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Abstract

This paper presents a hybrid prognostics approach for Micro Electro Mechanical

Systems (MEMS). This approach relies on two phases: an offline phase for the

MEMS and its degradation modeling, and an online phase where the obtained

degradation model is used with the available data for prognostics. In the online

phase, the particle filter algorithm is used to perform online parameters estima-

tion of the degradation model and predict the Remaining Useful life (RUL) of

MEMS. The effectiveness of the proposed approach is validated on experimental

data related to an electro-thermally actuated MEMS valve.

Keywords: Prognostics and health management, MEMS, degradation

modeling, health assessment, fault prognostics, remaining useful life

1. Introduction

Nowadays, MEMS devices are used in several industrial segments such as

automotive, medical and aerospace, where they contribute to achieve important

tasks. However, reliability of MEMS is one of their major concerns [1]. They

suffer from various failure mechanisms, which impact their performance, their

availability and reduce their lifetime. Due to the significance of such aspect,

several research works dealing with the reliability of MEMS have been published,
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such as [2, 3, 4, 5, 6]. The most used methodology to study the reliability of

MEMS was proposed by the Sandia National Laboratories [7, 8]. The aim of this

methodology is to improve the reliability of MEMS based on the identification

and the comprehension of their failure mechanisms and the definition of their

predictive reliability model.

Improving reliability of MEMS devices has several advantages, such as in-

creasing their lifetime and improving their availability. Nevertheless, reliability

still has some limitations. It is defined as the ability of a product or system

to perform as intended (i.e., without failure and within specified performance

limits) for a specified time, in its life cycle conditions [9]. According to this

definition, reliability is valid only for given conditions and a period of time.

This is the case, for example, for cars which are guaranteed by automobile man-

ufacturers for a period of time in given operating conditions. In this situation,

the reliability is estimated without taking into account the specific utilization

of each car (driver profile, environment conditions, roads quality, frequency of

use, etc.). However, in practice, the lifetime should be different from one car

to another depending on how and where it is used. Furthermore, the predictive

reliability models are obtained from statistical data on representative samples.

These models, which are generic for all the samples, are not updated during the

utilization. This means that, once they are estimated, the model parameters

still constant while they should change due to the factors mentioned previously.

Prognostics and Health Management (PHM) can be a solution to address

the above limitations. PHM is the combination of six layers that collectively

enable linking failure mechanisms with life management (Fig. 1). It makes use

of past, present, and future operating conditions in order to assess the health

state of the system, diagnose its faults, update the degradation models parame-

ters, anticipate failures by predicting the RUL and improve decision making to

prolong the lifetime of the system. Within the framework of PHM, prognostics

is considered as the core activity. It is defined by the PHM community as the

estimation of the RUL of physical systems based on their current health state

and their future operating conditions.

2



Prognostics
Data 

acquisition

Data 

processing

Condition 

assessment
Diagnostic

Decision making

Human-Machine Interface

Physical system

Observe Analyze

A
c
t

Figure 1: Prognostics and Health Management cycle.

Prognostics can be done according to three main approaches: 1) model-

based (also called physics-of-failure), 2) data-driven and 3) hybrid (or fusion)

prognostics approaches. The first approach deals with the prediction of the

RUL of systems by using mathematical representation to formalize physical

understanding of a degrading system, and includes both system modeling and

physics-of-failures (PoF) [10]. The second approach aims at transforming raw

monitoring data (temperature, vibration, current, voltage, etc.) into relevant

information, which are used to learn models for health assessment and RUL pre-

diction [10]. Finally, the third approach combines both previous approaches and

benefits from both to overcome their drawbacks. Prognostics results obtained

by this approach are claimed to be more reliable and accurate [11].

Although its benefits are well proven, there are few contributions address-

ing fault prognostics of MEMS [1, 12]. To fill this gap, a hybrid prognostics

approach for MEMS is proposed in this paper. Furthermore, and in order to

demonstrate its performance, the proposed approach is applied to an electro-

thermally actuated MEMS valve. All the steps of the approach are performed:

from measurements acquisition to RUL estimation.

The rest of the paper is structured as follows. Section 2 presents the pro-

posed prognostics approach. The main steps of the implementation of the used

prognostics tool are summarized in Section 3. The effectiveness of the proposed

approach is demonstrated in Section 4, based in an application to a MEMS
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Figure 2: Overview of the proposed hybrid prognostics approach.

device. Finally, conclusions are drawn in Section 5.

2. Proposed hybrid prognostics approach

The proposed prognostics approach, presented in Fig. 2, can be applied on

different categories of MEMS at a condition that the following assumptions hold.

1. The instrumentation needed to monitor the behavior of MEMS (sensors,

camera, etc.) is available

2. Sufficient knowledge about the studied MEMS is available to derive their

nominal behavior models and identify their failure mechanisms, which may

take place during their utilization.

The prognostics approach relies on two phases: an offline phase to construct

the nominal behavior model of the MEMS, select a physical health indicator

(HI) and derive its degradation model, and an online phase where the obtained

degradation model is used for future behavior prediction and RUL estimation.

The principal steps of the approach are explained hereafter.
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• Nominal behavior model construction: it can be obtained by writing the

corresponding physical laws of the targeted MEMS or derived experimen-

tally. Its complexity depends on the modeling assumptions made during

its construction. The parameters of the model can be identified by exciting

the MEMS and getting its time response. In other cases, these parameters

can be obtained from the manufacturer’s specifications. In this paper, the

nominal behavior model is obtained by writing the corresponding physical

laws, which are then validated experimentally.

• Degradation model : it can be obtained experimentally through accelerated

lifetime tests or given by experts. In this work, the degradation model is

related to drifts of the physical parameters of the MEMS (friction coef-

ficient, stiffness, etc.). These drifts are considered as Health Indicators

(HI) and are obtained by analyzing the data acquired from tests by using

appropriate modeling tools (regression, curve fitting, etc.).

• Accelerated lifetime test : it is an aging of a product that induces normal

failures / degradation in a short amount of time by applying stress levels

much higher than normal ones (strain, temperature, voltage, vibration,

pressure, etc.). The main interest is to observe the time evolution to

predict the life span. According to Matmat et al. [13], the simplest and

most useful accelerated lifetime test to derive the degradation model of a

MEMS is to stress it by applying a square signal (cycling).

• Prognostics modeling : prognostics is divided into two main stages: learn-

ing and prediction. In the learning stage, the prognostics tool combines

the available data with the degradation model to learn the behavior of the

system and estimate the parameters of its degradation model. This stage

lasts until a prediction is required at time tp. Then, in the prediction

stage, the prognostics tool propagates the state of the system and deter-

mines at what time the failure threshold (FT ) is reached. In practice,

the FT can be set either experimentally, by observing the time evolution

of the HI, or given by an expert. In this paper, it is set according to a
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desired performance that we defined. The performance criteria can cor-

respond to the stability, the rapidity, the precision, etc. It can also be

related to a decrease (or an increase) of the system’s parameters such as

its compliance. Note that, the FT does not necessarily indicate a com-

plete failure of the system, but a faulty state beyond which there is a risk

of functionality loss [14]. Finally, the RUL is calculated as the difference

between the failing time tf and the starting prediction time tp (Eq. 1).

RUL = tf − tp (1)

In the offline phase, the time evolution of the selected HI is approximated

by a mathematical model to define the degradation model. In the online phase,

the parameters of the degradation model are unknown and need to be estimated

as a part of the prognostics process. To do so, the particle filter algorithm can

be used. It allows propagating the state and managing uncertainties in the

model parameters and the prognostics phase. Besides that, its allows handling

non-linear and non-Gaussian situations.

3. Failure prognostics based on particle filtering

In the literature, several research works dealing with the particle filtering

method and its application to the prognostics were published. For more the-

oretical details, interested readers can refer to the work published by Arulam-

palam et al. [15]. Consequently, this section aims at summarizing the main steps

which allow to understand the implementation of the particle filter for failure

prognostics of MEMS and to easily reproduce the proposed approach.

3.1. Particle filtering framework

The particle filter was introduced in 1993 as a numerical approximation to

the nonlinear / non-Gaussian recursive Bayesian estimation problem [16]. The

problem of recursive Bayesian estimation is defined by two equations: the first

considers the evolution of the system state {xk, k ∈ N} which is given by

xk = f(xk−1, λk−1) (2)
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where k is the time step index, f is the transition function from the state

xk−1 to the next state xk and {λk−1, k ∈ N} is the independent identically

distributed process noise sequence. The objective is to recursively estimate xk

from measurements introduced by the measurement model {zk, k ∈ N}

zk = h(xk, µk) (3)

where k is the time step index, h is the measurement function and {µk, k ∈ N}

is the independent identically distributed measurement noise sequence.

The main aim of the recursive Bayesian estimation problem is to recursively

estimate the state of the system by constructing the Probability Density Func-

tion (PDF) of the state at time k based on all available information, p(xk|z1:k).

It is assumed that the initial PDF of the state vector, also called the prior,

is available (p(x0|z0) = p(x0)). The PDF p(xk|z1:k), known as the posterior,

can be obtained recursively in two main stages: prediction and update.

Suppose that the required PDF p(xk−1|z1:k−1) at time k − 1 is available.

• Prediction stage: in this stage the state model (Eq. 2) is used to obtain the

prior PDF of the state at time k via the Chapman-Kolmogorov equation:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (4)

• Update stage: when a new measurement zk becomes available, one can

update the prior PDF via the Bayes rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(5)

This gives the formal solution to the recursive Bayesian estimation problem.

Analytic solutions to this problem are available in a restrictive set of cases,

including the Kalman filter, which assumes that the state and measurement

models are linear and λk and µk are additive Gaussian noise of known variance.

When these assumptions are unreasonable, which is the case in many appli-

cations, and the equations (Eq. 4) and (Eq. 5) cannot be solved analytically,
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approximations are necessary. One of the most used approximate solution for

this kind of problem is the particle filtering.

The particle filtering solution is a sequential Monte-Carlo method which

consists in representing the required posterior PDF by a set of samples, also

called particles, with associated weights and computing estimates based on these

samples and weights. Different versions of particle filtering are reported in the

literature. In this paper, we focus on the Sampling Importance Re-sampling

(SIR) particle filer, which is commonly used in the prognostics field [17, 18, 19].

To explain the steps of the SIR algorithm, let suppose that at time step k = 0,

the initial distribution p(x0) is approximated in the form of a set of Ns samples

{xi0}
Ns
i=1 with associated weights {wi

0 =
1

Ns
}Ns
i=1. Then, the following three steps

are repeated until the end of the process:

• Prediction: a new PDF is obtained by propagating the particles from state

k − 1 to state k using the state model.

• Update: when a new measurement is available, the likelihood of the parti-

cles p(zk|xik) is computed. This probability shows the degree of matching

between the prediction and the measurement. Its calculation allows up-

dating the weight of each particle.

• Re-sampling: this step appears to avoid a degeneracy of the filter. The ba-

sis idea of re-sampling is to eliminate the particles with small weights and

duplicate the particles with large weights. The re-sampling step involves

generating a new set of particles {xi∗k }
Ns
i=1 by re-sampling (with replace-

ment) Ns time from an approximate discrete representation of p(xk|z1:k).

Surveys of re-sampling methods for particle filtering can be found in [20].

In this work, the systematic re-sampling method is used since it is simple

to implement and offers good results [21].

3.2. RUL estimation based on particle filtering

In prognostics, the particle filter is used for the learning and prediction

stages. During the learning stage, the behavior of the system is learned and
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the unknown parameters of the state model are adjusted consequently. When

a prediction is required, at time tp, the posterior PDF given by {xip, wi
p}

Ns
i=1 is

propagated until xi reaches the failure threshold at tif . The RUL PDF is then

given by calculating tif − tp. The different steps of the prognostics using the

particle filter are summarized in Fig. 3

Propose initial population, 

{𝑥0, 𝑤0}

Resample 

Propagate particles using state 

model, 𝑥𝑘−1 → 𝑥𝑘

Update weights, 𝑤𝑘−1 → 𝑤𝑘

Weights 

degenerated?

Initialize PF parameters

Measurement, 

𝑧𝑘

Yes

No

Estimate initial population, 

{𝑥𝑝, 𝑤𝑝}

Generate RUL PDF

Propagate particles using state 

model, 𝑥𝑝+𝑘−1 → 𝑥𝑝+𝑘

Failure 

Threshold 

reached ?

Start prediction at 𝑡𝑝

Yes

No

Learning stage Prediction stage

Figure 3: Particle filter framework for prognostics (adapted from [22]).

In the next section, an application of the proposed prognostics approach to a

MEMS device is presented. The SIR particle filter algorithm is used to perform

online prognostics.

4. Application and results

4.1. System description

The targeted device consists of an electro-thermally actuated MEMS valve

of DunAn Microstaq, Inc. (DMQ), company (Fig. 4(a)). It is designed to

control flow rates or pressure with high precision at ultra-fast time response

(<< 100ms). It is currently being used in a number of applications in air

conditioning and refrigeration, hydraulic control and air pressure control.

The valve is composed of three silicon layers. The center layer is a movable

membrane. The other two layers of silicon act as interface plates to either elec-
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Figure 4: (a) Electro-thermally acuated MEMS valve and (b) schematic view of its electro-

thermal actuator.

trical connections (top layer) or fluid connection ports (bottom layer): common

port, normally closed and normally open. The maximum actuation voltage of

the valve is 12V .

4.2. Nominal behavior model construction

The actuator used inside the targeted MEMS is an electro-thermal actuator.

This actuator, presented in Fig. 4(b), is composed of hot arms inclined to the

horizontal axis by an angle θ and clamped to the substrate and the freestanding

central shuttle. When a voltage difference is applied across the anchor sites,

heat is generated along the beams due to ohmic dissipation. The hot arms

expand to push ahead symmetrically on the central part of the actuator (the

shuttle). This part moves in the direction shown in Fig. 4(b). The shuttle is

connected to the membrane and its movement allows moving the membrane to

open or close the fluid ports.
−→
F1 and

−→
F2 are the two forces generated by the thermal displacement which

act at the end of the hot arms. They are given by the following equation:

‖
−→
F1‖ = ‖

−→
F2‖ = EAh∆T (6)

where E is the Young’s modulus, A is the surface of the arm section, h is the

thermal expansion coefficient and ∆T is the temperature variation.

The resultant force
−→
F can be written as the sum of the two forces

−→
F1 and

−→
F2 and the projection along (

−→
i ,
−→
j ) leads to the following equation:
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−→
Fi = F1

−→
i + F2

−→
i = 2EAh∆Tsin(θ)

−→
i

−→
Fj = F1

−→
j + F2

−→
j =

−→
0

(7)

The electro-thermal actuator is modeled as a mass-spring-damper (MSD)

system. The application of the second fundamental law of dynamics leads to

the following equation:

M−→a =
∑−−→

Fext =
−→
Ff +

−→
Fr +

−→
F (8)

where −→a is the acceleration,
−→
Ff = −fẋ−→i is the friction force,

−→
Fr = −kx−→i

is the restoring force,
−→
F = 2EAh∆Tsin(θ)

−→
i is the resultant displacement

force, x is the displacement, f is the friction coefficient, ks is the stiffness and

M is the mass.

Mẍ+ fẋ+ ksx = 2EAh∆Tsin(θ) (9)

Due to the small size of the actuator, the inertial term Mẍ can be neglected

in Eq. 9 with regard to the other forces [23]. The validity of this assumption will

be discussed in Subsection 4.3. Based on this assumption, the dynamic model

simplifies to:

fẋ+ ks = 2EAh∆Tsin(θ) (10)

To find a relation between the temperature variation ∆T and the input of

the system (voltage U), we measured ∆T for different values of U (from 0V

to 12V ). The temperature of the MEMS valve is measured by using a PT100

RTD sensor. A linear approximation of the evolution of ∆T as a function of U

(Fig. 5) leads to the following expression:

∆T = αU = 7.4U (11)

By integrating this expression in the dynamic model, the following equation

is obtained:
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Table 1: Numerical values used to calculate the constant β.

Parameter Symbol Value Unit

Young’s modulus E 170 GPa

Section A 200 µm2

Angle of inclination θ 10 ◦

Thermal expansion coefficient h 2.5× 10−6 K−1

fẋ+ ks = 2EAhsin(θ)αU = βU (12)

where β = 2EAhsin(θ)α is a constant. In β, two parameters are unknown,

which are A and θ. The values of these two parameters are not given by the

manufacturer and cannot be identified from the time response of the MEMS.

Then, two values for these two parameters are assumed based on other works

dealing with the design and manufacture of electrothermal actuators. The as-

sumed values do not have an influence on the shape of the degradation curve.

Table 1 shows the numerical values of all the parameters to calculate the con-

stant β.

By applying the Laplace transform on Eq. 12, we derive the transfer function

given in Eq. 13:

X(p)

U(p)
=

K

1 + τp
(13)
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where K =
β

ks
is the static gain and τ =

f

ks
is the time constant.

The obtained transfer function corresponds to a first order system. In the

next subsection, this model is validated experimentally and its parameters are

identified. These parameters are used in this approach to select a HI, which

allows to track the degradation of the MEMS.

4.3. Experimental setup and tests

In order to validate the nominal behavior model and perform accelerated

lifetime tests to generate the degradation model of the MEMS valve, we designed

and built an experimental platform (Fig. 6). It is composed of five main parts:

Computer 

Arduino 

Voltage suppliers 

NI card 

Camera  

Light source 

MEMS 

Figure 6: Overview of the experimental platform.

1. The MEMS and its environment : each MEMS is fixed on a support com-

posed of a plastic part made by 3D printer, a metal plate to allow heat

dissipation as the MEMS heats a lot, input-output of air connected to

the fluid connection ports and an electronic card for power supply. The

MEMS is attached on the metal plate under the electronic card by using

silicone (Fig. 7).

2. Power supply part : it is composed of two voltage suppliers and two Ar-

duino Uno cards. The cards are used as a switch to cycle the MEMS with
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Figure 7: Support designed to fix the MEMS.

the desired frequency.

3. Image acquisition part : image acquisition is accomplished by a ”Guppy

Pro F-031” camera with a frame rate equal to 100 frames per second

(fps) and a light source for the camera to allow seeing the movement of

the membrane inside the MEMS. The communication between the com-

puter and the camera is ensured by a FireWire B cable. The ensemble

of images taken by the camera with a Matlab image-processing algorithm

(Algorithm 1) allow measuring the displacement of the membrane of the

MEMS and getting its time response.

4. Temperature acquisition part : the temperature of the MEMS is measured

by using a PT100 RTD sensor attached on the metal plate. The commu-

nication between the PT100 RTD and the PC is ensured by a National

Instrument card (NI 9216) and a Labview interface.

5. Pneumatic part : this part is composed of an air supply, an air filter and

a pressure regulator.

To better show the different parts, a global synoptic of the experimental plat-

form is given in Fig. 8. To minimize the mechanical vibration, the experimental
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Algorithm 1 Pseudo-code of the Matlab image-processing algorithm.

1: function Displacement ()

2: Init: PxToMicroM ← CameraCalibration(); {conversion from pixel to µm}

3: Init: X ← 0; {displacement}

4: Init: Y ← 0;

5: Init: j ← 0;

6: Init: displacement[] ← 0;

7: while (1) do

8: I ← GrabImage();

9: FindContour(I);

10: FindContourCentroid(I);

11: (X,Y ) ← CentroidPosition(I);

12: X ← X * PxToMicroM;

13: displacement[j] ← X;

14: j ← j + 1;

15: end while

16: Plot(displacement);

17: end function

platform is placed on an anti-vibration table.

Before performing accelerated lifetime tests, one has to set the voltage value,

which will be applied to the MEMS. For this purpose, static tests were conducted

by increasing gradually the voltage (from 1V to 12V ) to find the displacement

for various applied voltage values. Based on that, the voltage chosen is this

application to perform accelerated lifetime tests is equal to 8V . This value is

not too high to not bring up prematurely degradation and not too low to obtain

enough displacement.

Fig. 9 shows an example of an obtained time response of one MEMS valve

supplied by a periodic square signal of 8V magnitude and 1Hz frequency. This

time response is typical of a first order system and this confirms that the inertia

can be neglected. The identification of the system parameters is based on the
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Figure 9: Time response of the MEMS valve. The two images of the membrane, 1 and 2, are

taken by the camera through the normally closed port. At 8V , the membrane moves (image

1) to create an output or an input of the air (circled part). At 0V , the membrane returns to

its initial position (image 2).

same experimental measurements and the modeling described in Section 4.2. By

using Matlab system identification toolbox, the transfer function can be obtained

and all the system parameters can be easily identified. The time evolution of

all the identified parameters will be used to select a HI. The transfer function
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corresponding to the time response presented in Fig. 9 is given in Eq. 14 and

the identified parameters are given in Table 2.

X(p)

U(p)
=

8.02

1 + 0.052p
(14)

Table 2: Numerical values of the identified parameters of the system (these values concern

only an example of measurement).

Parameter Symbol Value Unit

Displacement D 65 µm

Current I 0.5 A

Static gain K 8.02 µm/V

Time constant τ 0.052 s

Stiffness ks 2.7× 10−2 N/m

Compliance C 37.03 m/N

Friction coefficient f 1.4× 10−3 Ns/m

Accelerated lifetime tests consist in cycling continuously four MEMS valves

(Fig. 6). They are supplied by a periodic square signal of 8V magnitude and

1Hz frequency. The measurements acquisition is the same for all the tested

MEMS. For each one of them the following steps are applied: 1) adjust the

MEMS below the camera using a 3D positioner until having a very clear image,

2) get the time response by using the Matlab image-processing algorithm, 3)

identify the parameters of the system by using the Matlab system identification

toolbox, which leads to the transfer function of the obtained time response, and

4) store the results in different files in a dedicated computer for later use. Note

that, the operating conditions and load were kept constant during the cycling

tests.

17



4.4. Degradation model

To get the degradation model of the MEMS, the accelerated lifetime tests

remained running for approximately three months, where the MEMS valves were

continuously cycled. During this period, measurements were collected regularly.

The raw results of the performed tests are presented in Fig. 10. The decrease

in the magnitude of the displacement is related to the degradation in the tested

MEMS valves. Among the identified parameters, the compliance C (inverse

of the stiffness) has the same time evolution as the displacement (Fig. 11).

Therefore, the compliance is selected as the physical HI, which can be used to

track the degradation of the MEMS valves. The projection of this HI can be

exploited to predict the future behavior of each MEMS valve and calculate its

RUL.

To reduce variability of the raw experimental data and to remove different

peaks, smoothing process is performed to capture important trends. This step is

met by applying a robust local regression filter rloess (or robust locally weighted

scatter plot smooth method) with a span value equal to 0.4 (i.e., 40 % of the

total number of data points in the data set). Basically, rloess is a popular

smoothing method based on robust locally weighted regression function and a

second degree polynomial. Given scattered data, rloess filter can compute the

robust weight for each data point in the span, which is resistant to outliers (it

allocates lower weights to outliers). Fig. 12 shows the filtered experimental data

using rloess filter.

By using the curve fitting method, the time evolution of the HI is approxi-

mated by a double exponential model, which represents the degradation model

of the MEMS valves:

HI(t) = aexp(bt) + cexp(dt) (15)

The numerical values of the exponential models parameters (a, b, c and

d) for the four tested MEMS valves are given in Table 3. The coefficient of

determination (R2) values obtained from the curve fitting demonstrate that the

double exponential model fits well the data.
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Figure 10: Experimental results: displacement as a function of time.
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Figure 11: Displacement and compliance as a function of time.

The four tested MEMS valves have the same form of the degradation model

(Eq. 15), but with different values of the parameters. Thus, this model is set as

a generic degradation model for the studied MEMS valve.
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Figure 12: Filtering raw experimental data using rloess.

4.5. Prognostics modeling and results

To integrate the degradation model in the particle filter, the first step is to

write it in a recursive form to create the state model:

HI(tk)−HI(tk−1) = aexp(btk) + cexp(dtk)− aexp(btk−1))− cexp(dtk−1)

HI(tk) = HI(tk−1) + aexp(btk)(1− exp(−b)) + cexp(d.tk)(1− exp(−d)) (16)

We note that no additive noise is added to the model as in the theoretical

form. We consider that the uncertainty of measures is included in the parameters

Table 3: Numerical values of the exponential models parameters .

Parameter MEMS #1 MEMS #2 MEMS #3 MEMS #4

a −1.025.104 −8.47.104 −3.727.105 4.041.106

b 0.0168 0.0157 0.0073 0.0116

c 1.029.104 8.48.104 3.727.105 −4.041.106

d 0.0167 0.0157 0.0073 0.0116

R2 0.993 0.989 0.989 0.992
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of the model identified by the filter. Regarding the measurement model, the

experimental data are used in the filter. We assume that the additive noise is

unknown and its variance is managed by the filter as described in [18].

4.5.1. Filter settings

The first step of the filter settings is the creation of the initial distributions

for the state and the model parameters (a, b, c and d). The initial distribution

of the state is centered on the first measured compliance value (HI(t = 0)). The

noise induced by the measurement instruments and the form of the distribution

are not known. In this case, we chose an uniform distribution centered on the

initial measured value with a dispersion of ±0.05HI(t = 0). For the unknown

parameters, an uniform distribution is also defined for each of them. The value

on which each distribution is centered is obtained by fitting the model to the

data.

Finally, the number of particles to be used must be defined. The larger

it is, the better should be the prediction. However, a significant number of

particles leads to a long calculation time. By refining the initialization of the

model parameters, it is possible to use fewer particles. Pitt et al. [24] proposed a

methodology to choose that number of particles. This methodology consists in

launching the filter several times to create statistics and choose the appropriate

number of particles. We applied the same methodology to define this number.

The results obtained below were obtained using 5000 particles. This number

provides good predictions with a reasonable calculation time.

4.5.2. Prognostics results

The RUL estimation of each MEMS requires a definition of a corresponding

FT . In this case study, the FT is set as the point at which the HI value

decreases by 60 %. Obviously, this value can change depending on the desired

performance of the MEMS.

As explained in Section 3.2, prognostics is divided into two stages: learning

and prediction. During the learning stage, the state of the MEMS (PDF of the

21



10 20 30 40 50 60 70 80 90 
10 

15 

20 

25 

30 

35 

40 

Time (days) 

H
e

a
lt
h

 i
n

d
ic

a
to

r 

  

  
Current health indicator 

Estimated health indicator 

Threshold 

Lower bound of the confidence interval 

upper bound of the confidence interval 

Real RUL 

Estimated 

RUL 

𝑡𝑝 

Learning Prediction 

Threshold 

(a) RUL estimation at 60 days.

35 40 45 50 55 60 65 70 75 80 85
0

10

20

30

40

50

Time (days)

R
U

L

 

 

Real RUL
Estimated RUL
95% prediction interval

(b) RUL estimation at frequent intervals.

40

60

80

01020304050
0

0.5

1

 

Actual time (days)
Time (days)

 

P
D

F
 o

f R
U

L

@37 days
@52 days
@60 days
@67 days
@75 days
@78 days
@81 days
Real RUL

(c) Evolution of the RUL PDF

Figure 13: Prognostics results and RUL uncertainties.

HI) at time step k is estimated using the degradation model and the state at

time step k − 1. The parameters of the state model are consequently adjusted.

Note that, the measurement model is not needed since measurements of the HI

are available. These measurements are used in the update stage of the particle
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filter to update the weights of the particles. This process lasts until a prediction

is required at tp. At this time, the estimated PDF of the HI is propagated

until it reaches the FT at tf . The duration between tf and the starting point

of prediction tp gives the PDF of the RUL.

The settings described above is used to perform predictions of the health

state and RUL. To construct the time evolution of the RUL, the prediction is

launched at several time intervals (12 lengths of learning data). Fig. 13(a) gives a

prediction made with a length of learning data of 60 days. The estimated health

indicator is represented with a confidence interval to compare with the actual

values. The estimated RUL corresponds to the median of the RUL PDF. The

median RUL is chosen rather than the mean RUL since it gives early estimates

and has better accuracy when more data are available. Note that, in PHM

context, it is better to have early estimates rather than late RUL to avoid late

maintenance interventions [25]. The particle filter allows managing uncertainty

of long-term predictions and the confidence to facilitate decision making either

offline for maintenance or online for control or system configuration.

Fig. 13(b) shows the estimated RUL at frequent intervals compared to the

real one. One can clearly see that the accuracy of the RUL estimates increases

with time, as more data are available. Furthermore, the real RUL values are

within the prediction interval at the different time steps. Finally, the uncertain-

ties in RUL estimation decreases as time passes. This is shown in Fig. 13(c),

which represents the time evolution of the RUL PDF (only some PDFs are

drawn to make a readable figure). For example, at time equal to 37 days, we

have a flat distribution of RUL, whereas at time equal to 81 days we have a

sharp one. This evolution of the RUL PDF explains the increase of the pre-

diction accuracy in time. These obtained results demonstrate the accuracy and

the significance of the proposed prognostics approach.
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5. Conclusion

A hybrid prognostics approach is proposed in this paper. First, the archi-

tecture of this approach and its different steps are presented. After that, the

used prognostics tool is introduced.

The proposed approach is applied to an electro-thermally actuated MEMS

valve. For this purpose, an experimental platform is designed to validate the

obtained nominal behavior model of the targeted MEMS, perform accelerated

lifetime tests and derive its degradation model. In this work, the degradation

of each MEMS was seen as a drift in its physical health indicator, which cor-

responds to its compliance. Once the degradation model is obtained, the SIR

particle filter is used to perform online prognostics. This tool allowed to es-

timate the degradation model parameters, predict the future behavior of the

MEMS and calculate its RUL. The obtained results clearly demonstrate the

effectiveness of the proposed prognostics approach.

The estimated RUL values can be exploited to take appropriate decision on

systems in which the MEMS are used. However, this aspect is not addressed

in this contribution. Thus, as a future work, it is expected to implement this

approach on a real application, including the decision part. The application con-

sists in a centimeter contact-less distributed MEMS-based conveying surface. It

is dedicated for distributed post-prognostics decision making and aims at opti-

mizing the utilization of the conveying surface, maintaining a good performance

as long as possible and avoiding loss or damage of transported micro-objects.
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Fourniols, D. Estève, Life expectancy and characterization of capacitive RF

MEMS switches, Microelectronics Reliability 50 (9) (2010) 1692–1696.

[14] A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S. Saha,

M. Schwabacher, Metrics for evaluating performance of prognostic tech-

niques, in: Prognostics and health management (PHM) 2008, IEEE Inter-

national conference on, IEEE, 2008, pp. 1–17.

[15] M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking, Signal Process-

ing, IEEE Transactions on 50 (2) (2002) 174–188.

[16] N. J. Gordon, D. J. Salmond, A. F. Smith, Novel approach to

nonlinear/non-gaussian bayesian state estimation, in: IEE Proceedings F

(Radar and Signal Processing), Vol. 140, IET, 1993, pp. 107–113.

[17] B. Saha, K. Goebel, S. Poll, J. Christophersen, Prognostics methods for

battery health monitoring using a bayesian framework, Instrumentation

and Measurement, IEEE Transactions on 58 (2) (2009) 291–296.

[18] D. An, J.-H. Choi, N. H. Kim, Prognostics 101: A tutorial for particle

filter-based prognostics algorithm using matlab, Reliability Engineering &

System Safety 115 (2013) 161–169.

[19] M. E. Orchard, G. J. Vachtsevanos, A particle-filtering approach for on-

line fault diagnosis and failure prognosis, Transactions of the Institute of

Measurement and Control (2009) 221–246.

[20] T. Li, M. Bolic, P. Djuric, Resampling methods for particle filtering: Classi-

fication, implementation, and strategies, Signal Processing Magazine, IEEE

32 (3) (2015) 70–86.

26



[21] L. Guo, Y. Peng, D. Liu, Y. Luo, Comparison of resampling algorithms for

particle filter based remaining useful life estimation, in: Prognostics and

Health Management (PHM), 2014 IEEE Conference on, IEEE, 2014, pp.

1–8.

[22] B. Saha, K. Goebel, Model adaptation for prognostics in a particle filtering

framework, International Journal of Prognostics and Health Management

Volume 2 (color) (2011) 61.

[23] M. Dkhil, M. Kharboutly, A. Bolopion, S. Regnier, M. Gauthier, Closed-

loop control of a magnetic particle at the air–liquid interface, Automation

Science and Engineering, IEEE Transactions on PP (99) (2015) 1–13.

[24] M. K. Pitt, R. dos Santos Silva, P. Giordani, R. Kohn, On some properties

of markov chain monte carlo simulation methods based on the particle filter,

Journal of Econometrics 171 (2) (2012) 134–151.

[25] K. Javed, R. Gouriveau, N. Zerhouni, D. Hissel, Improving accuracy of

long-term prognostics of pemfc stack to estimate remaining useful life,

in: Industrial Technology (ICIT), 2015 IEEE International Conference on,

2015, pp. 1047–1052.

27


