The bifurcation diagram for the six-parameter
ansatz (14), together with the one from the original LL
model, is depicted in Fig. 6 using the same layout as
Fig. 3. As it is clear for comparing Figs. 3 and 6, the six-
parameter ansatz does a much better job at capturing the
asymmetry states (see insets) and the threshold for the
primary SSB bifurcation than its four-parameter counter-
part. However, as we noted above (and similar to the case
of the reduced four-parameter NCVA ode) the bifurca-
tion predicted by the NCVA ODEs (14) produces an un-
stable asymmetric state and a stable (asymmetric) limit
cycle. Nonetheless, the six-parameter ansatz is now able
to capture the essence of the underlying flow as it can be
seen from panels (e) and (f) of Fig. 4. Furthermore, and
perhaps more importantly, the improved six-parameter
NCVA approach is also able to predict reasonably well

the threshold for the pump power for the onset of the
SSB bifurcation. The fact that the NCVA method is
insufficient in characterizing the details of the SSB insta-
bility is, arguably, the consequence of employing ansätze
that (while remaining tractable) lack the proper freedom
to include underlying flows that are akin to the solutions
displayed by the original LL model. For instance, in or-
der to capture the details of the underlying flows depicted
in panels (a) and (b) of Fig. 4 it should be necessary to
include a fluid flow that has, at least, three zeros and that
would entail, if using polynomials as a basis for expand-
ing the phase, a quartic polynomial (i.e., five parameters)
for the phase. Such an ansatz would require five phase
variational parameters and five shape (density) parame-
ters leading to a cumbersome system of ten couple ODEs.
Such a venture falls outside of the scope of the present
manuscript.

IV. LOCAL BIFURCATION ANALYSIS

In this section, we employ a complementary, dynamical
systems inspired approach based on a center manifold
reduction to determine the dynamics of the system close
to the pitchfork bifurcations.

A. Reduced equation

Let us consider Eq. (1) with, as before, η = −1. In
this approach it is more convenient to work with real
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variables. We therefore set

E = U + iV, (15)

where U and V are real-valued functions, and then
Eq. (1) is equivalent to the system
{

Uz = −U − Vττ +∆V − (U2 + V 2)V + S(τ),

Vz = −V + Uττ −∆U + (U2 + V 2)U.
(16)

The numerical computations in Fig. 6 show the existence
of a branch of symmetric steady state solutions for val-
ues of X between 0 and 14, which can be continued to
large X . Using the implicit function theorem, one can
prove the existence and uniqueness of this branch for
small values of X , together with the fact that a solu-
tion (UX(τ), VX(τ)) is smooth and decays exponentially
to 0, as |τ | → ∞. Moreover, one can show that there are
no bifurcations, for X sufficiently small. Here, we are
interested in the two pitchfork bifurcations predicted by
the previous numerical computations at X1 = 4.596695
and X2 = 10.604008.
Consider a symmetric steady solution (UX , VX) on the

branch in Fig. 6. By setting

U = UX + ν, V = VX + v. (17)

where ν and v describe the deviations from this steady
solution, we obtain the new system:

wz = AXw + J (R2(w,w) +R3(w)), (18)

in which w = (ν, v)T and AX is the matrix linear opera-
tor

AX = −I+ JLX , (19)

where I is the identity matrix,

J =

(

0 −1
1 0

)

,

and LX is the linear operator defined by

LX =

(

∂2
τ −∆+ 3U2

X + V 2
X 2UXVX

2UXVX ∂2
τ −∆+ U2

X + 3V 2
X

)

.

Finally, R2(w1, w2) is the bilinear map given by

R2(w1, w2) =

(

3UXν1ν2 + VX(ν1v2 + ν2v1) + UXv1v2
VXν1ν2 + UX(ν1v2 + ν2v1) + 3VXv1v2

)

,

for w1 = (ν1, v1)
T and w2 = (ν2, v2)

T , and R3(w) is the
cubic map given by

R3(w) =

(

(ν2 + v2)ν
(ν2 + v2)v

)

,

for w = (ν, v)T . We regard Eq. (18) as an infinite-
dimensional dynamical system in the phase space H =
L2(R)× L2(R) equipped with the usual scalar product

〈w1, w2〉 =
∫

R

(ν1(τ)ν2(τ) + v1(τ)v2(τ))dτ.

In this Hilbert space, AX is a closed linear operator with
domain H2(R)×H2(R), and the operators J and LX are
skew- and self-adjoint, respectively. The nonlinear terms
R2 and R3 are smooth maps.
Varying the parameter X in Eq. (18), the bifurcation

points are the values of X where the structure of the
purely imaginary part of the spectrum of the linear op-
erator AX changes. Notice that the spectrum of AX is
symmetric with respect to the vertical line Re(λ) = −1
in the complex plane. Indeed, since J and LX are skew-
and self-adjoint operators, respectively, the spectrum of
JLX is symmetric with respect to the imaginary axis, so
that the spectrum of AX = −I+JLX is symmetric with
respect to the vertical line Re(λ) = −1 in the complex
plane. Moreover, it is also symmetric with respect to the
real axis, since AX is a real operator. These two prop-
erties are clearly satisfied by the numerically obtained
spectrum depicted in Fig. 1.
The essential spectrum of AX can be determined ana-

lytically. Since AX is a differential operator with asymp-
totically constant coefficients, its essential spectrum co-
incides with the spectrum of the asymptotic operator A0

which has constant coefficients. Then a standard Fourier
analysis allows to compute explicitly the spectrum of A0,
and conclude that the essential spectrum of AX is the set

σess = {−1± i(k2 +∆), k ∈ R},

which lies entirely in the open left half complex plane.
Consequently, bifurcations can only arise due to point
spectrum, which consists of eigenvalues with finite alge-
braic multiplicities. For sufficiently small X , standard
perturbation arguments show that the spectrum of AX

stays close to the one of A0. In particular, it lies in the
left half complex plane, and no bifurcations/instabilities
occur for small X . The previous numerical computations
show that there exists a first value X1 at which one (sim-
ple) eigenvalue crosses the origin and becomes positive
for X > X1 (see point P1 in Fig. 1). All other eigen-
values have negative real parts. Increasing X , there is
a second value X2 where this simple eigenvalue crosses
the origin back in the left half complex plane (see point
P2 in Fig. 1). Our purpose is to study the two (pitch-
fork) bifurcations which occur at these parameter values,
and which are directly related to the SSB phenomena
observed experimentally in Ref. [13].
We denote by λ0(X) the simple eigenvalue above, so

that we have

σ(AX) = {λ0(X)} ∪ σ−(AX), (20)

σ−(AX) ⊂ {λ ∈ C ; Re(λ) 6 −γ}, (21)

for some γ > 0, and

λ0(X) < 0 for X < X1, (22)

λ0(X1) = 0,

λ0(X) > 0 for X1 < X < X2,

λ0(X2) = 0.
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FIG. 7: Steady state comparison between the original LL model (2) and the center manifold approach (see text) close to
the pitchfork bifurcation points. The figure depicts the coefficients determining the amount of asymmetry for the LL model
as monitored by α(X), defined in Eq. (29), (see blue curves containing the points A, B, C, D, E, and F) and for the center
manifold approach by A(X) (see red [about bifurcation point X1] and green [about bifurcation point X2] curves). The insets
correspond to the steady state asymmetric solutions for both the LL model (solid curves) and the center manifold approach
(dashed curves) at the points A, B, C, D, E, and F indicated in the bifurcating branches corresponding, respectively, to pump
powers X = 4.65, 4.85, 5.1, 10.55, 10.35, and 10.1.

The following arguments work for both bifurcation
points X1 and X2. Choose one of these values and denote
it by X∗. We set

A∗ = AX∗
, L∗ = LX∗

, and R∗,2 = RX∗,2.

Further, we consider an eigenvector ζ∗ in the one-
dimensional kernel of A∗ and an eigenvector ζ∗∗ in the
one-dimensional kernel of the adjoint operator (A∗)

∗. We
claim that we can choose ζ∗∗ such that

ζ∗∗ = J ζ2 and A∗ζ2 = −2ζ2.

Indeed, since J and LX are skew- and self-adjoint oper-
ators, respectively, we find

(A∗)
∗ζ∗∗ = 0 ⇔ −(L∗J )ζ∗∗ = ζ∗∗ , (23)

⇔ A∗(J ζ∗∗ ) = −2(J ζ∗∗ ).

The last equality shows that J ζ∗∗ is an eigenvector of A∗
associated to the eigenvalue −2 [the symmetric of 0 with
respect to the vertical line Re(λ) = −1], and proves the
claim.
The analytical and numerical computations of the es-

sential and point spectra, respectively, above show that
A∗ has precisely one simple eigenvalue on the imaginary
axis [located at the origin], and that the remaining spec-
trum lies entirely in the open left half complex plane. By
arguing with the center manifold theorem, e.g., see [19,
Chapter 2], we conclude that the dynamical system (18)

possesses a one-dimensional center manifold, for any X
close to X∗. All bounded solutions of Eq. (18) lie on this
manifold and are of the form

w(z) = A(z)ζ∗ +Φ(A(z), X), (24)

in which A is a real-valued function and Φ, depending
upon A and the parameter X , satisfies

Φ(A,X) = O(|A|(|X −X∗|+ |A|),

for small A and X close to X∗, and the orthogonality
condition

〈Φ(A,X), ζ∗∗ 〉 = 0. (25)

Here, ζ∗ and ζ∗∗ are the eigenvectors in the kernels of the
operator A∗ and its adjoint operator, respectively. The
dynamics of the center manifold is determined by a scalar
ODE

dA

dz
= f(A,X). (26)

Our purpose is to compute the leading order terms in
the expansion of the reduced scalar field f . Notice that
the system (18) is invariant under the reflection τ 7→ −τ .
As a consequence, f is odd in A,

f(A,X) = −f(−A,X),
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so that its Taylor expansion is of the form

f(A,X) = c0(X)A+ c3A
3 +O(|A|3(|X −X∗|+A2)),

in which c0(X) and c3 are real constants. Since the (sin-
gle) eigenvalue of the linearization at 0 of the reduced
scalar field f is precisely λ0(X), we conclude that

c0(X) = λ0(X),

In particular c0(X∗) = 0 and its values for X close to
X∗ are given by the previous numerical calculations (see
Sec. II). Next, in order to compute c3, we set X = X∗
and replace the ansatz (24) into the system (18). Taking
into account Eq. (26), the expansion of f , and expanding
the reduction function Φ(A,X) at X = X∗,

Φ(A,X∗) = Φ0A+Φ2A
2 +Φ3A

3 +O(|A|4),

we obtain the equality

A∗Φ2 = −JR∗,2(ζ∗, ζ∗). (27)

The orthogonality condition Eq. (25) determines
uniquely Φ2, and as a consequence of the reflection sym-
metry τ 7→ −τ of Eq. (18), we have that Φ2 is an even
function. In particular, Φ2 is the unique even solution of
the equation. Next, at O(A3), we obtain:

c3ζ∗ = A∗Φ3 + 2JR∗,2(ζ∗,Φ2) + JR3(ζ∗).

Taking the scalar product with ζ∗∗ = J ζ2, and using the
fact that ζ∗∗ belongs to the kernel of the adjoint of A∗,
we obtain the second coefficient

c3 =
1

〈ζ∗,J ζ2〉
(〈2R∗,2(ζ∗,Φ2), ζ2〉+ 〈R3(ζ∗), ζ2〉) .

B. Local dynamics

The local dynamics on the one-dimensional center
manifold is qualitatively given by the signs of the two
coefficients c0(X) and c3. These coefficients are com-
puted numerically, and the result confirms the situation
depicted in Fig. 6. The sign of c0(X) is the same as the
one of λ0(X) [see Eq. 22], and

c3 < 0, for X = X1, and c3 > 0, for X = X2. (28)

At both bifurcation pointsX1 and X2, we are in the pres-
ence of a pitchfork bifurcation in which a pair of asym-
metric stable equilibria appears from or disappears into
the symmetric equilibrium which, in turn, changes its sta-
bility. Moreover, there is a pair of heteroclinic orbits con-
necting the unstable symmetric equilibrium at z = −∞
with the stable asymmetric equilibria at z = ∞. These
solutions persist for the full system, and can be computed
as solutions of Eq. (1) going back through the reduction
procedure, successively from the formulas (24), (17), and
(15). In particular, the heteroclinic connection describes
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FIG. 8: Orbits representing the dynamics settling to the
asymmetric steady states past the first pitchfork bifurca-
tion point. Depicted is the evolution for the asymmetry co-
efficients α(z) and A(z) (see text) for a pump strength is
X = 4.85 that is to the right of the first pitchfork bifurca-
tion point X1 = 4.596695. The blue (dark) curves corre-
spond to the original model (α(z)) while the orange (gray)
curves correspond to the reduced equation (A(z)). The or-
bits tend towards their corresponding steady state solutions
α∗ and A∗ which correspond to the stable asymmetric state
created by the pitchfork bifurcation. Panel (b) corresponds
to panel (a) by normalizing the A(z) and α(z) orbits by their
respective steady states. Panel (c) shows the logarithm of the
normalized distance to the steady state ∆α = (α − α∗)/α∗

and ∆A = (A − A∗)/A∗. In this panel we also depict with
thin (black) lines the slope λ(4.85) = −0.01824 corresponding
to the stability eigenvalue of the asymmetric state [see small
black dot next to the point P1 on the thin (black) branch de-
picted in the top panel of Fig. 1] which is shown to coincide
with the rate of attraction towards the asymmetric steady
state for both the original model and the reduced equation.

the transition dynamics from the unstable symmetric to
the stable asymmetric solution.

Based on the bifurcation analysis above, we compare
the solutions (24) given by the center manifold approach
to ones found directly from the original LL model (1)
for η = −1, ∆ = 0.92, and T0 = 2.3. In particular, we
compare the asymmetric stationary states described by
Eqs. (17) and (24) with the ones obtained from the LL (2)
by projecting the numerically found steady state solu-
tions of the latter along the symmetric and asymmetric
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branches for values of X near the bifurcation points X1

and X2. Therefore, the asymmetric solutions of Eq. (2)
are fit using the symmetric solutions plus α times the
eigenvector of the translation mode, i.e. the eigenvector
ζ∗ associated with the bifurcation point X∗ [see Eq. (4)
and Fig. 1], but now written in original complex variables
associated with u(z, τ).
Therefore, we find the best (in the least-squares sense)

scalar value α such that:

uAsym(X∗ + δX) ≈ uSym(X∗ + δX) + α(X∗ + δX) ζ∗.
(29)

By using a nonlinear least-square solver, we extract the
value of α(X) around each bifurcation point X1 and X2

and compare it with the value of A(X) from the reduced
equation. Fig. 7 depicts a plot of A(X) and α(X) close
to both pitchfork bifurcations. As the figure shows, the
shape of the bifurcation is well captured by the center
manifold approach. In fact, as expected, the reduced
equation correctly captures the concavity of the bifurcat-
ing branch at both bifurcation points. In the figure, the
insets depict the steady state profile comparison between
the original model and the center manifold approach for
values of the pump power δX = 0.05, 0.25, and 0.5 units
away from both bifurcation points. As it is clear from the
insets, the center manifold approach approximates very
well the shape of the steady state solutions particularly
close to the bifurcation points. Therefore, the reduced
equation provides a very good agreement for the stat-

ics, i.e. steady states, of the original model close to the
bifurcation points.
We now focus on the dynamics close to the bifurcation.

In particular, let us study how solutions, starting from a
perturbed (unstable) symmetric solution, evolve towards
the (stable) asymmetric steady [an example portraying
this evolution is depicted in Fig. 2(a)]. Figure 8(a) de-
picts the dynamical evolution of the asymmetry coeffi-
cients A and α, as defined above, for initial conditions
above and below the corresponding steady state solutions
A∗ and α∗ for a value of X past the first pitchfork bi-
furcation point. As the figure shows, both the original
LL dynamics and the center manifold reduction produce
orbits that settle towards their corresponding (stable)
asymmetric steady states. In order to better compare
the decay in both systems, we depict in Fig. 8(b) the
orbits normalized by their corresponding steady states.
Finally in Fig. 8(c) we depict the logarithm of the dis-
tance to the corresponding steady states. As it is clear
from this panel, the steady state is reached exponentially
fast with a rate that precisely coincides with the stability
eigenvalue for the asymmetric state [see small black dot
next to the point P1 on the thin (black) branch depicted
in the top panel of Fig. 1] as suggested by the thin black
(dark) lines depicting the rate using λ(4.85) = −0.01824.
The figure confirms that the center manifold approach is
not only capable of reproducing the right statics for the
asymmetric branches, but it is also capable of reproduc-
ing the main qualitative features of the dynamics as the

solutions settle towards the stable asymmetric states.

V. CONCLUSIONS & FUTURE CHALLENGES

In this paper we considered different theoretical tech-
niques aiming at a more detailed analytical and nu-
merical understanding of the phenomenology arising in
a coherently-driven passive optical Kerr resonator, ex-
perimentally observed in Ref. [13] and modelled by
the Lugiato-Lefever equation (LL) [14] that corre-
sponds to a non-Hamiltonian variant of the nonlinear
Schrödinger equation. In particular, we applied both a
non-conservative variational approximation (NCVA) of
Ref. [18] and a center manifold technique to study the
spontaneous symmetry breaking (SSB) bifurcations aris-
ing in this system. It is found that variational ansätze
lacking the appropriate phase variation are not able to
capture the intrinsic underlying velocity fields and the
delicate balance present in the steady state density so-
lution. These flows are ubiquitous in systems with gain
and loss as the steady state consists of a balance be-
tween regions with gain and loss provided by flows from
the former regions (sources) to the latter ones (sinks).
Using a suitably adjusted variational ansatz, including
higher order phase terms while remaining tractable, the
NCVA is capable of accurately predicting the threshold
in the pump power for the onset of SSB —although it is
not adequate for fully capturing the complex bifurcation
structure (especially so at large pumping strength/large
nonlinearity). To obtain a more complete and quantita-
tive, as well as mathematically a more rigorously justifi-
able description, we have then employed a center mani-
fold approach capable of capturing both the forward and
reverse pitchfork bifurcations of the original system in
terms of the corresponding locations and profile shapes
of the steady states and also in terms of the rate of con-
vergence towards the stable asymmetric state when the
symmetric one is rendered unstable. The numerical de-
termination of the linearization spectrum of the system
was not only important for completing the calculations
associated with the center manifold method; it was also
crucial towards a detailed understanding of the full sta-
bility/instability transitions.
In that same vein, the identification of the parametric

dependence of the spectrum has enabled us to uncover
the emergence in the original LL model of a (potentially
quite relevant to experiments in this system) Hopf bifur-
cation. This, in turn, was dynamically found to give rise
to stable periodic solutions and hence illustrate that more
complex bifurcation scenaria may arise as the cavity loss
parameter is varied.
It should be interesting to study in more detail these

more complex bifurcation and SSB scenaria and their im-
plications for the original physical system. In that regard,
it may be beneficial to explore the possibility to identify
these periodic orbits as exact solutions of the numerical
LL problem past the Hopf bifurcation point that we have
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identified here, via a fixed point iteration at the Poincaré
recurrence of the relevant periodic orbit, or using the
center manifold technique. Moreover, this would enable
to explore the stability (Floquet multipliers) associated
with this orbit. Another natural direction would be to
consider similar LL models in two-dimensional settings
(even if these may be less relevant from an experimen-
tal perspective in nonlinear optics) in order to appreciate
how SSB phenomena may interplay with external drives
and also with the potential of such higher dimensional
models to feature collapse. Lastly, from the point of
view of more recent experiments in connection to the LL
equation, a deeper understanding of the dynamics and
interactions, as well as the trapping and manipulation
of temporal cavity solitons (and corresponding effective
“particle” descriptions thereof) may be relevant to pur-
sue [24, 25].
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