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Abstract— Recently, high resolution visual methods based
on direct-phase measurement of periodic patterns has been
proposed with successful applications to microrobotics. This
paper proposes a new implementation of direct-phase measure-
ment methods to achieve 3-DoF (degrees of freedom) visual
servoing. The proposed algorithm relies on a single frequency
tracking rather than a complete 2D discrete Fourier transform
that was required in previous works. The method does not
require any calibration step and has many advantages such
as high subpixelic resolution, high robustness and short com-
putation time. Several experimental validations (in favorable
and unfavorable conditions of use) were performed using a
XYθ microrobotic platform. The obtained results demonstrate
the efficiency of the frequency-based controller, this in term of
accuracy (micrometric error), convergence rate (30 iterations
in nominal conditions) and robustness.

I. INTRODUCTION

The need for accurate microrobotic cells increases rapidly
to perform complex tasks, such as microassembly, char-
acterization of MEMS and MOEMS, biological microma-
nipulation, etc. However, despite positioning stages having
individual high repeatability and accuracy, microrobotic cells
made of an assembly of several stages (in serial or in parallel)
require dedicated control strategies to achieve high accuracy
in all DoF. The control strategies are generally classified into
open and closed-loop schemes [1]. The former relies on robot
calibration that consists in locating the end-effector of the
manipulator in the Cartesian space and then in compensating
errors with an identified position-dependent model [2], [3],
[4]. Closed-loop approaches require an exteroceptive sen-
sor to servo the end-effector position in real-time. Visual
servoing is widely used to that purpose at both macro and
microscales.

Visual servoing arises from the integration of different
research areas including image processing, computer vision,
robotics, sensor integration and control theory [5]. Certainly,
the most popular visual servoing schemes concern: 1) image-
based visual servoing (IBVS) which uses 2D visual features
(points, lines, moments) to build the control law, 2) pose-
based visual servoing (PBVS) which requires an additional
step i.e., the estimation of the 3D information (pose of the
object in the Cartesian space).

More recently, new visual servoing paradigms have been
reported in the literature. Instead of using geometric visual
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features, they use the pure image information e.g., pixel-
intensity [6], [7], mutual information [8], etc. These ap-
proaches allow to overcome the traditional visual servoing
limitations: the choice of the visual information, their extrac-
tion and matching over time. These steps can be summarized
by the term visual tracking [9]. Also, the use of global
image information as visual signal input in the control loop
allows increasing the accuracy of the controller thanks to
the visual features redundancy. Others original global image
visual servoing techniques were treated in the literature
demonstrating real scientific and technical added-values. For
instance, using the Fourier phase-correlation [10] as well as
using wavelet coefficients [11] or shearlet ones [12].

In other scientific fields, high resolution visual methods
based on direct-phase measurement of periodic patterns
have been proposed by different authors [13], [14], [15],
[16]. Applications to position-referenced microscopy [17],
microrobot calibration [3] and microforce measurement [18]
have been reported demonstrating very high resolutions and
accuracies.

In this paper, we propose a recursive implementation of
direct-phase measurement method to achieve 3-DoF visual
servoing. Thereby, the image position is computed over time
by firstly tracking the angle and frequencies of the signal then
extracting the position of a pattern from phase shift of its
image. The proposed algorithm relies on a single frequency
tracking rather than a complete 2D discrete Fourier transform
that was required in previous works [17], [3].

The method has many advantages such as high subpixelic
resolution, high robustness and short computation time. In
addition, contrasting with the state-of-the-art in this field,
the proposed visual servoing method does not require any
calibration step e.g., camera intrinsic matrix or camera/robot
transformation one.

The developed materials are experimentally validated us-
ing 3-DoF microrobotic platform. To be able to judge the
controller’s performances, several validation scenarios are
performed in both favorable (small displacements, stable illu-
mination, etc.) and unfavorable (lighting changes, occlusions,
etc.) conditions of use. The expected results include accuracy,
robustness and a good convergence rate.

In the remainder of this paper, Section II introduces the
general basics of the position and frequency tracking in the
case of 1-D signals when Section III extends this approach
for 2-D signals i.e., an image. Section IV gives the different
steps followed to build the visual servoing controller. The
developed testbench as well as the experimental validation
of the proposed controller are discussed in Section V.



II. POSITION AND FREQUENCY TRACKING IN 1-D
This section introduces the position and frequency tracking

of a one-dimensional periodic signal. This latter is intended
to be the image of a periodic pattern.

A. Position Tracking

Let sn be a 1-D spatial signal (pixel values) of size N , its
Discrete Fourier Transform (DFT) for frequency k is given
by:

Sk = F({sn})k =

N−1∑
n=0

sn e
−2πi knN , k ∈ [0, N − 1] (1)

If the signal sn is shifted from an initial position, the
spatial displacement d produces a linear phase variation in
the Fourier domain:

F({sn−d})k = Sk e
−2πi kdN (2)

In other words, a spatial shift d induces only a phase change
equal to 2π kdN in the frequency domain.

Thanks to this linear relationship, the spatial shift is
encoded into the phase of the Fourier transform. Different
approaches were proposed to measure displacements through
the phase term. They differ mainly in the number of consid-
ered spectral components. Fast approaches consider a single
spectral component instead of a complete Fourier transform.
In this case, the displacements retrieved are subject to phase
ambiguities that limit the actual unambiguous measurement
range as described below. However, this limitation is not
critical for tracking applications if the motion between two
consecutive frames remains sufficiently small (i.e., smaller
than half the period).

If the signal is periodic with a frequency k, the phase
change can be retrieved from of a single-frequency spectral
computation with a very high resolution and signal-to-noise
ratio. Given the frequency k of the signal, the phase φ can
be estimated (estimated values will be written withˆ ) by:

φ̂0 = arg

N−1∑
n=0

sn hn e
−2πi knN (3)

where hn is a Gaussian window (standard deviation σ) given
by:

hn = e−(n−N/2
σ )

2

(4)

This window function enlarges the frequency band of the
analysis that makes the phase computation more robust
especially when the frequency of the signal is not exactly
k.

As the spatial shift is linearly dependent to the phase, we
get:

d̂ =
λφ̂0
2π

+ p λ (5)

where λ = N/k is the period of the signal in pixels and p is
an unknown integer since the signal periodicity involves an
ambiguity of λ on the knowledge of its position. This fact
limits the tracking range to a maximal shift of λ/2 between
two consecutive frames.

B. Frequency Tracking

The phase estimation depends on the frequency estimation.
The DFT spectrum is intrinsically discrete in the frequency
domain and is limited by its natural resolution (2π/N ).
Thus, the accurate estimation of the frequency of a sinusoid
involves interpolation using several samples of the DFT
spectrum. Many frequency estimation algorithms have been
proposed in the literature. Since we are interested in real-
time tracking, a fast one is required. However, since the
frequency changes slightly from one frame to another, an
iterative method is sufficient.

It has been shown in [19] that the frequency f of a real
continuous-spatial signal s(x) is:

f =
1

2π

dϕ

dx
(6)

where ϕ is the phase of the signal relative to the analysis
function.

Good approximations to the differentiation operation in
discrete-time can be obtained by using a phase differencing
operation [20]. This approach is very computationally ef-
ficient and generally yields better noise performance than
spatial filters. The forward, backward and central finite
differences are commonly used for phase differentiation. The
central finite difference (CFD) is defined by:

k̂ =
1

4π

(
φ̂1 − φ̂−1

)
(7)

with φ̂1 and φ̂−1 defined by:

φ̂x = arg

N−1∑
n=0

sn+x hn e
−2πi knN (8)

In this equation adapted from (3), the vectors are zero
completed to have the same size and the index x allows
computing the phase in different locations of the signal. This
scheme is unbiased and must be preferred to forward and
backward ones.

III. POSITION AND FREQUENCY TRACKING IN 2-D

This section extends the position and frequency tracking
from 1-D periodic signal to 2-D, allowing measurements
along two translation axes and one rotation axis.

A. 2-D Position Tracking

Let sn,m be a 2-D spatial signal (still pixel values, size
N×M ). Its DFT for frequencies k1 and k2 is given by:

Sk1,k2 =

N−1∑
n=0

M−1∑
m=0

sn,m · e−2πi(
k1n
N +

k2m
M ) (9)

Similarly to the 1-D tracking, spatial shifts along a first
axis of the pattern have a linear impact on the phase of the
image (see Fig. 1), that is obtained by:

φ̂x,y,θ = arg

N−1∑
n=0

M−1∑
m=0

sn+x,m+y · hn,m · an,m,θ (10)
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Fig. 1. Illustration of the link between spatial and frequency domains in the
simple cases of 2-D spatial sinusoid directed along one then two directions.

where θ is the angle of the pattern, an,m,θ the analysis
function given by:

an,m,θ = e−2πi(
k1n
N +

k2m
M ) (11)

with k1
N = cos(θ)

λ , k2
M = sin(θ)

λ and hn,m a 2-D Gaussian
window given by:

hn,m = e
−
(
n−N/2
σ1

)2
−
(
m−M/2
σ2

)2

(12)

In this way, displacements along the axis u and v (see
Fig. 1) of the pattern are obtained, similarly to the 1D
case (5), with: d̂u =

φ̂0,0,θ·λ
2π + p λ

d̂v =
φ̂0,0,θ+π

2
·λ

2π + q λ
(13)

The last step is to transfer these results into the basis (x,y)
of the image:{

d̂x = d̂u cos(θ)− d̂v sin(θ)

d̂y = d̂u sin(θ) + d̂v cos(θ)
(14)

B. 2-D Frequency and Angle Tracking

The angle of the pattern and its period can be determined
in the frequency domain (see Fig. 1). Here, we begin by the
measurement of the angle:

θ̂ = arctan 2
(∂ϕ
∂y
,
∂ϕ

∂x

)
(15)

Using the CFD principle and the previous notations give:

θ = arctan 2(∆y,∆x) (16)

with the two differences defined with 4 complex obtained
with (10): ∆x = φx+1,y−φx−1,y and ∆y = φx,y+1−φx,y−1.
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Fig. 2. Position of the pattern (left) and error with the reference (right)
obtained by simulation during a displacement in translation of the pattern.
The error is lower than 10−6 pixel in translation and 10−7 rad in rotation.

Then, we calculate the period of the pattern along the axis
u. As in 1D measurement, the frequency can be computed
with the phase change for continuous signal by:

f =
1

2π

dϕ

du
=

1

2π

(
∂ϕ

∂x

∂x

∂u
+
∂ϕ

∂y

∂y

∂u

)
(17)

Therefore, using the CFD in x and y directions we get:

k̂ =
1

4π

(
∆x cos(θ) + ∆y sin(θ)

)
(18)

Finally, we know that θ = arctan 2(∆y,∆x). So it is
possible to remove θ from equation (18):

k̂ =
1

4π

√
∆2
x + ∆2

y (19)

The same method allows computing the period along the
v axis.

C. Simulation Validation Tracking

The performances of the measure were tested in simulation
with MatLab. From an initial pose with an angle of 22.5
degrees, a perfect sinusoidal pattern (period of 15 pixels) was
displaced in translation (Fig. 2). During this simulation, the
periods were permanently computed with an error lower than
10−7 pixel. The others errors are illustrated in Fig. 2. More-
over, the calculations were made in less than 0.05 second by
iteration, completely compatible with a real-time application.

The variation of the other parameters (angle, period) gives
similar performances, notably with an error of 10−4 pixel
for the period estimation and of 2 · 10−7 rad for the angular
position estimation.

IV. 3-DOF VISUAL SERVOING

The tracking algorithm computes the pose of the image
pattern. Since the period of the actual pattern is known, the
displacements are directly given in a metric way without any
need for camera or robot calibration.

Let RI and RP be the frames attached to the image and to
the pattern, respectively. The tracking algorithm provides, for
each new image, the homogeneous transformation between
RI and RP such as:

IMP =

[
IRP

ItP
0 1

]
(20)



with IRP the 3×3 rotation matrix and ItP the 3×1 trans-
lation vector.

The control law aims to move the pattern to a given
position defined by the frame RI∗ . To get a straight line
trajectory in the image, we choose a regular scheme proposed
in [21]. This scheme consists of choosing s = (ItP , θu) as
the current 3D pose and s∗ = (I

∗
tP ,0) as the pose of the

pattern relative to the desired image frame RI∗ . The notation
θu is the angle/axis parameterization of the rotation. In this
case, the error is:

e = (ItP − I∗tP , θu) (21)

and the interaction matrix related to e is defined by,

Le =

[
−I3

[
ItP
]
×

0 Lθu

]
(22)

where I3 is the 3×3 identity matrix,
[
ItP
]
× the skew matrix

of ItP and Lθu is the interaction matrix defined in [22].
The control law gives the robot spatial velocities v =

(vx,vy, 0) and ω = (0, 0,ωz) as:[
v
ω

]
RI

= −γL+
e e (23)

with L+
e a pseudo-inverse of the interaction matrix defined

by:

L+
e =

[
−I3

[
ItP
]
× L−1θu

0 L−1θu

]
(24)

After developments, the control law can be written as,[
v
ω

]
RI

=

[
−γ((I

∗
tP − ItP ) +

[
ItP
]
× θu)

−γθu

]
(25)

Considering our task, since only the x, y and θ DoF are
taken into account. Thus, we obtain the coupled control:

vx = −γ((x∗ − x) + yθ)

vy = −γ((y∗ − y)− xθ)
ωz = −γθ

(26)

V. EXPERIMENTAL RESULTS

The developed materials were confronted to evaluating
tests in order to demonstrate its performances in terms of
convergence rate, accuracy and robustness (still working
under external disturbances).

A. Experimental Setup

The method was tested on an eye-to-hand experi-
mental setup (Fig. 3) composed by a Fireware CCD
monochrome camera (Allied Vision Technology Guppy F-
046, 640×480 pixels) used at 3.75 frames per second (fps)
with a macro-objective directed towards the planar target
(a periodic pattern). The latter is fixed on a microrobotic
platform including a rotation actuator (SR-3610-S from
SmarAct; range = 2π; resolution = 0.17 µrad) and two trans-
lation actuators (M-111-1DG from Physic Instrumente; range
= 15 mm; unidirectional repeatability = 0.1 µm; backslash =
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Fig. 3. Experimental setup of visual servoing.
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Fig. 4. Experimental validation under nominal conditions. (a) Initial image;
(b) desired image; (c) the error decay in each DoF versus time. Final error
below 1 µm and 0.02 mrad.

2 µm). The setup is mounted on an antivibration table and
illuminated with a controlled light source. The controller was
implemented with MatLab on a PC: Intel Core2 Quad CPU
Q9550 2.83 GHz running under Windows 7.

The pattern used is composed of points with a 1 mm
periodicity along x and y axes, distributed in a 50×50 mm
square.

B. Validation on Favorable Conditions

The method was firstly tested in nominal conditions of
use (stable lightning source, without occlusions, etc.). Again,
it can be highlighted that the controller works without any
calibration step. The pattern was arbitrarily positioned along
x and y axes, and the initial angle θ0 is 15 degrees (Fig. 4.a).
The control loop (image acquisition, Fourier Transform, etc.)
runs at a frequency of 2 Hz.

Only 30 iterations are sufficient to reach the desired
positions (see Fig. 4). The obtained accuracy when the
controller reaches the desired position is estimated (using
the robotic encoders) to 1 µm.

C. Unfavorable Conditions

Additional experimental tests were performed in order to
demonstrate the robustness of our method under different
external disturbances.

The first experiment is about focus. In this test, it will be
shown that the controller can perfectly work under blurred
images. As can be seen on Fig. 5, the frequency measurement
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Fig. 5. Experimental validation using blurred images. (a) Initial image;
(b) desired image; (c) the error decay in each DoF versus time. Final error
below 2 µm and 0.05 mrad.
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Fig. 6. Experimental validation under unstable lightning. (a) Initial image;
(b) desired image; (c) the error decay in each DoF versus time. Final error
below 10 µm and 0.1 mrad.
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Fig. 7. Experimental validation under partial occlusions. (a) Initial image;
(b) desired image; (c) the error decay in each DoF versus time. Final error
below 2 µm and 0.1 mrad.
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Fig. 8. Experimental validation using blurred images, partial occlusion and
specularity. (a) Initial image; (b) desired image; (c) the error decay in each
DoF versus time. Final error below 30 µm and 1 mrad.
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Fig. 9. Experimental validation using a variable source of noises. (a) Initial
image; (b) desired image; (c) the error decay in each DoF versus time. Final
error below 10 µm and 0.2 mrad.

remains efficient and thus the controller converges easily to
the desired position.

To test the effect of the specularity on our method, the pat-
tern was enlightened with a concentrated light source. Tests
were made by displacing arbitrarily the light on the pattern
(see Fig. 6). The experiments always lead to convergence,
but the light affect the period estimation and consequently
the translation error which is noised (accuracy of 10 µm).

To observe the impact of occlusion on our method, we
generate arbitrary black shapes on our image. These shapes
are constant during the servoing. We applied an occultation
area up to 90 % of the image. Fig. 7 shows that the
major effect is a less direct convergence. However the final
accuracy is not affected.

To go even further in the analysis of the robustness of
the method, we tested it with, in the same time, the three
perturbations previously exposed (blur, light variation and
occlusion). Fig. 8 shows that the method always converges.
However it combines the defaults observed in the previous
tests (indirect convergence and noise on the translating axes).

We concluded on the robustness of the method with a
noise experiment: we projected a movie on the pattern during
the visual servoing (The Little Prince by Mark Osborne).
As exposed in Fig. 9, the convergence is made with a
micrometric final accuracy.

D. Depth Measurement

Finally, an additional validation test was performed con-
sidered as an extension of the controller to 4 DoF visual
servoing. The idea is to use the period measurement to
measure the depth of the pattern (its position along the
z-axis). Indeed, a displacement dz in the camera’s axis
introduces a proportional period variation from λ0 to λz:

dz = c0(
λz
λ0
− 1) (27)

However, such a measure requires a calibration step to deter-
mine the coefficient c0 linked to λ0. But, in a context allow-
ing this calibration step, a visual servoing can be made with
similar performances to those realized previously. Indeed, by
moving the pattern with the manual micropositionning table
(in nominal conditions), we obtain measurements made along
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Fig. 10. Depth estimating using the period measurement of the pattern.
The pattern was moved manually with a micropropositioning table. A
preliminary calibration step is required to realize this measure. The error is
below 20 µm.

the z-axis on a 25 mm range with an accuracy better than
10 µm without setting the focus (see Fig. 10).

VI. CONCLUSION

In this paper, it was presented a new 3 DoF (2 translations,
1 rotation) visual servoing method based on the single phase
measurement of a periodic pattern. The main advantages of
the proposed method are accuracy, robustness and does not
require any calibration step.

This method was validated experimentally on micro-
robotic platform in both favorable conditions (stable light-
ning source, small displacements) as well as unfavorables
ones (blurred images, lightning changes, partial occlusion, or
combining several above disturbances). The obtained results
demonstrated the efficiency of the controller, this in different
terms of performances. For instance, the obtained accuracy
(1 µm on translation axes and 10−4 rad on rotation axis)
and convergence rate (30 iterations in favorable conditions).
Also the control law shows an interesting robustness with
respect to lightning changes, partial occlusion (90 % of the
image), etc. Additionally, a measure along a fourth degree
of freedom (the depth) was realized with as prerequisite an
additional calibration step.

The demonstrated performances of this controller allows to
consider others applications, for instance it may be concern
especially the nanorobotic applications when accuracy and
robustness are the main objectives. Also, nanoforce mea-
surements and mechanical characterizations, especially for
medical purposes (in-vivo oocyte properties study).
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