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Boundary energy-shaping control of an isothermal tubular
reactor
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aDept. of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Bologna, Italy; bFEMTO-ST
Institute, AS2M department, Université de Franche-Comté, Besançon, France

ABSTRACT
This paper illustrates a general synthesis methodology of asymptotic
stabilizing, energy-based, boundary control laws that are applicable to
a large class of distributed port-Hamiltonian systems. The methodologi-
cal results are applied on a simplified model of an isothermal tubular
reactor. Due to the presence of diffusion and convection, such example,
even if relatively easy from a computational point of view, is not trivial.
The idea here is to design a state feedback law able to perform the
energy-shaping task, i.e. able to render the closed-loop system a port-
Hamiltonian system with the same structure, but characterized by a new
Hamiltonian with a unique and isolated minimum at the equilibrium.
Asymptotic stability is then obtained via damping injection on the
boundary and is a consequence of the LaSalle’s Invariance Principle in
infinite dimensions.
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1. Introduction

Port-Hamiltonian systems have been introduced about 20 years ago as the mathematical for-
malization of bond-graphs to describe lumped parameter physical systems in a unified manner
[1–4]. The generalization to the infinite dimensional scenario leads to the definition of distributed
port-Hamiltonian systems (see e.g. [5,6]) that have been introduced about one decade ago, and
that have proved to represent a powerful framework for modelling, simulation and control of
physical systems described by PDEs. Distributed port-Hamiltonian systems share analogous
geometric properties with their finite dimensional counterpart, and also the development of
stabilizing control laws follows the same rationale of the lumped parameter case. Since in most
of the cases the Hamiltonian is the total energy of the system, stabilization could be obtained by
driving the Hamiltonian to zero. As a consequence, having such a physical quantity at our
disposal simplifies the controller design considerably.

Most of the current research on the stability and stabilization of distributed port-Hamiltonian
systems deals with the development of boundary controllers. For example, in [7–15], this task has
been accomplished by looking at, or generating, a set of Casimir functions in closed-loop that
robustly (i.e. independently from the Hamiltonian functions) relates the state of the infinite
dimensional port-Hamiltonian system with the state of the controller, which is a finite dimen-
sional port-Hamiltonian system interconnected to the boundary of the distributed parameter one.
The shape of the closed-loop energy function is changed by acting on the Hamiltonian of the
controller. As discussed in [2,16,17], this procedure is the generalization of the control by
interconnection via Casimir generation (energy-Casimir method) developed for finite
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dimensional systems. The result is an energy-balancing passivity-based controller that is not able
to deal with equilibria that require an infinite amount of supplied energy in steady state, i.e. with
the so-called dissipation obstacle.

In this paper, it is shown how to enlarge the class of boundary energy-shaping controllers by
determining a feedback law that renders the closed-loop system a port-Hamiltonian system with
the same structure as the open-loop system (i.e. Dirac and resistive structures are not modified),
but characterized by a shaped Hamiltonian with the desired performances. This is the same
concept adopted in finite dimensions in case of stabilization with state-modulated sources
discussed in [16], or with the more general IDA-PBC control technique presented in [18]. The
focus here is on the class of dissipative boundary control systems presented in [19], which
generalizes the class of linear, distributed, port-Hamiltonian systems presented in [20,21] to
include distributed dissipation and/or diffusive effects. Our main contribution is the following:
by transforming the original system via state feedback into a new one with a Hamiltonian function
that has an isolated minimum at the equilibrium, simple stability is obtained. Then, asymptotic
stability is achieved by introducing damping by means of an additional control loop. In this
respect, another important contribution of this paper is to show that, if it is possible to impose full
boundary dissipation to the port-Hamiltonian system resulting from the energy-shaping proce-
dure, then the desired equilibrium can be proved to be asymptotically stable.

The general methodology is applied to the boundary stabilization of an isothermal tubular
reactor, but the proposed approach can be naturally extended to deal with the linearized model of
non-isothermal tubular reactors with convection, dispersion and reaction phenomena. In this
paper, the considered reaction is of type A ! B, and the system is modelled by the mass balance
equation of element A given as a second-order linear PDE. Preliminarily, existence of solutions for
this system in case of constant parameters, and a parametrization of all the input defining a
boundary control system are discussed. Then, asymptotic stabilization of non-zero equilibria via
energy shaping and damping injection is achieved in case the boundary input is associated to
Dankwert conditions [22]. The presence of diffusion and convection makes this system not trivial
and, at the best of our knowledge, it is the first time that the stabilization of systems in which such
phenomena are present has been carried out in the port-Hamiltonian framework using a combi-
nation of energy-shaping and damping injection.

The paper is organized as follows. In Section 2, it is shown how the differential operators can
be parametrized, and how from this parametrization one can define a boundary control system. In
Section 3, the model of the tubular reactor and its associated boundary control system are
presented. The energy-shaping boundary control technique together with asymptotic stability in
the case of full boundary dissipation (damping injection) is discussed in Section 4. Then, in
Section 5, the general methodology is applied to the boundary stabilization of the 1D tubular
reactor, while conclusions and a discussion about possible future research activities are reported in
Section 6.

2. Boundary control systems

We consider the class of dissipative boundary control systems:

@x
@t t; zð Þ ¼ J � GS zð ÞG�½ �L zð Þx t; zð Þ
u tð Þ ¼ Bx t; zð Þ
y tð Þ ¼ Cx t; zð Þ

8<
: x 0; zð Þ ¼ x0 zð Þ (1)

where z 2 ½a; b� is the spatial coordinate, Sð�Þ and Lð�Þ are bounded self-adjoint coercive operators
on L2 a; bð Þ;Rnð Þ that can depend on z, and J and G are differential operators. The state space is
defined as X 2 L2 a; bð Þ;Rnð Þ with inner product x1; x2h iL ¼ x1;Lx2h iL and norm xk k2L¼ x; xh iL.
Hence, X is a Hilbert space. Note with this definition, the natural norm on X and the L2 norm are
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equivalent. The reason for selecting this space is that k x k2L is usually equal to the energy function
of the system and from a physical point of view, x and Lx denote, respectively, the energy and co-
energy variables of the system. Indeed, the energy of the system is given by the Hamiltonian

H x t; zð Þð Þ ¼ 1
2

ðb
a
xT t; zð ÞL zð Þx t; zð Þdz: (2)

The differential operator J is formally skew-adjoint and is related to energy conservation and
structural invariants. It is assumed in the form

J x ¼
XN
i¼0

Pi
@ix
@zi

(3)

with each Pi an n × n real and constant matrix such that Pi ¼ ð�1Þiþ1PT
i , i ¼ 1; . . . ;N. The

differential operator G and its (formal) adjoint G� are related to energy dissipation and defined as

Gx ¼
XN
i¼1

Gi
@ix
@zi

G�x ¼
XN
i¼1

�1ð ÞiGT
i
@ix
@zi

(4)

with Gi an n × m real and constant matrix. The operators B and C are, respectively, the boundary
input and output operators, defined later on. System (1) can be rewritten using an extended skew-
symmetric operator J e given hereafter in terms of conjugate port variables, efforts eS; eRð Þ and
flows fS; fRð Þ of proper dimensions, as follows:

fS
fR

� �
¼ J G

�G� 0

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼:J e

eS
eR

� �
eR ¼ SfR (5)

with fSðt; zÞ ¼ @x=@tð Þðt; zÞ, eSðt; zÞ ¼ LðzÞxðt; zÞ and fR; eRð Þ the conjugated port variables asso-
ciated with dissipation. The operator J e makes explicit the interconnection structure associated
with the power continuous energy flows in the system among the energy storage elements
interconnected at the fS; eSð Þ port and the dissipative elements at the fR; eRð Þ port [6]. Notice
that, just as within the framework of bond graphs, the effort variables are related to co-energy
variables, while the flow variables to the time derivative of the energy variables. Physically, they
usually correspond to mechanical–thermodynamic driving forces (intensive variables) and flows
(time changes) of extensive variables, respectively.

Proposition 2.1 The operator J e defined in (5), with J and G given in (3) and (4), respectively, is
formally skew-symmetric and can be written as

J e
eS
eR

� �
¼
XN
i¼0

Pi Gi

�1ð Þiþ1GT
i 0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼: ~Pi

@i

@zi
eS
eR

� �
(6)

with ~Pi ¼ ð�1Þiþ1~PT
i . Note that ~PN can have a rank deficiency.

Proof. See [20]. □

In the following, we define the boundary port variables associated with the extended operator
J e. A detailed derivation of the boundary port-variables can be found in [20,21], and in this
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section, we limit ourselves to introduce the technical tools that are later going to be used in the
control design. To this end, let us first define the following matrices:

~Q ¼

~P1 ~P2 � � � ~PN�1 ~PN

�~P2 �~P3 � � � �~PN 0
~P3 ~P4 � � � 0 0
..
. ..

. . .
. ..

. ..
.

�1ð ÞN�1~PN 0 � � � 0 0

0
BBBBB@

1
CCCCCA (7)

and M spanning the column of ~Q (used to take into account the possible rank deficiency of ~Q), i.e.
~Q1 ¼ MT ~QM, and MQ ¼ MTM

� ��1
MT. Then

Rext ¼ 1ffiffiffi
2

p ~Q1 �~Q1

I I

� �
MQ 0
0 MQ

� �
(8)

where I is the ðnþmÞN � ðnþmÞN identity matrix. Notice that P0 does not play a role in the
energy exchange at the boundaries, and then in the definition of the associated boundary port.
The previous matrices follow from the fact that any skew-symmetric differential operator gives
rise to a symmetric bilinear form on the space of boundary variables, where the coefficients of the
operator are captured in the matrix ~Q. Then, Rext follows from the factorization of ~Q in such a way
that it allows to define the port-variables and at the same time the bilinear form becomes
independent of the coefficients of the operator J e. Let us now define the boundary port variables
associated with the differential operator J e, which are the vectors ee;@ ; fe;@ 2 R

2nN defined by

fe;@
ee;@

� �
¼ Rext

ee bð Þ
..
.

@N�1ee
@zN�1 bð Þ
ee að Þ
..
.

@N�1ee
@zN�1 að Þ

0
BBBBBBBB@

1
CCCCCCCCA

(9)

where

ee t; zð Þ ¼ eS t; zð Þ
�S zð ÞG�eS t; zð Þ

� �
¼ I

�S zð ÞG�

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼:Ge

eS t; zð Þ (10)

is the extended vector of the effort variables. The definition of the boundary port-variables
depends entirely on the coefficients of the operator J e. These port-variables should be seen as
an operator acting on the boundary of the spatial domain. After using the definition of the
boundary port-variables of Rext and of ~Q, it is possible to relate the integral over an interval to the
values at the boundaries. Indeed, by using integration by part, we haveðb

a
eTS fS þ eTRfR
� �

dz ¼ f TeS;@eeR;@ þ eTeS;@ feR;@

The next theorem provides the matrix condition that has to be satisfied to ensure the existence
of solutions for the PDE (1) and to define a boundary control system.

Theorem 2.2 (Boundary control systems): Let W be an ðnþmÞN � 2ðnþmÞN matrix. If W has
full rank and satisfies the inequality:
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W�WT � 0 (11)

where
� ¼ 0 I

I 0

� �
then system (1) in which

u tð Þ ¼ W
fe;@ tð Þ
ee;@ tð Þ

� �
;Bx t; zð Þ (12)

is a boundary control system, and the operator A ¼ J � GSG�ð ÞL with domain

D Að Þ ¼ eS 2 HN a; bð Þ;Rnð Þ SG�eS 2 HN a; bð Þ;Rnð Þ; fe;@
ee;@

� �
2 KerW

����
	 


(13)

where HN ða; bÞ;Rnð Þ denotes the Sobolev space of order N, generates a contraction semigroup
on X. Moreover, let ~W be a full rank ðnþmÞN � 2ðnþmÞN matrix such that WT ~W

T
� �

is
invertible and let P be given by

P ¼ W�WT W� ~W
T

~W�WT ~W� ~W
T

� ��1

If the output is defined as
yðtÞ ¼ ~W

f@ tð Þ
e@ tð Þ

� �
¼ : Cx (14)

then, for u 2 C2 ð0;1Þ;Rnþm� �
, the following energy balance equation is satisfied:

1
2
dH
dt

x t; �ð Þð Þ � 1
2

u tð Þ
y tð Þ

� �T

P
u tð Þ
y tð Þ

� �
: (15)

Proof. See [19]. □

It should be remarked that the boundary port-variables (10) are the power conjugated variables
associated to the energy balance. The boundary input (12) corresponds to the imposed boundary
conditions, i.e. the physical efforts and flows imposed to the system at the boundary of the spatial
domain. Hence, the matrix W defines the possible linear combinations of the boundary variables
which guarantee that the solutions of boundary control system exist, and for physical systems,
these linear combinations are related to physically admissible boundary conditions.

3. Boundary control system associated with the tubular reactor

We consider now a 1D linear tubular reactor of length L, in which convection, (axial) dispersion and
reaction phenomena occur. The mass balance equation on specie A leads to the following PDE:

@ρA
@t

t; zð Þ ¼ D
@2ρA
@z2

t; zð Þ � v
@ρA
@z

t; zð Þ � kρA t; zð Þ z 2 0; L½ � (16)

where ρA is the mass concentration of element A, D > 0 is the dispersion coefficient, v > 0 is the
velocity and k > 0 the reaction kinetics. Hereafter, a possible way of writing (16) in the general
form (1) is given. This formulation differs and improves what has been already presented e.g. in
[19]. The proposed formulation is canonical since the differential operators J and G do not
depend on the system parameters. Moreover, the conditions of Theorem 2.2 are satisfied provided
that D, v and k are positive.

The first step consists in determining the differential operator J e and the dissipative relation in (5).
So, let us assume that N ¼ 1, n ¼ 1 and m ¼ 2, and consequently eS 2 L2ðð0; LÞ;RÞ and
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eR ¼ eR1; eR2ð Þ 2 L2 ð0; LÞ;R2� �
. Hence, J ¼ � @=@zð Þ and G ¼ @=@zð Þ 1ð Þ, with Hamiltonian

function

H ρA t; zð Þ� � ¼ 1
2

ðL
0
vρ2A t; zð Þdz (17)

which is related to the mass balance. The extended differential operator J e in (5) is then given by

fS
fR1
fR2

0
@

1
A ¼

� @
@z

@
@z 1

@
@z 0 0
�1 0 0

0
@

1
A eS

eR1
eR2

0
@

1
A (18)

while the dissipative relation, defined by S, by

eR1
eR2

� �
¼

D
v 0
0 k

v

� �
fR1
fR2

� �
: (19)

We see that the conserved quantity, characterized by J , is related to the convection phenom-
enon, while the dissipation, characterized by G, is related to the diffusion and reaction phenom-
ena. This is indeed coherent with previous existing energy-based models of tubular reactors [19].
It follows that

~Q ¼ ~P1 ¼
�1 1 0
1 0 0
0 0 0

0
@

1
A (20)

which is not full rank. This implies that fR2; eR2ð Þ does not play any active role in terms of the
power exchange at the boundary for (16). One can define M as:

M ¼
1 0
0 1
0 0

0
@

1
A

and the boundary port variables (9) are obtained with Rext in (8) in which

~Q1 ¼ MT ~QM ¼ �1 1
1 0

� �
:

This corresponds to a projection that allows to preserve the Dirac structure in case ~PN in (6),
and then in (7), is not full rank. In this case, N ¼ 1. More details e.g. in [23]. This implies that

Rext ¼ 1ffiffiffi
2

p
�1 1 1 �1
1 0 �1 0
1 0 1 0
0 1 0 1

0
BB@

1
CCA (21)

and that

ee ¼ eS
eR1

� �
¼ eS

D
v
@eS
@z

� �
¼ 1

D
v

@
@z

� �
eS: (22)

The PDE (16) follows from (18) and (19) provided that fS ¼ @x=@tð Þ and eS ¼ vρA, which in turns
implies that L ¼ v. In terms of the state variable ρA, the boundary port variables are then given by
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fe;@
ee;@

� �
¼ 1ffiffiffi

2
p

v ρA 0ð Þ � ρA Lð Þ� �� D @ρA
@z 0ð Þ � @ρA

@z Lð Þ
� �

�v ρA 0ð Þ � ρA Lð Þ� �
v ρA 0ð Þ þ ρA Lð Þ� �

D @ρA
@z 0ð Þ þ @ρA

@z Lð Þ
� �

0
BBBB@

1
CCCCA: (23)

Let us now consider the Danckwert boundary conditions [22] which consist to fix the total
inlet flow vρA � D @ρA



@z

� �
at z ¼ 0, and to assume a vanishing outlet dispersion flow at z ¼ L.

This is achieved by choosing:

u ¼ vρA 0ð Þ � D @ρA
@z 0ð Þ

D @ρA
@z Lð Þ

 !
(24)

which can be written in the form (12) if

W ¼
ffiffiffi
2

p

2
1 0 1 �1
1 1 0 1

� �
: (25)

With Theorem 2.2 in mind, this system defines a boundary control system, with contraction
semigroup generator if condition (11) holds. With simple computations, we get that W�WT ¼ I,
so (16) with boundary input given in (24) defines a boundary control systems. Note that,
differently from [19] since the operators J and G are canonical, this property holds also when
that parameters v, D and k depend on the z coordinate.

4. Boundary control by energy shaping

In this section, it is shown how to design a boundary state-feedback in the form

u tð Þ ¼ β x t; �ð Þð Þ þ u0 tð Þ (26)

which renders (1) into the closed-loop form

@x
@t t; zð Þ ¼ J � GS zð ÞG�½ � δHd

δx x t; zð Þð Þ
u0 tð Þ ¼ B0x t; zð Þ

	
(27)

where HdðxÞ ¼ HðxÞ þHaðxÞ is a desired closed-loop Hamiltonian function, that is properly
designed in order to have a (possibly) global minimum at the equilibrium, and δ=δxð Þ denotes
the functional (Frechét) derivative [5,24]. Note that, from (2), δH=δx ¼ Lx. The target system
(27) has the same internal structure of the original one, i.e. the operators J and G, and the
dissipative relation S are not changed, but a different Hamiltonian Hd, and boundary input u0 are
considered. For simplicity, we assume that there are no changes in the input–output port of the
system, i.e. that u0 is given by (9) and (12), but with respect to the desired closed-loop
Hamiltonian, i.e.

ee t; zð Þ ¼ Ge
δHd

δx
x t; zð Þð Þ (28)

where Ge is defined in (10), and W given as in (25).
The idea here is to overcome the intrinsic limitations of the energy-Casimir method that are

associated with the admissible (internal) dissipation and to realize an ‘explicit’ energy-shaping
procedure, as for the lumped parameter case. The energy-Casimir method, in fact, is constructive
and it is based on the definition of a boundary controller in port-Hamiltonian form whose
structure is chosen in order to have a proper set of Casimir functions in closed-loop. Such
invariants show how it is possible to shape the total energy of the system by acting on the
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controller Hamiltonian: the stabilizing control law depends then on this choice and on the
relation between states of the plant and of the controller specified by the Casimir functions.
The associated control action can be written in terms of a state-feedback law β x t; �ð Þð Þ as in (27),
but unfortunately, such control action suffers of all the intrinsic limitations of the energy-Casimir
method, i.e. it is not able to stabilize equilibria that require an infinite amount of supplied energy
in steady state [2,16]. This is the typical situation in systems with convective and dissipative
effects, like (16).

Proposition 4.1 (Energy-shaping): Consider the boundary control system of Theorem 2.2 with
Hamiltonian H defined in (2). Then, the boundary state-feedback law u ¼ βðxÞ þ u0, being u0 an
auxiliary boundary input, renders (1) as the target dynamical system (27), with
HdðxÞ ¼ HðxÞ þHaðxÞ, if

J � GS zð ÞG�½ � δHa

δx
xð Þ ¼ 0; (29)

β xð Þ þ B � B0ð Þx ¼ 0: (30)

Proof. The proof is immediate by comparison of initial and target dynamics. □

With u0 ¼ 0, energy is not increasing along the trajectories of (27), i.e. _Hdðxðt; �ÞÞ � 0.
Asymptotic stability can be then obtained by damping injection, provided that an output y0 is
properly defined. In this respect, with Theorem 2.2 in mind, the common choice (see e.g. [25–
28].) is to have open-loop system (1) and target dynamic (27) in impedance form, i.e. to have the
input and output pair (12) and (14) for which W and ~W are such that

W�WT ¼ ~W� ~WT ¼ 0; W� ~WT ¼ I:

With this choice, from (15), we obtain that _Hd � y0Tu0. On the other hand, the choice (24) for
the boundary input u associated to (16), and then also for u0 associated to (27), satisfies
W�WT ¼ I. This suggests to define y0 by selecting a matrix ~W such that ~W� ~WT ¼ �I. As a
consequence, for the target dynamic we have that

d
dt

Hd x tð Þð Þ � 1
2
u0T tð Þu0 tð Þ � 1

2
y0T tð Þy0 tð Þ

and the associated system is said to be in scattering form. Such new boundary port u0; y0ð Þ has
now to be terminated over a dissipative element to obtain asymptotic stability of equilibria or just
to improve the convergence rate:

u0 tð Þ ¼ Ξy0 tð Þ; I � ΞTΞ>0 (31)

with Ξ a NðnþmÞ � NðnþmÞ constant matrix. In what follows, we shall show that the
energy-shaping control law defined in (29) and (30), combined with the damping injection
relation (31) asymptotically stabilizes (1) at the equilibrium ðLxÞ? 2 HN ða; bÞ; Rnð Þ, which is
solution of

J � GS zð ÞG�½ � Lxð Þ? zð Þ ¼ 0: (32)

The result is an application of the LaSalle’s Invariance Principle in infinite dimensions, see e.g.
[29]. The first step is to determine how to choose Ha so that (29) holds.
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Proposition 4.2 The functions Ha solutions of (29) are in the form HaðxÞ ¼ Ĥað�ðxÞÞ, with

� x t; �ð Þð Þ ¼
ðb
a
Φ̂

T
zð Þx t; zð Þdz (33)

where Φ̂ðzÞ ¼ Φ1ðzÞ; . . . ;Φn�ðzÞ
� �

. Here, the functions Φi 2 HN ða; bÞ;Rnð Þ,
i ¼ 1; . . . ; n� � n, are independent solutions of

J � GS zð ÞG�½ �Φi zð Þ ¼ 0: (34)

Since in this paper we have restricted ourselves to the linear case, let us assume that Ha is
quadratic in �. Furthermore, denote by ϕ? 2 R

n� a vector such that ðLxÞ?ðzÞ ¼ Φ̂ðzÞϕ?. Then,
Hd ¼ H þHa has a global minimum in ðLxÞ? if

Ha xð Þ ¼ 1
2

ðb
a
Φ̂

T
x� L�1Φ̂ϕ?
� �

dz

( )T

� Qa

ðb
a
Φ̂

T
x� L�1Φ̂ϕ?
� �

dz

( )

� ϕT?

ðb
a
Φ̂

T
xdz

 !
þ κ (35)

where Qa ¼ Qa
T � 0 and κ 2 R is some constant.

Theorem 4.3 (Asymptotic stability): Let us consider the linear, infinite dimensional, port-
Hamiltonian system (1) and the equilibrium ðLxÞ? satisfying (32). Then, the control action u ¼
βðxÞ þ u0 with β defined in (30), being Ha chosen as in (35), and with u0 defined in (31), makes
ðLxÞ? asymptotically stable.

Proof. The closed-loop system subject to conditions (30)–(32) and (35) generates a contraction
semigroup by Theorem 2.2. Thus, for any xð0Þ 2 X, the solution xðtÞ ¼ TðtÞxð0Þ (classical or
weak) is bounded in X. Considering appropriate inner product and port variables the results of
[30] (pages 49–50, Section 2.5.2) can be extended to operators ~PN with rank deficiency since, as
discussed in [30], boundary inputs can be selected in such a way that the operator J e defined in
(6) has a compact resolvent and generates a contraction semigroup, similarly to what happens in
the full rank case, treated in [23]. Hence I � J eð Þ, where I is the identity operator in X, which is a
bounded invertible operator and from Theorem 2.26 ([30], page 49, Section 2.5.2), the resolvent
λI � J eð Þ�1 is a compact operator for λ>0. From this, it follows that the trajectory of the solution
xðtÞ, i.e. the set γðxð0ÞÞ ¼ fxðtÞ 2 X; t � 0g is pre-compact in X (see Theorem 3.65 of [29]). The
pre-compactness of the orbits of the closed-loop system implies asymptotic stability in spite of
LaSalle’s Invariance Principle. In fact, let us assume for simplicity and without loss of generality
that Φ̂ðzÞ ¼ ðLxÞ?ðzÞ, so that � 2 R and Qa 2 R . Select Qa>0 and note that with a simple change
of coordinates studying the stability of ðLxÞ? is equivalent to studying the stability of the origin.
For the closed-loop system, the following energy-balancing relation holds true:

d
dt

Hd xð Þ ¼ �
ðb
a

δHd

δx

� �T

GS zð ÞG� δHd

δx
dz � y0T I � ΞTΞ

� �
y0 � 0

with y0 defined such that it only vanishes at the desired equilibrium. Since I � ΞTΞ is non-
singular, it is not difficult to verify that energy is decreasing until a steady-state configuration
�xðt; zÞ is reached. Such configuration, possibly time-variant, satisfies
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GS zð ÞG� L�xð Þ t; zð Þ þ Qa
�� tð ÞΦ̂ zð Þ� � ¼ 0

δHd
δx �x t; bð Þð Þ
δHd
δx �x t; að Þð Þ

 !
¼ L�xð Þ t; bð Þ

L�xð Þ t; að Þ
� �

þ Qa
�� tð Þ Φ̂ bð Þ

Φ̂ að Þ
� �

¼ 0
(36)

where �� is the corresponding steady-state evolution of �. The second relation in (36) is a consequence
of Theorem 2.2. To prove asymptotic stability by relying on LaSalle’s Invariance Principle [29], it is
necessary to verify that the only steady state solution �xðt; zÞ which is invariant and compatible with
_Hd ¼ 0 is the origin. In this respect, we see that _��ðtÞ ¼ 0 means that ��ðtÞ ¼ �? in steady state. With
some further computations, it is proved that ϕðt; zÞ :¼ �xðt; zÞ þ �?QaL�1ðzÞΦ̂ðzÞ ¼ 0 for t � τ,
being τ sufficiently large, which implies that �xðt; zÞ ¼ ��?QaL�1ðzÞΦ̂ðzÞ when t � τ. From (14),
we have that

�? ¼
ðb
a
Φ̂

T
zð Þ�x t; zð Þdz ¼ �?Qa

ðb
a
Φ̂

T
zð ÞL�1 zð ÞΦ̂ zð Þdz

Since the integral term is greater than 0 because Lð�Þ > 0, we have that �? ¼ 0, and then that
�xðt; zÞ ¼ 0 for t � τ. Then, the zero solution is the only invariant solution compatible with
_Hd ¼ 0, which turns out to be asymptotically stable based on LaSalle’s Invariance Principle
considerations. □

5. Asymptotic stabilization of the 1D linear tubular reactor

Let us consider the 1D tubular reactor model (16) equipped with the boundary input u defined in
(23). The scope of this section is to show how to design a boundary state-feedback control law
able to asymptotically stabilize an equilibrium solution ρA? 2 L2ðð0; LÞ;RÞ of (16). The first step is
to determine β in (26) that allows to shape the open loop Hamiltonian (17), which we recall here:

H ρAðt; zÞ
� � ¼ 1=2ð Þ�L0vρ2Aðt; zÞdz. The open-loop Hamiltonian serves as starting point for the

stabilization. Indeed, since the control objective is to introduce a global minimum at ρA? it is
enough to shape (17) such that in closed-loop, it has a global minimum at the desired equilibrium.
The solution of (32) becomes for this case

D
d2ρA?
dz2

zð Þ � v
dρA?
dz

zð Þ � kρA? zð Þ ¼ 0 (37)

such that for some given u? 2 R
2

u? ¼ vρA?ð0Þ � D dρA?
dz ð0Þ

D dρA?
dz ðLÞ

 !
(38)

where the causality associated with the choice (23) on the boundary input has been taken into
account.

By following the energy-shaping methodology presented in Section 4, the PDE (29) provides
the admissible functions Ha, while (30) the associated boundary control actions. With Proposition
4.2 in mind, the admissible functions Ha take the form Ha ρA

� � ¼ Ĥa � ρA
� �� �

, with
�ðρAðt; �ÞÞ ¼ �L0ρA?ðt; zÞρAðt; zÞdz. A possible choice for Ha is with

Ĥa �ð Þ ¼ 1
2
K � � �?ð Þ2 � v � � �?ð Þ (39)

where K is a positive gain and �k ¼ �L0ρ2A�ðzÞdz the value of � at the equilibrium. With this choice,
the state feedback action β obtained with (30) is able to shape the closed-loop Hamiltonian and to
introduce a minimum in the desired equilibrium. Note that, when ρA ¼ ρA?, we have β ρa

� � ¼ u?
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by construction. According to Theorem 4.3, asymptotic stability is obtained via damping injection
(31) on the new control port u0; y0ð Þ, where u0 is defined as

u0 ¼
δHd
δρA

0ð Þ � D
v

@
@z

δHd
δρA

0ð Þ
D
v

@
@z

δHd
δρA

Lð Þ

 !

with Hd ¼ H þHa, being H and Ha as in (17) and (39), and

y0 tð Þ ¼ � δHd
δρA

Lð Þ þ D
v

@
@z

δHd
δρA

Lð Þ
D
v

@
@z

δHd
δρA

0ð Þ

 !

which follows from (14) if ~W ¼ ffiffiffi
2

p 

2

� � 1 0 �1 1
�1 �1 0 1

� �
.

6. Conclusions and future work

The motivating idea of the paper has been the development of a general synthesis methodology of
control laws for a class of dissipative boundary control systems with 1D spatial domain. The
feedback law is determined in such a way that its effect on the system is to shape the energy
function, and to modify the dissipative structure at the boundary (damping injection). The first
step is responsible for achieving simple stability of an equilibrium, while the second one for
assuring asymptotic convergence of the trajectories. The problem of determining a feedback law
able to shape the Hamiltonian in a proper manner has been tackled here by directly focusing on
the trajectories of the open and closed-loop system, i.e. by determining the control action that
renders the open-loop system into a new one, with the same structure but a different Hamiltonian
in closed-loop. To achieve asymptotic stability, an additional feedback loop is implemented to
introduce damping: the first loop obtained by applying the energy-shaping procedure is respon-
sible for having a new Hamiltonian with an isolated minimum at the equilibrium, while the
second one for dissipating energy until such minimum is reached. The resulting control law is
proved to asymptotically stabilize the system. Such technique is applied to achieve asymptotic
stability for a model of an isothermal tubular reactor with 1D spatial domain.

It is worth noting that, even if the proposed methodology has been developed for linear
systems, some of the techniques discussed here can be generalized to cope with the non-linear
case in a quite straightforward manner. This extension is the main future research topic, together
with the stabilization of distributed port-Hamiltonian systems with 2D or 3D spatial domain.
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