
Tool Support for Fuzz Testing of
Component-Based System Adaptation Policies

Jean-François Weber

FEMTO-ST UMR 6174 CNRS and Univ. Bourgogne Franche-Comté, Besançon, France
jfweber@femto-st.fr

Abstract. Self-adaptation enables component-based systems to evolve
by means of dynamic reconfigurations that can modify their architecture
and/or behaviour at runtime. In this context, we use adaptation policies
to trigger reconfigurations that must only happen in suitable circum-
stances, thus avoiding unwanted behaviours. A tool (cbsdr, standing for
Component-Based System Dynamic Reconfigurations) supporting both
the Fractal and FraSCAti component frameworks was developed, but the
testing of the robustness of new adaptation policies was not easy. This
is the reason to add to our implementation a new behavioural fuzzing
tool. While fuzzing consists of sending invalid data to a system under
test to find weaknesses that may cause a crash or an abnormal reaction,
behavioural fuzzing sends invalid sequences of valid data. Valid traces
are modified using fuzzing techniques to generate test cases that can be
replayed on a dummy system using the adaptation policies to be tested
while focusing on interesting regions of specific data sequences.

1 Introduction

Component-based systems can evolve at runtime using dynamic reconfigurations
that can modify their architecture and/or behaviour. A tool (cbsdr [1,2], standing
for Component-Based System Dynamic Reconfigurations) supporting both the
Fractal [3] and FraSCAti [4] component frameworks was developed. This tool
uses adaptation policies based on temporal logic to trigger reconfigurations while
enforcing some temporal properties; this means that a specific reconfiguration
would only be performed if it does not make the system evolve in a configuration
that may violate the properties to be enforced. Reflection polices that would
generate a reaction when some properties are violated are also part of this
tool. In a nutshell, adaptation policies prevent anything bad to happen at the
next configuration, whereas reflection policies trigger a pertinent response when
something bad has already happened. Nevertheless, the testing of the robustness
of new adaptation policies is complicated and time consuming, especially for
large systems that would require tailored settings to test specific policies.

Fuzz testing, or fuzzing [5], is a software testing technique that aims at
discovering weaknesses by inputting massive amounts of data (often random
and/or invalid). Behavioural fuzzing sends (invalid) sequences of valid data. These
sequences can either be generated from a model, like in [6], or by re-engineering



2 Jean-François Weber

the result of a previous run of the system, namely its log files. By using specificities
of our reconfiguration model to generate the data to be injected, we allow the
tester to focus on specific regions of the sequence that would enable adaptation
policies to be tested.

We will briefly introduce the cbsdr project in Sect. 2 before presenting the
way we tackle the problem of the test of adaptation policies in Sect. 3. Finally,
Section 4 presents our conclusion and future work.

2 The cbsdr Project

We developed a prototype tool, contained in a java package named cbsdr, sup-
porting our reconfiguration model to run component-based systems with dynamic
reconfigurations. Using generic java classes, independent of any component-based
system framework, we can use our implementation to perform reconfigurations on
applications deployed using Fractal [3] or FraSCAti [4]. The Fractal framework is
based on a hierarchical and reflective component model. Its goal is to reduce the
development, deployment, and maintenance costs of software systems in general1.
FraSCAti is an open-source implementation of the Service Component Architec-
ture2 (SCA). It can be seen as a framework having a Fractal base with an extra
layer implementing SCA specifications. In [4], a smart home scenario illustrates
the capabilities and the various reconfigurations of the FraSCAti platform.

Figure 1 shows the cbsdr interface displaying a given state of a component-
based system developed using Fractal (top frame). The left frame shows the
various states of the run under scrutiny, whereas the bottom frame can be used
to display various information such as the evolution of parameters of the model,
console output, or the outcome of reconfigurations performed.

This interface allows the monitoring of a component-based system and the
generation of (external) events during a run of cbsdr, but can also be used to
analyse the logs of a run already performed.

In addition to the above-mentioned functionalities, adaptation is performed
using reconfigurations triggered by temporal properties at runtime, as described
in [1]. This works as follows: a) adaptation polices are loaded and applied using a
control loop, b) temporal properties are evaluated and candidate reconfigurations
(if any) are ordered by priority using fuzzy logic values embedded in adaptation
policies, c) these reconfigurations are applied to the component-based system
model using our reconfiguration semantics to verify that corresponding target
configurations do not violate any of the properties to enforce, and d) the target
configuration obtained using the reconfiguration with highest priority that does
not violate any of the properties to enforce is applied to the component-based
system using a protocol similar to the one described in [7].

The test and implementation of adaptation policies being feasible for small
systems can become complex and time consuming for larger ones, and may require
specific settings to put the system in the conditions enabling such policies.
1 http://fractal.ow2.org/tutorial/index.html
2 http://www.oasis-opencsa.org/sca



Fuzz Testing of Component-Based System Adaptation Policies 3

Fig. 1. Model of a component-based system displayed in our interface

3 Fuzz Testing of Adaptation Policies

Fuzz testing or fuzzing [5] is a software testing technique used to discover coding
errors and security loopholes in software, operating systems or networks by
inputting massive amounts of (random) data, called fuzz, to the system in an
attempt to make it crash or at least misbehave. Behavioural fuzzing sends invalid
sequences of valid data. These sequences can either be generated from a model,
like in [6], or by re-engineering the result of a previous run of the system, namely
its log files. Since these tests are not performed during but after the run of the
system, they consists of offline fuzzing, instead of online fuzzing that would be
performed at runtime.

We chose to use the best of both approaches (model-based and trace-based fuzz
generation) by using specificities of our reconfiguration model to generate the fuzz
to be injected. In a nutshell, our reconfiguration model is based on configurations
that can be seen as a tuple 〈Elem, Rel〉, where Elem is made of architectural
sets containing elements such as components, (required of provided) interfaces,
parameters, etc. and Rel contains relations linking architectural elements, e.g.,
interfaces binding or wiring, components states (started or stopped), parameters
values, etc. We also use a set CP of configuration properties on the architectural
elements and the relations between them. These properties are specified using
first-order logic formulae [8]. Therefore, the operational semantics of a component-
based system is defined by the labelled transition system S = 〈C, C0,Rrun,→, l〉
where C = {c, c1, c2, . . .} is a set of configurations, C0 ⊆ C is a set of initial
configurations, Rrun is a set of reconfigurations, → ⊆ C × Rrun × C is the
reconfiguration relation, and l : C → CP is a total interpretation function.



4 Jean-François Weber

The cbsdr tool contains controllers using control loops to monitor the evo-
lution of a component-based system under scrutiny by regularly retrieving its
configuration. The sequence of all the configurations retrieved during a run
constitute a trace that can be modified either manually for the generation of very
specific test cases, or automatically for bulk generation of test cases using random
shuffling, duplication, and/or deletion of configurations. Such tests cases (called
below fuzzy logs) are obtained by transformations that can be automated using a
sub-package of cbsdr called cbsdr.fuzzy and referred below as Fuzzy Engine.

Reconfiguration
Definitions

Dummy (fuzzy) 
Component-Based 

System

Event 
Controller

Adaptation Policy 
Controller

Reflection 
Controller

Event 
Handler Reflection

Policies

Enforcement
Policies

Adaptation
Policies

Generic Component-Based 
System Management

Event retrieval
Event notification
Configuration retrieval
Synchronization
Reconfiguration
File loading

Fuzzy Engine

Fuzzy Log

X

Fig. 2. cbsdr Fuzzing Architecture

The Fuzzy Engine tool
is integrated in the cbsdr
development as shows Fig.2
where light coloured entities
are part of the previous de-
velopments and the elements
of the fuzzing tool are repre-
sented in darker colours.

This informal represen-
tation of our implementa-
tion displays three controllers:
a) the event controller re-
ceives events, stores them,
and flushes them after they
have been sent to a requester,
b) the reflection controller
sends events to the event con-
troller when a property of a re-
flection policy is violated, and
c) the adaptation policy con-
troller manages dynamics reconfigurations triggered by adaptation policies. The
reader interested by the interactions between these controllers is referred to [1].

In addition, an event handler is used to receive events from an external source
and to send them to the event controller. All interactions with the component-
based system take place through the generic component-based system management
entity (gcbsm), a set of Java classes developed in such a way that they can be
used regardless of the framework used to design the component-based system
without modifying its code.

The gcbsm is mainly developed using abstract classes that are used for the
reification of other classes specially designed for the handling of Fractal [3] or
FraSCAti [4] component frameworks. We just added to the gcbsm support for
another new component framework that we called dummy. This way, each time
the adaptation policy controller or the reflection controller requests the current
configuration, the gcbsm, when detecting a dummy component, requests the
corresponding configuration to the Fuzzy Engine instead of retrieving it from an
actual component-based system. Of course, the Fuzzy Engine must always be
initialized with a fuzzy log corresponding to the pertinent test case before usage.



Fuzz Testing of Component-Based System Adaptation Policies 5

We can automatically filter (or put aside for further examination) test cases
with an influence on an adaptation policy under test (APUT) by giving unique
names to reconfigurations triggered by the APUT. It is also possible to add an
additional reflection policy that stops the system (or take any other suitable
action) for each success or failure of a reconfiguration triggered by the APUT.

This way, our tool, which can be launched using the interface of Fig. 1, takes
fuzzy logs as input to simulate the run of a component-based system using a
dummy system. The output consists of a set of trace files containing a subset
of traces involving reconfigurations triggered by the APUT. Such traces can be
displayed using our interface to verify that the APUT behaves as intended.

As example, we can consider, as in the case study of [1], a component-based
system in charge of the location of an autonomous vehicle. To ensure reliability,
the position must be computed by using different techniques such as Wi-Fi or
GPS signals. When the power level of the vehicle decreases, it may be suitable
to remove, for example, the GPS software component to save energy, as long as
the other positioning systems keep providing accurate positions. Of course as the
batteries can be recharged, when the power level rise above a certain value, the
GPS component can be added back using the addgps reconfiguration operation.
Such a reconfiguration is triggered by an adaptation policy responsible for the
management of the GPS component. This policy, among other things, must take
into account the low utility of adding back the GPS component to the system
when the vehicle is in a tunnel where there is no GPS signal.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45

N
u

m
b

er
 o

f 
o

cc
u

re
n

ce
s

State numbers

Occurences of the addgps reconfiguration by state number 

NO GPS

SIGNAL

Fig. 3. Occurrences of the addgps reconfiguration

Starting from a trace of a run
of the system, we generated
with our fuzz test tool 1000
test cases that were used to
run the GPS adaptation pol-
icy with a dummy component-
based system. Among these
tests, 203 were selected be-
cause they were involving the
addgps reconfiguration oper-
ation. The results are sum-
marised in Fig. 3, where the

horizontal and vertical axes represent respectively the states number increasing
over time and the cumulated number of occurrences of the addgps reconfiguration
for each state. Vertical lines symbolise the entrance and exit of a tunnel where
there is no GPS signal, plain blue dots represent the successful application of the
addgps reconfiguration, and hollow red dots show that its application failed3.

These tests show that none of the addgps reconfiguration operations were
attempted inside the tunnel where there is no GPS signal, which is the way the
GPS adaptation policy was supposed to behave.

3 Because of the random nature of fuzzing, the configuration following the application
the addgps reconfiguration may not contain a fully functional GPS component, which
leads the reconfiguration to be diagnosed as failed.



6 Jean-François Weber

Finally, fuzzing makes the test and implementation of adaptation policies
easier by allowing the tester to focus on specific regions of the sequence of
configurations that would enable these policies. Also, as an interesting secondary
benefit, in the early stages of development of the Fuzzy Engine tool, by running
fuzz testing against some adaptation polices, we were able to identify and correct
several bugs in the cbsdr implementation.

4 Conclusion and Future Work

The work presented in [1,2] enables component-based systems dynamic reconfig-
urations guided by adaptation policies. Whereas the test and implementation
of these policies were possible for small systems, this was complicated and time
consuming for larger systems as specific settings were required in order to put the
system in the conditions that would enable such policies. The usage of fuzzing
makes such tests easier by allowing the tester to focus on specific regions of the
sequence of configurations that would enable these policies.

As a future work, we are planning to perform more evaluations on various
case studies. We are also contemplating the possibility to integrate online fuzzing,
as in [9], to the cbsdr project. To do so, we would use fuzzy policies to generate
test cases at runtime, focusing on interesting regions of specific data sequences.

References
1. Kouchnarenko, O., Weber, J.F.: Adapting component-based systems at runtime via

policies with temporal patterns. In Fiadeiro, J.L., Liu, Z., Xue, J., eds.: FACS’13.
Volume 8348 of LNCS. Springer (2014) 234–253

2. Kouchnarenko, O., Weber, J.F.: Practical analysis framework for component systems
with dynamic reconfigurations. In Butler, M., Conchon, S., Zaïdi, F., eds.: ICFEM’15.
Volume 9407. Springer (2015) 287–303

3. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal
component model and its support in java. Software: Practice and Experience 36
(2006) 1257–1284

4. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
component-based middleware platform for reconfigurable service-oriented architec-
tures. Software: Practice and Experience 42 (2012) 559–583

5. Takanen, A., Demott, J.D., Miller, C.: Fuzzing for software security testing and
quality assurance. Artech House (2008)

6. Schneider, M., Großmann, J., Tcholtchev, N., Schieferdecker, I., Pietschker, A.:
Behavioral fuzzing operators for uml sequence diagrams. In: International Workshop
on System Analysis and Modeling, Springer (2012) 88–104

7. Boyer, F., Gruber, F., Pous, D.: Robust reconfigurations of component assemblies.
In: Int. Conf. on Software Engineering, ICSE ’13, Piscataway, NJ, USA, IEEE Press
(2013) 13–22

8. Hamilton, A.G.: Logic for mathematicians. Cambridge University Press (1988)
9. Schneider, M., Großmann, J., Schieferdecker, I., Pietschker, A.: Online model-based

behavioral fuzzing. In: Software Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conference on, IEEE (2013) 469–475


	Tool Support for Fuzz Testing of Component-Based System Adaptation Policies
	Introduction
	The cbsdr Project
	Fuzz Testing of Adaptation Policies
	Conclusion and Future Work


