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Abstract. This paper considers the problem of allocating independent
tasks to unrelated machines such as to minimize the maximum completion
time. Testing heuristics for this problem requires the generation of cost
matrices that specify the execution time of each task on each machine.
Numerous studies showed that the task and machine heterogeneities
belong to the properties impacting heuristics performance the most. This
study focuses on orthogonal properties, the average correlations between
each pair of rows and each pair of columns, which is a proximity measure
with uniform instances1. Cost matrices generated with a novel generation
method show the effect of these correlations on the performance of several
heuristics from the literature. In particular, EFT performance depends
on whether the tasks are more correlated than the machines and HLPT
performs the best when both correlations are close to one.

1 Introduction

The problem of scheduling tasks on processors is central in parallel computing
science because it supports parts of the grid, computing centers and cloud systems.
Considering static scheduling, the problem is deterministic, although complex,
because all the data are known a priori. In the case of independent tasks running
on a heterogeneous platform and with the objective of minimizing the total
execution time [13,14], the performance2 of any scheduling algorithm depends
on the properties of the input cost matrix and generating input instances is thus
a crucial problem in algorithm assessment [5, 7]. In a previous study [8], we have
proposed heterogeneity measures and procedures to control this property when
generating cost matrices. In particular, we showed that the heterogeneity was
previously not properly controlled despite having a significant impact on the
relative performance of scheduling heuristics. However, the proposed measures
prevent tuning how the machines are related to one another in terms of processing
time, i.e., if the execution times are proportional and depend on a task weight
and a machine cycle time.

1 Uniform instances are particular unrelated instances in which each execution time is
proportional to the weight of the task and the cycle time of the machine.

2 The performance of any algorithm for this NP-Hard problem is given by the difference
between the obtained total execution time and the minimum one.



In this paper, we propose to investigate a continuum of instances between
the uniform case and the unrelated case. The contribution3 is a measure, the
correlation, to explore this continuum, its analysis in existing generation methods
and existing studies (Section 3), a new generation method with better correlation
properties (Section 4) and its analysis on several heuristics (Section 5) and, last,
the confrontation of the correlation to a related measure (Section 6).

2 Related Work

The validation of scheduling heuristics in the literature relies mainly on two
generation methods: the range-based and CVB methods. The range-based method
[4, 5] generates n vectors of m values that follow a uniform distribution in the
range [1, Rmach] where n is the number of tasks and m the number of machines.
Each row is then multiplied by a random value that follows a uniform distribution
in the range [1, Rtask]. The CVB method is based on the same principle except it
uses more generic parameters and a distinct underlying distribution. In particular,
the parameters consist of two CV4 (Vtask for the task heterogeneity and Vmach

for the machine heterogeneity) and one expected value (µtask for the tasks).
The parameters of the gamma distribution used to generate random values are
derived from the provided parameters. An extension has been proposed to control
the consistency of any generated matrix:5 the rows in a submatrix containing a
fraction a of the initial rows and a fraction b of the initial columns are sorted.

The shuffling and noise-based methods were later proposed in [7, 8]. They
both start with an initial cost matrix that is equivalent to a uniform instance
(any cost is the product of a task weight and a machine cycle time). The former
method randomly alters the costs without changing the sum of the costs on each
row and column. This step introduces some randomness in the instance, which
distinguishes it from a uniform one. The latter relies on a similar principle: it
inserts noise in each cost by multiplying it by a random variable with mean one.
Both methods require the parameters Vtask and Vmach to set the task and machine
heterogeneity. In addition, the amount of noise introduced in the noise-based
method can be adjusted through the parameter Vnoise.

This study focuses on the average correlation between each pair of tasks or
machines in a cost matrix. No existing work explicitly considers this property. The
closest work is the consistency extension in the range-based and CVB methods
mentioned above. The consistency extension could be used to generate cost
matrices that are close to uniform instances because cost matrices corresponding
to uniform instances are consistent. However, this mechanism modifies the matrix
row by row, which makes it asymmetric relatively to the rows and columns. This
prevents its direct usage to control the correlation.

3 These results are also available in the companion research report [6].
4 The Coefficient of Variation is the ratio of the standard deviation to the mean.
5 In a consistent cost matrix, any task faster than another task on a given machine

will be consistently faster than this other task on any machine.



The TMA (Task-Machine Affinity) quantifies the specialization of a platform
[1,2], i.e., whether some machines are particularly efficient for some specific tasks.
This measure proceeds in three steps: first, it normalizes the cost matrix to make
the measure independent from the matrix heterogeneity; second, it performs
the singular value decomposition of the matrix; last, it computes the inverse of
the ratio between the first singular value and the mean of all the other singular
values. The normalization happens on the columns in [2] and on both the rows
and columns in [1]. If there is no affinity between the tasks and the machines (as
with uniform machines), the TMA is close to zero. Oppositely, if the machines
are significantly specialized, the TMA is close to one. Additionally, Khemka et
al [12] claims that high (resp., low) TMA is associated with low (resp., high)
column correlation. This association is however not general because the TMA
and the correlation can both be close to zero. See Section 6 for a more thorough
discussion on the TMA.

The range-based and CVB methods do not cover the entire range of possible
values for the TMA [2]. Khemka et al [12] propose a method that iteratively
increases the TMA of an existing matrix while keeping the same MPH and TDH.
A method that generates matrices with varying affinities (similar to the TMA)
and which resembles the noise-based method is also proposed in [3]. However, no
formal method has been proposed for generating matrices with a given TMA.

3 Correlation Between Tasks and Processors

As stated previously, the unrelated model is more general than the uniform
model and all uniform instances are therefore unrelated instances. Let U =
({wi}1≤i≤n, {bj}1≤j≤m) be a uniform instance with n tasks and m machines where
wi is the weight of task i and bj the cycle time of machine j. The corresponding
unrelated instance is E = {ei,j}1≤i≤n,1≤j≤m such that ei,j = wibj is the execution
time of task i on machine j. Our objective is to generate unrelated instances that
are as close as desired to uniform ones. On the one hand, all rows are perfectly
correlated in a uniform instance and this is also true for the columns. On the
other hand, there is no correlation in an instance generated with nm independent
random values. Thus, we propose to use the correlation to measure the proximity
of an unrelated instance to a uniform one.

Correlations Properties Let ei,j be the execution time for task i on machine j.
Then, we define the task correlation as follows:
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Note that any correlation between row i and itself is 1 and is hence ignored.
Also, since the correlation is symmetric (ρri,i′ = ρri′,i), it is actually sufficient to
only compute half of them. We define the machine correlation, ρmach, analogously
on the columns. These correlations are the average correlations between each pair
of distinct rows or columns. They are inspired by the classic Pearson definition,
but adapted to the case when we deal with two vectors of costs.

There are three special cases when either one or both of these correlations are
one or zero. When ρtask = ρmach = 1, then instances may be uniform ones and
the problem can be equivalent to Q||Cmax [6, Proposition 1]. When ρtask = 1 and
ρmach = 0, then a related problem is Q|pi = p|Cmax where each machine may be
represented by a cycle time and all tasks are identical [6, Proposition 2]. Finally,
when ρmach = 1 and ρtask = 0, then a related problem is P ||Cmax where each task
may be represented by a weight and all machines are identical [6, Proposition
3]. For any other cases, we do not have any relation to another existing problem
that is more specific than scheduling unrelated instances.

Correlations of Existing Methods Table 1 synthesises the analysis of the
asymptotic correlation properties of the range-based, CVB and noise-based
methods [6, Propositions 4 to 9].

Table 1. Summary of the asymptotic correlation properties of existing methods.

Method ρtask ρmach

Range-based [4, 5] a2b

{
3
7

if a = 0

b2 + 2
√

3
7
b(1− b) + 3

7
(1− b)2 if a = 1

CVB [4,5] a2b


1

V 2
mach

(1+1/V 2
task

)+1
if a = 0

b2 + 2b(1−b)√
V 2
mach

(1+1/V 2
task

)+1
if a = 1

+ (1−b)2

V 2
mach

(1+1/V 2
task

)+1

Noise-based [8] 1
V 2
noise(1+1/V 2

mach
)+1

1
V 2
noise(1+1/V 2

task
)+1

Correlations in Previous Studies More than 200 unique settings used for
generating instances were collected from the literature and synthesized in [8]. For
each of them, we computed the correlations using the formulas from Table 1. For
the case when 0 < a < 1, the correlations were measured on a single 1000× 1000
cost matrix that was generated with the range-based or the CVB method as done
in [8] (missing consistency values were replaced by 0 and the expected value was
set to one for the CVB method).

Figure 1 depicts the values for the proposed correlation measures. The task
correlation is larger than the machine correlation (i.e., ρtask > ρmach) for only a
few instances. The space of possible values for both correlations has thus been



0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
ρtask

ρ m
ac

h

(a) Range-based method

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
ρtask

ρ m
ac

h

(b) CVB method

Fig. 1. Correlation properties (ρtask and ρmach) of cost matrices used in the literature.

largely unexplored. Additionally, few instances have high task correlation and
are thus underrepresented.

Two matrices extracted from the SPEC benchmarks on five different ma-
chines are provided in [1]. There are 12 tasks in CINT2006Rate and 17 tasks in
CFP2006Rate. The values for the correlation measures and other measures from
the literature are given in Table 2. The correlations for these two benchmarks
correspond to an area that is not well covered in Figure 1. This illustrate the
need for a better exploration of the correlation space when assessing scheduling
algorithms.

Table 2. Summary of the properties for two benchmarks (CINT2006Rate and
CFP2006Rate).

Benchmark ρtask ρmach V µtask V µmach µVtask µVmach TDH MPH TMA

CINT2006Rate 0.85 0.73 0.32 0.36 0.37 0.39 0.90 0.82 0.07
CFP2006Rate 0.60 0.67 0.42 0.32 0.48 0.39 0.91 0.83 0.13

4 Controlling the Correlation

Table 1 shows that the correlation properties of existing methods are determined
by a combination of unrelated parameters, which is unsatisfactory. We propose a
cost matrix generation method that takes the task and machine correlations as
parameters. This method assumes that both these parameters are distinct from
one.



Algorithm 1 Combination-based cost matrix generation with gamma distribu-
tion
Input: n, m, rtask, rmach, µ, V
Output: a n×m cost matrix

1: Vcol ←
√
rtask+

√
1−rtask(√rmach+

√
1−rmach)

√
rtask

√
1−rmach+

√
1−rtask(√rmach+

√
1−rmach)

V {Scale variability}
2: for all 1 ≤ i ≤ n do {Generate base column}
3: ci ← G(1/V 2

col, V
2
col)

4: end for
5: for all 1 ≤ i ≤ n do {Set the correlation between each pair of columns}
6: for all 1 ≤ j ≤ m do
7: ei,j ←

√
rmachci +

√
1− rmach ×G(1/V 2

col, V
2
col)

8: end for
9: end for

10: Vrow ←
√

1− rmachVcol {Scale variability}
11: for all 1 ≤ j ≤ m do {Generate base row}
12: rj ← G(1/V 2

row, V
2
row)

13: end for
14: for all 1 ≤ i ≤ n do {Set the correlation between each pair of rows}
15: for all 1 ≤ j ≤ m do
16: ei,j ←

√
rtaskrj +

√
1− rtaskei,j

17: end for
18: end for
19: for all 1 ≤ i ≤ n do {Rescaling}
20: for all 1 ≤ j ≤ m do
21: ei,j ← µei,j

√
rtask+

√
1−rtask(√rmach+

√
1−rmach)

22: end for
23: end for
24: return {ei,j}1≤i≤n,1≤j≤m

Algorithm 1 presents the combination-based method. It sets the correlation
between two distinct columns (or rows) by computing a linear combination
between a base vector common to all columns (or rows) and a new vector specific
to each column (or row). The algorithm first generates the matrix with the target
machine correlation using a base column (generated on Line 3) and the linear
combination on Line 7. Then, rows are modified such that the task correlation is
as desired using a base row (generated on Line 12) and the linear combination
on Line 16. The base row follows a distribution with a lower standard deviation,
which depends on the machine correlation (Line 10). Using this specific standard
deviation is essential to set the task correlation (see the proof of Proposition 1).
Propositions 1 and 2 show these two steps generate a matrix with the target
correlations for any value of Vcol.

Proposition 1. The task correlation ρtask of a cost matrix generated using the
combination-based method with the parameter rtask converges to rtask as m→∞.



Proof. Given Lines 7, 16 and 21, any cost, multiplied by
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The first sum converges to rtask(1 + (1 − rmax)V 2
col) as m → ∞ because rj

follows a gamma distribution with expected value one and standard deviation√
1− rmaxVcol. The second sum converges to

√
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as m → ∞ and the third sum converges to
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as m → ∞. Therefore, the nu-

merator of ρri,i′ converges to rtask(1− rmax)V 2
col as m→∞.

The denominator of ρri,i′ converges to the product of the standard deviations

of eij and ei′j as m→∞. The standard deviation of rj (resp., G(1/V 2
col, V

2
col)) is√

1− rmachVcol (resp., Vcol). Therefore, the standard deviation of eij is√
rtask(1− rmach)V 2

col + (1− rtask)(1− rmach)V 2
col.

The correlation between any pair of distinct rows ρri,i′ converges thus to rtask
as m→∞, which concludes the proof. ut
Proposition 2. The machine correlation ρmach of a cost matrix generated using
the combination-based method with the parameter rmach converges to rmach as
n→∞.

The proof of Proposition 2 is similar to the proof of Proposition 1 [6, Propo-
sition 14].

Finally, the resulting matrix is scaled on Line 21 to adjust its mean. The
initial scaling of the standard deviation on Line 1 is necessary to ensure that the
final CV (Coefficient of Variation) of the costs is V . The proof of Proposition 3
is more direct than the previous ones [6, Proposition 15].

Proposition 3. When used with the parameters µ and V , the combination-based
method generates costs with expected value µ and CV V .

Note that the correlation parameters may be zero. However, each of them
must be distinct from one. If they are both equal to one, a direct method exists by
building the unrelated instance corresponding to a uniform instance. Additionally,
the final cost distribution is a sum of three gamma distributions (two if either of
the correlation parameters is zero and only one if both of them are zero).

Note that the previous propositions give only convergence results. For a given
generated matrix with finite dimension, the effective correlation properties are
distinct from the asymptotic ones.



5 Impact on Scheduling Heuristics

Controlling the task and machine correlations provides a continuum of unrelated
instances that are arbitrarily close to uniform instances. This section shows how
some heuristics for scheduling unrelated instances are affected by this proximity.

A subset of the heuristics from [7] were used with instances generated using
the combination-based method. The three selected heuristics are based on distinct
principles to emphasize how the correlation properties may have different effects on
the performance. First, we selected EFT [11, E-schedule] [9, Min-Min], which relies
on a greedy principle that schedules first the tasks that have the smallest duration.
The second heuristic is an adaptation of LPT [10] for unrelated platforms. Since
LPT is a heuristic for the Q||Cmax problem, HLPT performs as the original
LPT when machines are uniform (i.e., when the correlations are both equal to
1). HLPT differs from EFT by considering first the largest tasks instead of the
smallest ones based on their minimum cost on any machine. The last heuristic
is BalSuff [8], which iteratively balances an initial schedule by changing the
allocation of the tasks that are on the most loaded machine. The new machine
that will execute it is chosen such as to minimize the increase in the task duration.

These heuristics perform identically when the task and machine correlations
are arbitrarily close to one and zero, respectively. In particular, sorting the tasks
for HLPT is meaningless because all tasks have similar execution times. With such
instances, the problem is related to the Q|pi = p|Cmax problem (see Section 3),
which is polynomial. Therefore, we expect these heuristics to perform well with
these instances.

In the following experiments, we rely on the combination-based method
(Algorithm 1) to generate cost matrices. Instances are generated with n = 100
tasks and m = 30 machines. Without loss of generality, the mean cost µ is one
(scaling a matrix by multiplying each cost by the same constant will have no
impact on the scheduling heuristics). The cost CV is V = 0.3.

For each scenario, we compute the makespan6 of each heuristic. We then
consider the relative difference from the reference makespan: C/Cmin − 1 where
C is the makespan of a given heuristic and Cmin the best makespan we obtained
(we use a genetic algorithm that is initialized with all the solutions obtained
by other heuristics as in [7] because the problem is NP-Complete and finding
the optimal solution would take too much time). The closer to zero, the better
the performance. We assume in this study that the reference makespan closely
approximates the optimal one.

The heat maps on Figure 2 share the same generation procedure. First, 30
equidistant correlation values are considered between 0.001 and 0.999 using a
probit scale (0.001, 0.002, 0.0039, 0.0071, . . . , 0.37, 0.46, . . . , 0.999). The probit
function is the quantile function of the standard normal distribution. It highlights
what happens for values that are arbitrarily close to 0 and 1 at the same time.
Then, each pair of values for the task and machine correlations leads to the
generation of 200 cost matrices (for a total of 180 000 instances). The actual

6 The makespan is the total execution time and it must be minimized.



correlations are then measured for each generated cost matrices. Any tile on the
figures corresponds to the average performance obtained with the instances for
which the actual correlation values lie in the range of the tile. Hence, an instance
generated with 0.001 for both correlations may be assigned to another tile than
the bottommost and leftmost one depending on its actual correlations. Any value
outside any tile was discarded when it occurred.
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Fig. 2. Heuristic performance with 180 000 instances for the combination-based method.
The cost CV V is set to 0.3. The x- and y-axes are in probit scale between 0.001 and
0.999. Each tile represents on average 200 instances. The contour lines correspond to
the levels in the legend (0, 0.05, 0.1, . . . ).

Figure 2 compares the average performance of EFT, HLPT and Balsuff. First,
EFT performance remains mainly unaffected by the task and machine correlations
when they are similar. However, its performance is significantly impacted by
them when one correlation is the complement of the other to one (i.e., when
ρtask = 1− ρmach, which is the other diagonal). In this case, the performance of
EFT is at its poorest on the top-left. It then continuously improves until reaching
its best performance on the bottom-right (less than 5% from the reference
makespan, which is comparable to the other two heuristics for this area). This
is consistent with the previous observation that this last area corresponds to
instances that may be close to Q|pi = p|Cmax instances, for which EFT is optimal.
HLPT achieves the best performance when either correlation is close to one. This
is particularly true in the case of the task correlation. HLPT shows however
some difficulties when both correlations are close to zero. Finally, BalSuff closely
follows the reference makespan except when the task correlation reaches values
above 0.5. This is surprising because we could expect any heuristic to have its
best performance in the bottom-right part as for EFT. Despite having good
performance in this area, this is not the case with BalSuff.



6 Relation to TMA
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Fig. 3. TMA of the instances used in Figure 2.

The TMA is a measure based
on the singular values of the nor-
malized inverse cost matrix. We
consider the variant in which
the normalization is done alter-
natively on both the rows and
columns [1]. The cost matrix is
first inverted before being nor-
malized with an iterative pro-
cedure. Finally, the result cor-
responds to the inverse of the
ratio between the first singular
value and the mean of the other
singular values.

Similarly to the correlation, the TMA measures the affinities between the tasks
and the machines. TMA values equal to zero means machines are uniform (no
affinity) because only the first singular value is non-zero and the rank of the cost
matrix is one. Oppositely, TMA values equal to one means tasks and machines
have unrelated characteristics (high affinities between tasks and machines) because
the cost matrix is orthogonal.

However, the correspondence with the correlation is not systematic. Let
{ei,j}1≤i≤n,1≤j≤n be a cost matrix where ei,j = ε if i = j and ei,j = wibj
otherwise (with wi the weight of task i and bj the cycle time of machine j). The
TMA of this cost matrix converges to one as ε→ 0, which suggests a discrepancy
from any uniform instance. By contrast, both its task and machine correlations
converge to one as n→∞ and m→∞ (suggesting a similarity with a uniform
instance). Assuming the number of tasks is greater than the number of machines
(i.e., n > m), each task i must be scheduled on machine i for 1 ≤ i ≤ m. The
problem is thus equivalent to scheduling the last n−m tasks, each of which has a
well-defined weight. This cost matrix corresponds therefore to a uniform instance
as indicated by the correlation properties. This contrived example shows that
changing a few single values may impact the TMA more profoundly than the
correlations. We conclude that the correlations focus on the general consistency
across multiple tasks and machines, whereas the TMA stresses the specialization
of a few machines for some specific tasks.

Figure 3 depicts the TMA of each of the 2× 302 × 200 instances generated in
Section 5. The TMA is strongly associated with the correlations in our settings.
Note that it does not reach large values given that its maximum is one, even
when the correlations are close to zero.

The TMA is also symmetric relatively to the diagonal slices: it is the same
when the task/machine correlations are high/low as when they are low/high.
Therefore, some behaviors may not be seen with the TMA. For instance, EFT
performance varies mainly relatively to the other diagonal (from the top-left to
the bottom-right).



The TMA offers several advantages: its normalization procedure makes it
independent from the heterogeneity and like the correlation, it is associated to the
performance of the selected heuristics. However, it suffers from several drawbacks.
Its value depends on the cost matrix dimension and on the cost CV. Moreover,
its normalization procedure makes derivations of analytical results difficult. By
contrast, the correlation has no such default but it is not independent from the
heterogeneity. Also, the correlation is finer because it consists of two different
values, which allow the characterization of behaviors that cannot be seen with
the TMA (e.g., for EFT). Nevertheless, the TMA may be more relevant than
the correlation in some specific cases. For instance, with small cost matrices,
the TMA is more sensitive to individual values that may impact significantly
the performance. Devising a SVD-based measure that outperforms the TMA
(analytically simpler and independent from the cost matrix dimension and the
cost CV) is left for future work.

7 Conclusion

This paper studies the correlations of cost matrices used to assess heteroge-
neous scheduling algorithms. The task and machine correlations are proposed
to measure the similarity between an unrelated instance in which any cost is
arbitrary (R||Cmax) and the closest uniform instance (Q||Cmax) in which any
cost is proportional to the task weight and machine cycle time. We analyzed
several generation methods from the literature and designed a new one to see
the impact of these properties.

Even though the correlation approximates the distance between uniform and
unrelated instances (a unitary correlation does not imply it corresponds to a
uniform instance), our proposed generation method shows how some heuristics
from the literature are affected. For instance, the closer instances are from the
uniform case, the better HLPT, an adaptation of LPT to the unrelated case,
performs. Additionally, the need for two correlations (for the tasks and for the
machines) arise for EFT for which the performance goes from worst to best as the
task and machine correlations go from zero to one and one to zero, respectively.

Although the current study highlights the importance of controlling the
correlations in cost matrices, it presents some limitations. Overcoming each
of them is left for future work. First, results were obtained using the gamma
distribution only. However, the proposed method could use other distributions
as long as the mean and standard deviation are preserved. Second, all formal
derivations are in the asymptotic case only. Hence, the proposed results may be
less relevant for small instances. Also, the proposed correlation measures and
generation method assume that the correlations stay the same for each pair of
rows and for each pair of columns: our measures average the correlations and our
method is inapplicable when the correlations between each pair of rows or each
pair of columns are distinct. Considering two correlation matrices that define the
specific correlations between each pair of rows and each pair of columns would
require the design of a finer generation method. Finally, investigating the relation



with the heterogeneous properties would require the design of a method that
controls both the correlation and heterogeneity properties.
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