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Abstract:  In this paper, we deal with a joint production and Preventive Maintenance (PM) scheduling problem in 
the robustness framework. The contributions of this paper are twofold. First, we will establish that the insertion of 
maintenance activities during production scheduling can hedge against some changes in the shop environment. 
Furthermore, we will check if respecting the optimal intervals of maintenance activities guarantees a minimal 
robustness threshold. Then, we will try to identify from the used optimisation criteria those that allow making 
predictive schedules more robust. The computational experiments in a flowshop show that joint production and 
PM schedules are more robust than production schedules and maintenance provides an acceptable tradeoff 
between equipment reliability and performance loss under disruption 

Key words: Production, Preventive maintenance, Flowshop, Joint scheduling, Disruption, robustness, 
Optimization criteria. 

1. Introduction 

Production scheduling is one of the most important tasks carried out in manufacturing systems. It is 
responsible for the scheduling of jobs in machines and the specification of the sequence and time to 
be carried out of operation. Some productive systems present a special configuration that has been 
widely studied in the literature. This configuration implies a natural ordering of the machines in the 
shop in that the jobs go through the same machines in the same order. This type of configuration is 
called ‘flowshop’. 
In the research literature, production scheduling is usually seen as a function of perfect inputs. The set 
of orders, capacities of machines, duration of activities and other characteristics of the scheduling 
problem are assumed to be known and static. Several techniques have been proposed to generate 
(for a given problem) a unique schedule satisfying shop constraints and providing optimal or near-
optimal performance. However, when this precomputed or predictive schedule is released for 
execution, continual adaptations are required to take uncertainties into account. These uncertainties 
are related, for example, to machine breakdowns, staffing problems, the unexpected arrival of new 
orders, the early or late arrival of raw materials and uncertainties in the duration of processing times 
(Aloulou and Portmann, 2003).
As a result, over the past 20–30 years, one of the most interesting branches of combinatorial 
optimisation that emerged is robust optimisation. Two new research lines within the operations 
research community have been initiated with an increasing interest in the use of worst-case 
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optimisation models: disruption management and robust scheduling. In this paper, we deal with the 
second research line. 

Another task closely related to production scheduling in industrial settings is Preventive Maintenance 
(PM), understood as the operations or techniques that allow the maintenance or restoration of 
equipment to a specific state and the guarantee of a given service. These activities conflict since PM 
activities consume potential production time, but delaying PM because of production demands may 
increase the probability of machine failure. 

Usually, scheduling PM operations and production sequencing are dealt with separately in the 
literature and, therefore, also in the industry. Therefore, little work has been carried out in which PM 
scheduling and flowshop scheduling are jointly considered (Lee and Chen, 2000; Cassady and Kutanoglu, 
2003; Benbouzid et al., 2003; Aggoune, 2004; Allaoui and Artiba, 2004; Ruiz et al., 2007). There is one 
account in the literature regarding two joint scheduling strategies (Lee and Chen, 2000) aiming to solve 
the conflicts between production and maintenance: the sequential strategy that consists of scheduling production 
jobs, then inserting maintenance tasks, taking production scheduling as a strong constraint, and the integrated 
strategy that consists of simultaneously scheduling both maintenance and production activities based on their 
common representation.

In this paper, we develop a model that studies the maintenance contribution to joint production and 
PM scheduling robustness. In the first step, we build a set of schedules (Benbouzid et al., 2003) 
restricted to follow a disruption protocol, which allows the comparison of the performances of disrupted 
joint production and PM schedules to disrupted production ones (without maintenance). Then, we will 
try to identify from the used optimisation criteria the ones that allow making predictive schedules more 
robust. The purpose of such a model is to describe the benefits of inserting maintenance activities 
during production scheduling that can guarantee a minimal robustness threshold. 

The rest of the paper is organised as follows. In Section 2, we present a short state-of-the-art 
concerning both the theoretical and practical aspects of scheduling in the robustness framework. In 
Section 3, we describe the context of the study: production and maintenance data and the common 
objective function to optimise. Section 4 introduces our experimental environment through the 
optimisation criteria used in the tests, then the disruption protocol and disruption algorithm. Section 5 
is devoted to the results. Finally, we conclude with some development prospects and extensions to 
our work. 

2. Literature review 

The theory of robustness is a relatively new and fast-developing area of combinatorial optimisation. It 
deals with the uncertainty of problem parameters. The presence of such parameters in optimisation 
models is caused by the inaccuracy of initial data, the inadequacy of models to real processes, the 
errors of numerical methods, rounding-off errors and some other factors. Thus, it appears important to 
identify the model classes in which small changes on the input data lead to small changes in the 
results, under the worst possible scenario of problem parameters distribution. During the past 10–20 
years, many authors concentrated their work on robust optimisation and related approaches in which 
one optimises against the worst instances that might arise by using the min-max (or some other) 
objective. 

2.1. Robustness in scheduling 
In scheduling, it might be important for the disrupted schedule to remain very close to the original one 
when the release dates are slightly changed and the problem is reoptimised. Two types of robustness 
are generally mentioned in the literature: quality robustness and solution robustness (Sörensen, 
2001). A solution is called ‘quality robust’ if the quality of this solution is relatively insensitive to 
changes in the problem data. This type of robustness can also be called ‘robustness in the objective 
function space’. A solution is called ‘robust’ if it remains approximately the same when changes occur 
in the input data. 
Many scheduling and rescheduling approaches have been proposed in the literature to take into 
account the presence of uncertainties (disruptions) in the shop floor (Aloulou and Portmann, 2003). 

ha
l-0

04
35

89
9,

 v
er

si
on

 1
 - 

25
 N

ov
 2

00
9



3 

Their aim is to produce schedules that easy recovery or remain feasible after disruption; see, for 
example, Davenport and Beck (2000), Herroelen and Leus 2005 and Jensen 2001.  
These approaches can be classified into four categories: completely reactive scheduling, predictive-
reactive scheduling, proactive scheduling and proactive-reactive scheduling. Completely reactive 
approaches are based on up-to-date information regarding the state of the system (Davenport and Beck, 
2000). No predictive schedule is given to the shop floor and decisions are made locally in real time by 
using priority-dispatching rules. In predictive-reactive approaches, a schedule is generated without 
considering the possible disruptions. Then, a reactive algorithm is used to maintain the feasibility of 
the schedule and/or improve its performances (Vieira et al., 2003). Proactive or robust scheduling 
takes into account the possible disruptions while constructing the original predictive schedule. This 
allows making the predictive schedule more robust. A robust schedule is defined by Leon et al. (1994) 
as “a schedule that is insensitive to unforeseen shop floor disruptions given an assumed control 
policy”. This control policy is generally simple. Robust scheduling is appropriate only if, while 
generating the predictive schedule, uncertainty is known or at least some suspicions about the future 
are given, thanks to the experience of the decision maker. If uncertainty is completely unknown, a 
reactive scheduling approach is more suitable. 
Most of the work related to robustness in the scheduling theory is based on two important factors: the 
uncertainties taken into account and the used robustness measures. Uncertainties in scheduling may 
arise from many sources: machine breakdowns, early or late arrival times, uncertainty of processing 
times, changes in release data, natural and human factors, etc. The most studied uncertainties are 
related to machine breakdowns (Mignon et al., 1995; Sanmarti et al., 1995; Lawrence and Sewell, 
1997; Balasubramanian and Grossmann, 2002; Alcaide et al., 2002). Nevertheless, some work 
studying the uncertainty of processing times can be found in Mignon et al. (1995) and 
Balasubramanian and Grossmann (2002). 
For robustness measures, authors generally follow one of two classes of experiments: the first uses 
only one robustness measure and several resolution methods (rescheduling approaches are used), 
whereas the second class uses one or few resolution methods but relate to several robustness 
measures. In both classes, the robustness measure is known. 
No one can guarantee the reliability of input data in the contemporary, dynamic, permanently changing 
world. This is one reason why almost all modern scheduling techniques try to find a solution (being 
probably near-optimal, but as close as possible to an optimal one) that is flexible to input data 
changes. 

2.2. Robustness and preventive maintenance  
In the preceding section, a brief description of the literature concerning both the theoretical and 
practical aspects of scheduling in the robustness framework was given. Even though production 
scheduling and PM planning have received considerable attention from manufacturing industries, in 
practice, these are made independently despite the relationship between them. Therefore, ‘preventive 
maintenance’ does not appear in the literature review presented above. All the studied works focus 
only on production scheduling. 
PM apparently has a negative impact on the performance of a production system. Given that 
maintenance affects the available production time and the elapsed production time affects the 
probability of machine failure, this interdependency seems to be overlooked in the literature. Solving 
production scheduling and PM planning problems independently ignores these inherent conflicts. Our 
contention is that manufacturing system productivity would benefit from the integration of these 
decisions. The goal is to reach a compromise between system performance and equipment reliability. 
One can measure system reliability without maintenance, knowing that, on the one hand, corrective 
action never brings the system back to its nominal state and, on the other hand, lots of corrective 
actions decrease system performance. One can also evaluate the maintenance contribution in the 
global performance of the system under disruption, which deals with the robustness of the production 
system. The first proposal has been widely studied in the literature. Some authors studied the impact 
of maintenance policies on the industrial process (Sherwin, 2000; Vineyard et al., 2000). Others were 
interested in industrial cases (Sanmarti et al., 1995; Ashayeri et al., 1996; Alcaide et al., 2002). In this 
paper, we will investigate the first proposal. 
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3. Models and problem statement 

In the following subsections, we will first present the production and maintenance data, then the 
objective functions to optimise. 

3.1. Formulation of the static permutation flowshop scheduling problem 
One of the most frequent production scheduling problems is the Flowshop Problem (FSP), which 
represents a lot of industrial cases. The FSP can be stated as follows. Each n job 1… n has to be 
processed on m machines 1… m, in that order. The processing time of job i on machine j is pij. The 
processing times are fixed, non-negative and may be 0 if a job is not processed on some machines. 
Further assumptions are that each job can be processed on only one machine at a time, the 
operations are not preemptable, the jobs are available for processing at time 0 and set-up times are 
sequence-independent. Here, we consider the Permutation Flowshop Problem (PFSP), i.e., the same 
job order is chosen on every machine. The objective is to find a sequence, i.e., a permutation of the 
numbers 1…n that minimises the completion time Cmax (makespan) of the last job. In this case, the 
problem is denoted by Fm/ /Cmax following Reeves’ (1995) notation. The problem is NP-hard (Garey et 
al., 1976); only some special cases can be solved efficiently (Johnson, 1954). 

3.2. Preventive maintenance and scheduling 
Maintenance is understood as any activity carried out on a system to maintain or restore it to a specific 
state (Biroloni, 2004). Maintenance operations can be classified into two large groups: Corrective 
Maintenance (CM) and PM. CM is carried out when the failure has already taken place. PM consists of 
carrying out operations in machines and equipment before the failure or breakdown takes place and at 
previously established time intervals. The objective of PM is to prevent failures and, therefore, to 
minimise the probability of failure. The advantage of PM is that the system is always in good condition, 
thus reducing the risk of unexpected failures. 
The choice of PM for this study is a consequence of its planned aspect that makes it the most adapted 
for maintenance scheduling. In this case, the search for a production schedule will be correlated to the 
search for maintenance planning, which is predefined and easy to implement. 
PM can be stated as follows. Each machine is maintained periodically at known time intervals. The 
maintenance tasks are periodic interventions occurring every T periods and each occurrence depends 
on the one preceding it on the same machine. A maintenance task consists of elementary operations 
wherein processing time p’ is evaluated with more or less certainty. Moreover, the periodicity T of 
these tasks can vary in a tolerance interval noted [Tmin, Tmax]. This interval gives some flexibility to 
plan maintenance tasks while respecting the production constraint, disturbing the least possible 
production schedule and respecting maintenance equipment periodicity. 
The tolerance interval represents a compromise between the maintenance cost and machine 
unavailability. If the period is lower than Tmin (zone 1 in Figure 1), maintenance interventions will be 
too frequent compared to the machine’s real need and, thus, induce a too high maintenance cost. 
Moreover, if some maintenance tasks are programmed after Tmax (zone 2 in Figure 1), breakdowns 
and CM actions are likely to appear. As a result, the machine would be unavailable. This established 
fact induces a maintenance cost increase and performance loss. However, an intervention planned in 
interval [Tmin, Tmax] will induce a relatively constant maintenance cost. 

Machine j can be subject to several different maintenance tasks which will be repeated periodically. 
Let: 

- Mij: the maintenance task i on the machine j.  
- Tij: periodicity of the maintenance task Mij. 
- Tminij: earliest time separating two consecutive occurrences of Mij; 
- Tmaxij: latest time separating two consecutive occurrences of Mij; 
- p’ij: processing time of task Mij. It is supposed to be known and constant. 

Ideally, a maintenance task is programmed in interval [Tmin, Tmax]. However, it can be programmed 
before Tmin and considered advance (this advance is noted E’) or programmed after Tmax and 
considered late (this delay is noted L’). The earliness and tardiness of the k-th occurrence of 
maintenance task Mij are computed as follows: 
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- t’ijk = execution time of the kth occurrence of the maintenance task Mij.  
- E’ijk = earliness execution time of the kth occurrence of the maintenance task Mij.

   E’ijk = max (0, t’ijk+p’ij+Tminij – t’ijk-1)  
- L’ijk: Tardiness execution time of the kth occurrence of the maintenance task Mij.   

   L’ijk = max (0, t’ijk-1 - t’ijk - p’ij -Tmaxij)

Figure 1: Tolerance interval of a maintenance task

3.3. Objective functions 
The goal of joint scheduling is to propose a method that provides common planning for production jobs 
and maintenance tasks. Thus, the objective of optimisation is to find a compromise between the target 
objective maintenance and production functions. 
The constraints imposed by the customers to their suppliers are often expressed in terms of time, 
which naturally lead us to the minimisation of the makespan. One will note f1, the production objective 
function: 

)(max1 ijc=Max=Cf 1 [1] 

We introduced in the preceding section a cost curve that depends on the period wherein maintenance 
activities are done (time). This curve can be established on the base of a mathematical model. In this 
study, we investigate the robustness of an integrated production scheduling and PM planning model 
considering that the respective maintenance activities’ periods can be hedged against some machine 
failure. The purpose of this work is to optimise time, not cost. From the supplier point of view, the 
respective maintenance periods influence the constraints of the production system. One will note f2, 
the maintenance objective function: 

jk

m

j

Maxj

k
jk LEf ''

1 1
2 += � �

= =

2 [2] 

To optimise the two criteria, we take into account the following common global objective function: 

21 fff βα += [3] 

                                                     

1 cij is the completation time of task i on the machine j 
2 Maxj represents the effective occurrence number of the maintenance task Mj. 

Maintenance 
cost 

Time 

Machines 

Tmax

Tmin

Time 

T 

Approximation 
model 

Zone 3 Zone 2 Zone 1 
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(�,�) are weights that will measure the respective contributions of production and maintenance in the 
global objective function. The goal is not to study multicriteria optimisation, but only to measure the 
impact of production or maintenance on the global objective function. For that, parameters � and � can 
depend on the number of tasks, processing time or problem size. They are independent and 
noncomplementary. 

4. Experimental environment 

The aim of this study is to evaluate the maintenance contribution to the robustness of joint production 
and maintenance scheduling. For that, we will try to answer the following questions: 
1. Does maintenance contribute to scheduling robustness? 

The answer to this question will determine if maintenance contributes to joint scheduling 
robustness. In static environments, the insertion of maintenance tasks in the schedule 
decrease some optimisation criteria such as makespan because of the  
delay of some production jobs. But in dynamic environments, where disruptions can occur, it 
can improve it by optimising machine reliability (a recently maintained machine will have a 
weak probability of performance degradation). 
In this paper, we do not propose robust joint scheduling, but rather to register the generation 
of joint production and PM schedules as a robust approach. Our goal is to establish that the 
performance decrease of joint production and PM scheduling after the insertion of 
maintenance activities is lower than the decrease of production scheduling performance under 
disruptions. 

2. Do some optimization criteria have any influence on scheduling robustness? 
The answer to this question implies the study of the influence of some classical optimisation 
criteria on scheduling robustness. This question is very important if robust schedules exist, but 
we can show that neither the maintenance nor scheduling methods influences this robustness. 
At this time, the goal consists of searching the optimisation criteria under this improvement. 

In the following, we will first present the selected optimization criteria for this study. Then, we will 
introduce our disruption protocol and the disruption algorithm; 

4.1. Optimization criteria  
To answer the second question of this study, we chose the following criteria in the production objective 
function (Section 3.3) (Pinedo, 1995): Cmax, flow time, idle time, �Ti and, for maintenance, the sum of 
the advances and delays in maintenance (Section 3.3). The global objective function takes into 
consideration the production optimisation criteria and the maintenance one. 
The criteria to be optimised in the production objective function were chosen because of the bound 
existing between them. Of course, if Cmax varies, the others vary in the same direction. 

4.2. Disruption protocol 
The shop environment is subject to disruptions related to production jobs. We model a disruption as 
an increase of processing times according to levels and classes. This classification refers to the study 
of Lawrence and Sewell (1997). 
In the following subsections, we will first define disruption levels and classes and the concept of 
overlapping, which is a consequence of tasks disruption. Then, the maintenance effect when 
disruption occurs is introduced. It is modelled as reliability and disruption intervals. 

4.2.1. Definition of  disruption levels 
A disruption level determines the production job’s processing time increase. Ten levels of disruption in 
processing times were studied. They represent the intervals of possible processing time increases. At 
each level, the maximum increase of the disturbed task processing time is 10% of the original 
processing time. This variation is obtained by a coefficient noted CoefPertij for a task (i,j). This 
coefficient is generated by a uniform law U. 
Table 1 defines the disruptions levels and the uniform variable associate with each level. 
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Level Interval Variation 
1 ] 0%, 10%] CoefPert1 � U [0, 0.1] 
2 ] 10%, 20%] CoefPert2 � U [0.1, 0.2] 
. 
. 
. 

. 

. 

. 
9 ] 80%, 90%] CoefPert9  � U [0.8, 0.9] 
10 ] 90%, 100%] CoefPert10 � U [0.9, 1] 

Table 1: Disruption levels 

Figure 2 illustrates the new processing time (P’i) of a disturbed job defined as:  

)1('
iii CoefPertPP +×=

With:  
- pij = processing time  
- p’ij = new processing time after disruption 
- tij : starting time  
- cij : completion time. 
- CoefPerti: disruption coefficient of the task i. 

Figure 2: Processing time of a disturbed job 

4.2.2. Definition of disruption classes 
A disruption class represents the number of tasks to disturb in the schedule. We define three 
disruptions classes: weak, average and strong. Table 2 gives the number of disturbed tasks in the 
schedule for each class. 

Class Interval of variation Number of disturbed tasks
Weak [0%, 40%] u � U [0, 0.4] / n x u disturbed tasks 
Average ] 40%, 70%] u � U] 0.4, 0.7] / n x u disturbed tasks 
strong ] 70%, 100%] u � U] 0.7, 1] / n x u disturbed tasks 

n: number of tasks 

Table 2: Disruption classes 

4.2.3. Overlapping 
The increase of production tasks’ processing times can cause overlapping between two or several 
tasks. An overlap between two tasks is defined as “the interlacing or the superposition of two tasks 
after the right-shifting of the first one for an unspecified reason”. Overlapping can occur between two 
production jobs or between a production job and a maintenance task. Overlapping can be classified 
into two large groups (Figure 3): horizontal overlapping, which occurs between two successive tasks 
on the same machine, and vertical overlapping, which occurs on the same task executed on two 
successive machines. 
To solve overlapping, right-shifting rescheduling is applied because it preserves the tasks’ execution 
order. Nevertheless, in the case of joint production and PM scheduling, we will check if the 
maintenance task is still in its tolerance interval after right shifting. Otherwise, permutations between 

)1(4
'

4 CoefPertPP jj +×=

(1, j) (2, j) (3, j) (4, j) (5,j) 

P4 j CoefPertP j ×4

t4j 

c4j 

Machine  j

c’4j 
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the production job that caused the overlap and the maintenance one will be done to put it back in its 
tolerance interval. 

Figure 3: Horizontal and Vertical overlapping between two tasks 

4.2.4. Reliability and disruption intervals 
After machine maintenance, its reliability will increase and can hedge against several disruptions. We 
model the maintenance effect on machine reliability by two intervals: a reliability interval (after a PM 
action on the machine) and a disruption interval that succeeds the reliability one (Figure 4). 
In the reliability interval, no disruption on the production job’s processing time can occur because the 
machine has been recently maintained and is, therefore, still reliable. This interval is considered 
maintenance data; it depends only on the machine concerned with maintenance. In the disruption 
interval, disruptions can occur progressively. 

Figure 4: Reliability and disruption intervals 

4.3. Disruption algorithm 
The four steps (generation, disruption, classification and validation) of the algorithm that we propose to 
study the maintenance contribution to robustness of joint production and PM scheduling under 
disruption are outlined below. 

Reliability interval Disruption interval 

20% 

100% 

Disruption 
intensity

Time 

Completation time of 
maintenance task Mk j

Execution time of 
maintenance task Mk+1 j

(2,j) (3,j) (4,j) (5,j) 

c4j 

t5j 

P3j P4j 

Horizontal overlapping Disruptions 

(2,j+1) 

Vertical overlapping 

Resolution with 
shifting

Mj+1 

 Mj 

Machine

Time

P2j 

P’2j P’3j P’4j 
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Step 1: Generation 
We build three sets of near-optimal schedules with a Genetic Algorithm (GA) by following the 
procedure given by Benbouzid et al. (2003). The first set is composed only of production schedules 
(PGA) resulting from the first step of the sequential strategy. The second one is composed of the joint 
production and PM schedules resulting from the second step of the sequential strategy (SGA) (after 
the insertion of maintenance). The last one is also composed of the joint production and PM schedules 
resulting from the integrated strategy (IGA). The aim of this distinction between the generation 
strategies of joint scheduling is to see whether the generation method has any influence on schedules’ 
robustness. 
Step 2: Disruption 
A schedule can be disturbed at three different levels, according to the three sets: at the generation of 
the production schedule (the first step of joint production and PM scheduling generation with the 
sequential strategy), after the insertion of maintenance tasks (the second step of the sequential 
strategy) and after the generation of the schedule in the case of the integrated strategy. The 
schedules of each set are first optimised with the optimisation criteria selected for the study (Section 
4.1). As a result, 12 (three sets and four optimisation criteria) primary sets are obtained. Then, all the 
schedules are disrupted according to the disruption classes and levels defined in Section 4.2. Finally, 
12 ⋅ 3 ⋅ 10 sets of disturbed schedules are obtained (12 primary sets disturbed according to the 10 
disruption levels and 3 disruption classes). At the end of each disruption process, we compute the 
differences between the performances of the original schedule and the disturbed one. 
In the majority of the experiments in the robustness framework, the loss allowed after disruption is 
50% of the original performance. To be able to study the disturbed schedules, we subdivided the loss 
of performance after the disruptions in intervals and affixed a label to each one. We set 50% as a 
maximum increase in the objective function. Beyond this value, generating a new schedule will be 
better. Each interval represents the increase rate of the disturbed schedule performance criterion. The 
labels and the corresponding performance loss intervals are illustrated in Table 3. 

Performance loss Label 
[0, 5%] Very Good (VG) 
] 5%, 15%] Good (G) 
] 15%, 35%] Average (A) 
] 35%, 50%] Bad (B) 
> 50% Very Bad (VB) 

Table 3: labels and corresponding intervals 
Step 3: Classification 
The classification process makes it possible to evaluate the maintenance effect on the robustness of 
joint scheduling and identify the criteria that are likely to improve schedule robustness. For each set, 
we establish a schedule classification based on their original performance. 
Step 4: Validation 
This step aims to confirm the results of the preceding step. The validation process is applied only 
when some criteria emerge from the classification process. This validation will be done as follows: we 
build sets of schedules that will be optimised according to the robust criteria deduced from the 
validation step. If we obtain the same criteria after the disruption and classification steps, then we can 
affirm that these criteria are able to improve robustness. 

5. Computational results and discussions 

In this section, we present some of the obtained results. The first type of experiments concerns the 
maintenance effects on robustness of joint production and PM scheduling and their ability to provide to 
joint production and PM schedules a good tradeoff between reliability and performance under 
disruption. The experiments show that joint production and PM schedules are more robust than 
production ones. 
In the second type, we test the emergence of performance criteria that can improve robustness under 
disruption. We show that none of the four tested performance criteria are able to improve scheduling 
robustness. 
In the following subsections, the generation scheme of the studied problems and the disruptions 
protocol are detailed. The two types of experiments done for this study are then introduced. 
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5.1. Problem’s generation scheme.  
The tested problems are generated by following the procedure given by Taillard (1993), Reeves 
(1995) and Carlier (1978) for permutation flowshop scheduling problems. These problems have 
different sizes (from 5 to 100 jobs and from 3 to 20 machines), but do not include maintenance data. 
For those, we developed a generator of random maintenance tasks to generate benchmarks in PM. 
The used parameters are the number of machines and the maintenance task parameter (T, Tmin and 
Tmax). Each parameter is limited by a minimal and a maximum value to avoid having identical values. 
To carry out our tests, we generated only one maintenance task per machine for each problem. 
Moreover, the processing time of a maintenance task is identical for all its occurrences. 
For the search of robustness criteria, production objective function f1 consists of (Pinedo, 1995): 
makespan (Cmax), flow time, �Ti and idle time. Maintenance objective function f2 is the minimisation of 
the sum of the delays and advances in maintenance (Section 3.1). The contributions of the production 
and maintenance objective functions in the global objective function f are equal to 1 (� = 1 and � = 1). 
The proposed common-weighted global objective function will allow tackling the problem in a 
simplified way. 
Each schedule was generated with a GA. The results of the GA are obtained after 100 executions of 
the method. The best result and the associated parameters are saved. 

5.2. Problem’s disruption scheme. 
In this study, we consider production jobs’ processing time disruption. We used two types of reliability 
intervals (Section 3.4.2) that represent a percentage of maintenance task periodicity T: 5 and 25% of 
T. The disruptions are generated according to levels and classes. We generated 20 schedules per set. 
For each set, all the schedules were optimised with the four optimisation criteria selected for this study 
(3 sets ⋅ 20 schedules ⋅ 4 criteria). Then, the schedules were disturbed according to the defined 
classes and levels (10 ⋅ 3). For each disruption scheme (a specified schedule optimised with a 
specified criterion, then disrupted according to a class and a level), we did 100 tests and took the 
average performance into account. To ease the classification step, we qualify as an acceptable 
schedule any schedule whose deviation of its original performance remains in an acceptable interval 
after experimentation. Its labels are then either Very Good (VG), Good (G) or Average (A). It is 
rejected if the obtained label after experimentation is Bad (B) or Very Bad (VB). 
In the following subsections, we present the results of the two experiments carried out. 

5.3. Maintenance contribution to joint scheduling robustness 
Figure 5 presents the distribution of acceptable cases for the three studied sets: PGA, SGA and IGA. 
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Figure 5: Distribution of acceptable cases for each sets and reliability interval. 

We notice that the joint production and PM schedules perform better than the production one. That 
confirms the maintenance contribution to joint schedules’ robustness. For all the benchmarks studied, 
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we notice that the performance loss of disturbed joint schedules is less than the production ones. 
Approximately 75% of the disturbed production schedules (all levels and classes were considered) are 
rejected. Moreover, 25% of the remaining cases have only A or G labels. On the other hand, in the 
case of joint production and PM schedules, approximately 55% of the cases for SGA and 64% of the 
cases for IGA are acceptable. 
The performance of joint disturbed schedules decreases starting from a high disruption protocol (high 
disruption class and level) compared to the production disturbed ones. Therefore, there is an increase 
in the percentage of acceptable joint schedules compared to the production ones. 
The results for the second reliability interval (25% of T) are better than the first one (5% of T) because 
the first interval is larger and so is the period where no disruptions are allowed after maintenance. For 
the reliability interval 5% of T, the distributions of SGA and IGA sets are almost similar. For the second 
interval, the IGA set gives the best results for small benchmarks and the SGA set, for large ones. 
Finally, it is important to note that the results of the small benchmarks (SGA and IGA) are better than 
those of large ones. The reason for this good performance is related to the number of machines and 
tasks. Even for the lowest disruption levels and classes, the large benchmark disruption (lots of tasks) 
decreases in a significant way. The percentage of average acceptable cases for small benchmarks is 
65% against 55% for the largest acceptable cases. 
As a conclusion, according to the experiments presented in this part of our study, joint production and 
PM schedules (SGA and IGA) generate more acceptable cases than production ones (PGA) without 
considering the benchmark size. The insertion of maintenance tasks in production schedules 
decreases its performance (while remaining in acceptable limits), but it also brings an unquestionable 
profit in terms of robustness. 
As joint production and PM schedules perform better than production schedules, we will restrict the 
second experiment to joint production and PM sets. 

5.4. Criterion whose optimization makes schedules robust 
Figure 6 presents the distribution of the percentage of acceptable cases by performance criterion and 
reliability interval for SGA sets, regardless of the disruption levels and classes. 
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Figure 6: Distribution of acceptable cases per performance criterion and reliability interval for SGA set. 

We notice that the flow time and idle time are the criteria that obtain the best results. Cmax and �Ti are 
the two most unfavourable criteria with regard to robustness. 
The disruption process acts on the increase of jobs’ processing time. To solve the conflicts that 
disruptions generate, we use right-shifting rescheduling. It consists of shifting tasks to the right until 
the conflict generated by disruption is solved. The criteria whose performance worsens more with this 
technique are Cmax and �Ti. 
Two points are to be noted:  

• The first relates to the reliability interval. On the one hand, we notice an improvement in the 
percentage of acceptable cases without modifying the general distribution. On the other hand, in 
the case of the reliability interval of 25% of T, one notes a clear deterioration of �Ti. 
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• The second one relates to benchmark size. For small benchmarks, the flow time and idle time 
are most favourable to robustness. For large benchmarks, the distribution of the four criteria is 
similar and unfavourable to robustness. 

Figure 7 presents the distribution of the percentage of acceptable cases by performance criterion and 
reliability interval for IGA sets, regardless of disruption levels and classes. 
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Figure 7: Distribution of acceptable cases per performance criterion and reliability interval for IGA set. 

We obtain the same conclusions for the IGA set. Even though the flow time and idle time give the best 
results, they remain completely dependent on the disruption protocol and benchmark size. It explains 
the result of 100% acceptable cases for small benchmarks. The robustness criteria emerge only for 
the first levels of disruption and weak or average classes. 
Indeed, there are two tendencies in Figure 7. The first shows that the results of small benchmarks are 
better than those of large benchmarks. For the second tendency, one notes a clear deterioration of 
certain criteria (Cmax and �Ti). 
Finally, the results with a reliability interval of 25% of T are better however it do not have any influence 
on the general tendency of the distribution. 
The flow time and idle time obtain the greatest number of acceptable labels because in the majority of 
the cases, they have VG and G labels regardless of disruption levels and classes. 
The large benchmarks are sensitive to disruptions because the important number of tasks limits 
schedule flexibility under disruptions. Moreover, as the disruption level and the number of disturbed 
tasks grow, schedule performance becomes worse. However, if the benchmark is small (few machines 
and few tasks), the flow time and idle time become important because they represent the flexibility 
suitable for hedging against some disruptions, making the schedule more robust. 
As a conclusion, for the second experiment, there is no robust criterion among the selected ones. We 
cannot confirm the emergence of a criterion that ensures a robustness threshold for joint production 
and PM scheduling. There will be no validation process for this classification. 
The studied criteria remain completely dependent on the disruption protocol and benchmark sizes. We 
can only note that the flow time and idle time obtained the best labels for the two studied sets. Also, 
the results of the IGA set are better than those of the SGA set. 
For the reliability interval, the results for interval 25% T are better for the flow time and idle time. But 
there is a clear deterioration of Cmax and �Ti. 

6. Conclusion 

We considered in this paper the joint production and PM scheduling problem in the permutation 
flowshop and some optimisation criteria as production objective functions. The shop environment is 
subject to disruptions related to production jobs’ processing time. 
We proposed a proactive approach to study the maintenance effect on the robustness of joint 
production and PM scheduling. We used three different sets of schedules generated with GAs in the 
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permutation flowshop: a set of production schedules and two sets of joint production and PM 
schedules. The first was generated by the sequential strategy and the second, by the integrated 
strategy. We defined disruption classes and levels to study the variation of the schedules’ 
performances under disruptions. Four performance criteria have been used to study their influence on 
the schedules’ robustness. 
Several tests were performed to evaluate the maintenance effect on joint production and PM 
schedules under disruptions and the use of the proposed approach in permutation flowshop 
conditions. 
The first type of experiment concerned the maintenance effects on the robustness of joint production 
and PM schedules and their ability to provide to a good tradeoff between reliability and performance. 
The experiments showed that joint production and PM schedules are more robust than production 
schedules and maintenance allows providing an acceptable trade-off between equipment reliability 
and performance loss under disruption. 
In the second type of experiment, we tested the emergence of performance criteria that can improve 
robustness under disruption. We showed that none of the four tested performance criteria are able to 
improve scheduling robustness. However, by making distinctions during simulations between the 
results obtained by large and small benchmarks, the results showed that for small benchmarks, the 
flow time and idle time gave the best results. 
For this work, several improvements can be made at the level of the implemented methods and at the 
level of the considered constraints: 

• Future researches can study the impact of the weights on the obtained results and how 
sensitive the results are with regard to the chosen weights. We can investigate a bicriteria 
optimisation choosing � + � = 1.  

• The results obtained for flowshop scheduling problems gave us some insight to extend our 
approach to more complex scheduling problems.  
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