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Abstract— This paper develops an efficient solution towards the 

prognostics of industrial PEMFC. It involves an efficient multi-

energetic model suited for diagnostics and prognostics, developed 

in Bond Graph framework. The benefits of Particle Filters (PF) 

is integrated with the BG model derived Analytical Redundancy 

Relations (ARRs), for prognostics of the electrical-

electrochemical (EE) part. The prognostic problem is treated as 

the joint state-parameter estimation problem in Particle Filter 

framework, a hybrid prognostic approach wherein, a fault model 

is constructed in state-space. The state equation is inspired from 

the statistical degradation model of the global resistance and 

limiting current. Observation equation is obtained from the 

Analytical Redundancy Relations (ARRs) derived from BG 

model. Using PF algorithms, estimation of SOH is obtained along 

with the estimation of the associated hidden time-varying 

parameters that influence the progression of degradation. The 

latter is tracked to obtain the SOH in probabilistic terms. This in 

turn is used for prediction of Remaining Useful Life of the EE 

part of PEMFC. The methodology is applied on real degradation 

data sets under constant load current profile. 

 

Keywords— Prognostics, Bond Graph, Particle Filters, PEM 

Fuel Cell, Remaining Useful Life 

I. INTRODUCTION 

The presence of irreversible degradation severely affects 

the useful life of PEMFC and leads to inefficiency, reduced 

lifespan, lesser power density and high maintenance cost [1]. 

This issue is best addressed when approached from the 

perspective of Prognostic and Health Management (PHM)[2].  

There are very few existing model-based works that 

propose efficient prognostic solutions for PEMFC. [3] 

proposes physics based Degradation Model (DM) of the 

Electro-Chemical Active Surface Area (ECSA), used for 

damage tracking and prediction using Unscented Kalman 

Filter. [4] proposed the method employing statistical log-

linear Degradation Model (DM) and Particle Filters (PF) for 

estimation of State of Health (SOH) estimation and 

Remaining Useful Life (RUL) prediction. The DM used 

therein lacks the insight into the physics of the phenomenon.   

Bond Graph modelling technique has been extensively used 

owing to the behavioural, structural and causal properties[5], 

that provide a systematic approach towards development of 

supervision and fault detection and Isolation (FDI) of highly 

non-linear and complex thermo-chemical systems [6-8]. In 

BG framework, the model based FDI is mainly based upon 

ARRs [9-11]. For  deterministic systems, the properties and 

ARR generation algorithm are well detailed in [9]. 

Hybrid prognostic approaches [12, 13] combine the 

advantages of the model based approaches [2] and data-driven 

prognostics [14]. Here, physics or statistical based DMs are 

employed and measured information is used to adapt the 

estimation of damage progression.  

Specifically, PF algorithms has been exploited very widely 

for prognostics of incipient parametric degradation in the 

system. Here, the prediction of the RUL is obtained as 

probability distribution which accounts for the various 

involved uncertainties[15, 16]. Significant works include 

assessment of the end of discharge and RUL in lithium-ion 

batteries [17], battery health monitoring [18], estimation and 

prediction of crack growth[19], application to pneumatic 

valve[15], estimation-prediction of wear as in centrifugal 

pumps[16], assessing uncertainty management options for 

prognostics [20], etc. Comprehensive studies of various 

optimal or sub-optimal filters for prognostic purposes are 

found in [21-23].  

This paper develops a novel and efficient solution towards 

the prognostics of PEMFC. The issue of modeling of the 

complex and energetically mutually-dependent dynamics of 

PEMFC, is tackled in Bond Graph (BG) framework. The 
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second issue of prognostics is addressed for the electrical-

electrochemical (EE) part. The prognostic problem is cast as 

the joint state-parameter estimation problem in Particle Filter 

(PF) framework, a hybrid prognostic approach wherein, a fault 

model is constructed in state-space. The state equation is 

inspired from the statistical degradation model of the global  

 

 
Fig. 1 Bond graph model of the PEMFC in preferred derivative causality 

 

resistance and limiting current. Observation equation is 

obtained from the Analytical Redundancy Relations (ARRs) 

derived at the EE subsystem of the BG model. Using PF 

algorithms, estimation of State of Health (SOH) is obtained 

along with the estimation of the associated hidden time-

varying parameters that influence the progression of 

degradation. The estimations are achieved in probabilistic 

terms. This in turn is used for prediction of RUL of the EE 

part of PEMFC. The methodology is applied on real 

degradation data sets under constant current load profile. 

II. BG MODEL OF PEMFC 

The extensively developed basic chemistry of PEMFC is 

omitted in this paper and can be found in [24]. Instead, on the 

physical level, the developed BG model of the global system 

is presented in Fig. 1. The global system is decomposed into 

various subsystems where the input and output for each, are 

the exchanged powers represented by two conjugated power 

variables: effort and flow (graphically shown by a half-arrow). 

Derivative causality (suited for diagnostic and prognostic) is 

preferred, compared to the integral causality (close to the 

reality of physics, suited for simulation purposes). This helps 

in avoiding unknown initial condition problem for ARR 

generation. All detectors (De for the effort detector and Df for 

the flow detector) are dualized into sources of signal SSe and 

SSf respectively used as inlet nodes in the unknown variable 

elimination oriented graph [10].  

In this paper, focus remains on EE subsystem only and thus, 

details of modeling, ARR generation etc. is provided for the 

same, exclusively. Modeling details of the global model is not 

presented descriptively. 

Source of hydrogen is represented by 
2

Se : HP  where the 

corresponding pressure
2HP , is a known quantity. The valve 

represented by a resistive BG element R : nRh  (where sub-

script n denotes the nominal value) regulates the flow of 

hydrogen (measured by 2: HSSf F ). The pressure on the anode 

compartment is measured by the pressure sensor : anSSe P . The 

hydraulic dynamics (storage of gases) is represented with the 

capacitive elements 2C : HC  for anode. To transform the mass 

flow (kg/s) into a molar flow (mole/s), a transformer element 

:1/ M
TF  is used where M is the modulus representing the molar 

mass (kg/mole). Flow sensor 2: HSSf F  measures the mass 

flow rate
2Hm . The three transformer elements 

therein,
:

( 1,2,3)
iv

TF i  , have their respective modulus i , that 

represent the stoichiometric coefficients of the reactants 

( 1 1   for hydrogen and 2 2   for oxygen) and the product 

water with 3 1  . 

The EE subsystem accounts for electrical part and 

activation-diffusion losses. The kinetics of reduction-

oxidation reaction (in chemical part, not detailed here) 

generates an over-voltage which is termed as activation loss. 

Furthermore, the resistivity of the membrane electrode 

assembly decreases the operational potential due to the Ohmic 

effect. The resistance value depends on the degree of 

humidification of the membrane and on the temperature. 

Finally, species are consumed and imply a loss of partial 

pressure on the reaction surfaces, thereby reducing the Nernst 



potential significantly especially at high currents. This 

phenomenon is called diffusion / concentration losses. 

Moreover, during transients, electron accumulation along the 

membrane electrode interface is observable. It is the double 

layer capacitance effect.  

In the BG model, the EE subsystem and the chemical part 

are connected using the transformer. This results in obtaining 

the thermodynamic potential as,  
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(1) 

where R is the perfect gas constant, x  is the chemical 

potential of species x and the water is in liquid phase, where  

en is the number of electrons involved in the reaction and F  is 

the number of Faraday. Moreover,  
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(2) 

 

RS is an active two port dissipative (resistive) element that 

generates thermal energy. The two port thermal dissipative 

element RSohm models the Ohmic losses (membrane, 

electrodes and connectors). Similarly, the activation and the 

diffusion phenomenon are modelled by RSac and RSdf 

respectively. The associated power variables are related as, 
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(4) 

where, A is the activation constant /A R nF ;  and B is 

the diffusion constant; /B RT nF    with  as the transfer 

coefficient, 0I  is the exchanged current, fcI  is the load 

current and LI   is the limiting current i.e. maximal current the 

fuel cell is able to provide. The double layer capacitance 

phenomenon is modeled by a capacitor element C : dlC  and 

imposes the dynamics of the activation phenomena. elU   is 

expressed at the junction 0C, as the solution of the equation: 

 

el el
dlfc

ohm

U dU
I C

R dt
 

  

 

(5) 

where ohmR  is the global resistance (membrane and 

connectors). 

III. DERIVATION OF DETERMINIST ARR 

 

In BG context, ARR is a constraint expression being a 

function of system parameters and known variables as, 

 

: ( , , , , , , )ARR f SSe SSf Se Sf MSe MSf θ  (6) 

 

Here, the ARR is generated from the 1c junction which 

deals with the energetic assessment of EE subsystem. It is 

termed as ARR2.  

 

 2 0: 0s ac df el fcARR n E U U U U      (7) 

where sn   is number of cells in a stack. From (1)-(4), the 

unknown variables can be eliminated using causal paths and 

known electro-chemical relations such that, 2ARR is expressed 

as, 
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(8) 

Note that due to fast electrical dynamics (5) has been 

approximated as: 

 

.el ohm fcU R I  (9) 

2ARR  is sensitive to drying, flooding and aging of the fuel 

cell and forms the main attraction of the paper. 

 

IV.  DEGRADATION MODEL 

Periodically, throughout the life of the fuel cell, the static 

response is measured with a polarization curve (voltage as a 

function of the current). The BG derived ARR of (8) 

represents the polarisation curve. The degradation test was 

performed for about 800 hours, on a commercially available 

stack of 5 cells, surface of 100 cm² and a nominal constant 

current load nom fcI I  of 70A. For each of the 

characterization times, a Levenberg-Marquardt method is used 

to extract the parameters of (9). The algorithm is initiated with 

a set of parameters whose values are chosen from the 

literature [24, 25]. The algorithm extracts: the Open Circuit 

Voltage (OCV) 0E  at nominal pressure and temperature, the 

global resistance ohmR  (membranes, connectors, end plates, 

etc.), the exchange current 0I and the limiting current LI . 

Tthe recorded stack voltage fcU  (at sampling period of one 

hour) is shown in Fig. 2. The resulting model fitting of the 

measured polarization curves (during aging) is shown in Fig. 3. 

Fig. 4 shows the evolution of the parameter value with respect 

to the initial one (in percentage). From the four chosen 

parameters, only two show significant deviations: the overall  



 
Fig. 2 Recorded voltage for FC1 

 

 

Fig. 3 Polarization Curve and fitting result during 

ageing for FC1 

resistance ohmR  increases by more than 12% while the limit 

current LI  decreases by 13%. 

For a given operating condition, since only the stack 

voltage is measured, it is impossible to separate the mutual 

coupling of global resistance and limiting current i.e. the loss 

due to both are not observable simultaneously. Therefore, the 

variations in the latter are parameterized with a single 

parameter , a State of Health (SOH) indicator. The variation 

is expressed in form of linear equation (since the parameters 

value seems to follow a linear variation) as,   

    

    

 

,

,

1

1

ohm ohm n

L L n

R t R t

I t I t

t t





 

 

 

 

 

 

 

(10) 

where  explains the approximately constant rate-change of 

 and sub-script n denotes the nominal value. Very recently 

in [26], this approach is proposed for construction of state 

equation. 

V. THE HYBRID PROGNOSTIC METHODOLOGY 

The methodology involves construction of the fault model 

of the degradation candidates: ohmR  and LI . The state equation 

is inspired from the statistical degradation model of (10). 

Since their state can be indicated by the state of  t and the 

associated hidden factor ( )t ,  t forms the degradation 

candidate and ( )t is the degradation progression parameter 

(DPP). Observation equation is obtained from the nominal 

ARR. Then, PF is used for joint estimation of state (SOH) and 

hidden parameter DPP. Sampling Importance Resampling 

(SIR) PF is employed for estimation and it is not described 

here. It can be found detailed in [27]. 

 

A. Fault Model Construction   

In discrete time step k  , the fault model can be 

described in stochastic framework as, 
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(12) 

where, 2~ (0, )k vv   is the associated process noise  

2~ (0, )k   is a random walk noise , t is the sample time, 

d

ky  is the observation equation, (.)h  is any non-linear 

function of state variables and 
2~ (0, )d

d

k w
w    is the 

measurement noise.  

Measurements 

d

ky
are assumed conditionally independent, 

given the state process. The likelihood function becomes as, 
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(13) 

The measurement of the state health can be obtained 

implicitly from the nominal part of 2ARR : 2, ( )nr t , which is 

exploited to obtain the observation equation as: 
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Thus, measurement of  t  is acquired from 2, ( )nr t .In discrete 

time k, observation equation is,  
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(15) 

where 
2~ (0, )d

d

k w
w  models the noise associated with 

measurement acquisition and is approximated as Gaussian in 

nature. dw
 is approximated from residual measurements 

during degradation tests. 

 

B. SOH Estimation and RUL Prediction  



PF algorithm used to estimate the SOH and DPP is 

tabulated in Table I. wherein,  , ,

1 1 1 1
( , ), w

N
i i i

k k k i
    

denotes 

the particle i , 1w i

k denotes the weight of the latter and N is the 

number of particles.  

Table I 

Joint SOH and DPP Estimation 

Algorithm 1: Estimation using SIR filter 

Inputs:  , ,

1 1 1 1
( , ), w

N
i i i

k k k i
    

,
d

ky  

Output:  , ,

1
( , ), w

N
i i i

k k k i
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for i=1 to N do 
, ,
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The RUL prediction is done by projecting each of the particles 

that constitute the estimation, into future (l steps ahead) till the 

estimated state reaches its pre-fixed failure state fail  [4, 15, 

16, 28]. The estimation of the state and RUL prediction step 

form one single iteration step.  The RUL prediction algorithm 

is given in Table II.  

Table II 

RUL Prediction  

Algorithm 2: RUL Prediction using PF 

Inputs:  , ,

1
( , ), w

N
i i i

k k k i
 


  

Variable: l 

Outputs:  
1

, w
i N

i

k k
i

RUL


 

for i=1 to N do 

  l=0 

   while 
,i

k l fail   do 

    1 1~ ( | )i i i

k k kp     

    1 1 1~ ( | , )i i i i

k k k kp       

    1l l    

   end while 
i

kRUL l

  

end for 

 

 

C. Evaluation Metrics 

Metrics employed for assessment of the prognostic 

performance is briefed here. They are found detailed in [29] 

and case study implementing the same is found in [16, 28]. 

Root mean square error (RMSE): This metric expresses the 

relative estimation accuracy as: 

2
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(16) 

where, for species X  , *X  denotes  the corresponding true 

values. kMean denotes the mean over all values of k. For a 

particular prediction time point kp, the prediction accuracy is 

evaluated by relative accuracy (RA) metric as, 
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(18) 

The overall accuracy is determined by θRA d .The 

metric: α   [29], is employed to summarize the  prognostic 

performance where α [0,1]  defines the bounds of true RUL 

as *

,(1 α)
pkRUL . It should not be confused with SOH 

indicator ( )t . 

 

D. Results and Discussion 

Motivated from Fig. 4, 0.12fail   signifies end of life of 

at 12% deviation on initial value. Moreover, true is 

considered to evolve in a perfect linear way with true value of 

slope   , 41.3 10true    such that fail is reached at 900 

hours. Also, measurement variance:
2 610dw

  . Estimation 

performance by PF as shown in Fig. 5, is realized with 

N=2000 particles, 
2 1010

 , 2 610v
 . Therein, the 

approximately linear  is estimated with 23.56%RMSE   

and the approximately constant   is estimated accurately 

with 9.3%RMSE  . Fig. 6 shows the box plot of RUL 

predictions obtained at time interval of 25 hours (for the sake 

of clarity). For all time points, prediction performance is 

assessed by α-  metric with α=0.4  and β=0.4 . The latter 

translates to the requirement: containment of 40% of RUL 

probability mass within 40% of true RUL value. Percentage of 

probability mass falling within the accuracy cone is indicated 

against each box plot. Starting from t=200 hours, almost all 

the predictions are true (acceptable), except the ones at the 

last four prediction-points. This arises mainly because of 

characterizations performed at t=800 hours such that 

insufficient recovery effect happens on the stack voltage while 

the latter is recorded. Over all, starting from t= 350 hours, the 

prediction performance is very accurate with RA 96.07% . 

 



  

 

Fig. 4  Deviation of the parameters values (in percentage of their initial value) during aging: (a) Change in 0E , (b) 

Change in 0I , (c) Change in ohmR  (d) Change in LI  

 

Fig. 5 Estimation performance in PF for FC1 (a). Estimation of   (b) Estimation of   

 

Fig. 6  RUL Prediction  

 

VI. CONCLUSIONS 

 

Through real degradation data sets, the proposed methodology 

is able to successfully assess the SOH and predict the RUL 

with a very high accuracy and precise confidence bounds. The 

proposed methodology thus, exploits the benefits of BG and 

PF for an efficient functional decomposition of PEMFC and 

accurate SOH estimation and RUL prediction. Using the same 

approach, the developed model can be used for prognostics of 



other sub-systems (hydraulic, thermal etc.) with the 

availability of degradation data. The latter forms a potential 

future work. Moreover, the methodology applied here on 

PEMFC, has the potential to be applied over any multi-

energetic system. Also, authors have explored the same 

approach over the degradation tests where the current load is 

variable. The obtained results can be discussed in an extended 

version of the paper. The accuracy of results obtained here 

demonstrates the viability of the method for prognostics. 

ACKNOWLEDGMENT 

This work was supported by the project ANR PROPICE 

(ANR-12-PRGE-0001) and by the project LABEX ACTION 

(ANR-11-LABX-01-0) both funded by the French National 

Research Agency.  

 

REFERENCES 

[1] X. Luo, J. Wang, M. Dooner, and J. Clarke, "Overview of current 

development in electrical energy storage technologies and the 
application potential in power system operation," Applied Energy, 

vol. 137, pp. 511-536, 2015. 

[2] A. K. Jardine, D. Lin, and D. Banjevic, "A review on machinery 
diagnostics and prognostics implementing condition-based 

maintenance," Mechanical systems and signal processing, vol. 20, 

pp. 1483-1510, 2006. 
[3] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, 

"A review of polymer electrolyte membrane fuel cells: technology, 

applications, and needs on fundamental research," Applied Energy, 
vol. 88, pp. 981-1007, 2011. 

[4] M. Jouin, R. Gouriveau, D. Hissel, M.-C. Péra, and N. Zerhouni, 

"Prognostics of PEM fuel cell in a particle filtering framework," 
International Journal of Hydrogen Energy, vol. 39, pp. 481-494, 

2014. 

[5] A. Mukherjee and A. K. Samantaray, Bond graph in modeling, 
simulation and fault identification: IK International Pvt Ltd, 2006. 

[6] K. Medjaher, A. K. Samantaray, B. Ould Bouamama, and M. 
Staroswiecki, "Supervision of an industrial steam generator. Part II: 

Online implementation," Control Engineering Practice, vol. 14, pp. 

85-96, 1// 2006. 
[7] R. Kumar and L. Umanand, "Modeling of a pressure modulated 

desalination system using bond graph methodology," Applied 

Energy, vol. 86, pp. 1654-1666, 9// 2009. 
[8] M. Tan, L. Chen, J. Jin, F. Sun, and C. Wu, "Bond-graph-based 

fault-diagnosis for a marine condensate–booster–feedwater 

system," Applied Energy, vol. 81, pp. 449-458, 8// 2005. 
[9] B. O. Bouamama, A. Samantaray, M. Staroswiecki, and G. 

Dauphin-Tanguy, "Derivation of constraint relations from bond 

graph models for fault detection and isolation," SIMULATION 
SERIES, vol. 35, pp. 104-109, 2003. 

[10] A. K. Samantaray and B. O. Bouamama, Model-based process 

supervision: a bond graph approach: Springer Science & Business 
Media, 2008. 

[11] M. Jha, G. Dauphin-Tanguy, and B. Ould Bouamama, "Robust 

FDI based on LFT BG and relative activity at junction," in Control 
Conference (ECC), 2014 European, 2014, pp. 938-943. 

[12] J. Sikorska, M. Hodkiewicz, and L. Ma, "Prognostic modelling 

options for remaining useful life estimation by industry," 
Mechanical Systems and Signal Processing, vol. 25, pp. 1803-

1836, 2011. 

[13] G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, and B. Wu, 
Intelligent Fault Diagnosis and Prognosis for Engineering 

Systems. New Jersey: John Wiley & Sons, Inc., 2007. 

[14] M. Schwabacher, "A survey of data-driven prognostics," in 
Proceedings of the AIAA Infotech@ Aerospace Conference, 2005, 

pp. 1-5. 

[15] M. J. Daigle and K. Goebel, "A Model-Based Prognostics 
Approach Applied to Pneumatic Valves," International Journal of 

Prognostics and Health Management, vol. 2, 2011. 

[16] M. J. Daigle and K. Goebel, "Model-based prognostics with 
concurrent damage progression processes," Systems, Man, and 

Cybernetics: Systems, IEEE Transactions on, vol. 43, pp. 535-546, 

2013. 
[17] B. Saha and K. Goebel, "Modeling Li-ion battery capacity 

depletion in a particle filtering framework," in Proceedings of the 

annual conference of the prognostics and health management 
society, 2009, pp. 2909-2924. 

[18] B. Saha, K. Goebel, S. Poll, and J. Christophersen, "Prognostics 

methods for battery health monitoring using a Bayesian 
framework," Instrumentation and Measurement, IEEE 

Transactions on, vol. 58, pp. 291-296, 2009. 

[19] E. Zio and G. Peloni, "Particle filtering prognostic estimation of 
the remaining useful life of nonlinear components," Reliability 

Engineering & System Safety, vol. 96, pp. 403-409, 2011. 

[20] P. Baraldi, F. Mangili, and E. Zio, "Investigation of uncertainty 
treatment capability of model-based and data-driven prognostic 

methods using simulated data," Reliability Engineering & System 

Safety, vol. 112, pp. 94-108, 4// 2013. 
[21] D. An, N. H. Kim, and J.-H. Choi, "Practical options for selecting 

data-driven or physics-based prognostics algorithms with 

reviews," Reliability Engineering & System Safety, vol. 133, pp. 
223-236, 2015. 

[22] M. Daigle, B. Saha, and K. Goebel, "A comparison of filter-based 

approaches for model-based prognostics," in Aerospace 
Conference, 2012 IEEE, 2012, pp. 1-10. 

[23] B. Saha, K. Goebel, and J. Christophersen, "Comparison of 

prognostic algorithms for estimating remaining useful life of 
batteries," Transactions of the Institute of Measurement and 

Control, 2009. 

[24] J. Larminie, A. Dicks, and M. S. McDonald, Fuel cell systems 
explained vol. 2: Wiley New York, 2003. 

[25] E. Laffly, M.-C. Péra, and D. Hissel, "Polymer electrolyte 

membrane fuel cell modelling and parameters estimation for 
ageing consideration," in 2007 IEEE International Symposium on 

Industrial Electronics, 2007. 
[26] M. Bressel, M. Hilairet, D. Hissel, and B. Ould-Bouamama, 

"Extended Kalman Filter for Prognostic of Proton Exchange 

Membrane Fuel Cell," Submitted to Applied Energy, 2015. 
[27] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A 

tutorial on particle filters for online nonlinear/non-Gaussian 

Bayesian tracking," Signal Processing, IEEE Transactions on, vol. 
50, pp. 174-188, 2002. 

[28] M. Daigle and K. Goebel, "Model-based prognostics under limited 

sensing," in Aerospace Conference, 2010 IEEE, 2010, pp. 1-12. 
[29] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel, "Metrics 

for offline evaluation of prognostic performance," International 

Journal of Prognostics and Health Management Volume 1 (color), 
p. 4, 2010. 

 


