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Abstract. The design and the analysis of business processes commonly
relies on workflow nets, a suited class of Petri nets. This paper evalu-
ates and compares two resolution methods—Satisfiability Modulo The-
ory (SMT) and Constraint Logic Programming (CLP)—applied to the
verification of modal specifications over workflow nets. Firstly, it provides
a concise description of the verification methods based on constraint solv-
ing. Secondly, it presents the experimental protocol designed to evaluate
and compare the scalability and efficiency of both resolution approaches.
Thirdly, the paper reports on the obtained results and discusses the
lessons learned from these experiments.
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1 Introduction

In recent years, the growing need by companies to improve their organizational
efficiency and productivity has led to the design and the analysis of business
processes. Workflows constitute a convenient way for analysts to describe the
business processes in a formal and graphical manner. Intuitively, a workflow sys-
tem describes the set of possible runs of a particular system/process. Further-
more, workflow analysts are required to express and to verify specific properties
over the workflows they designed to make sure that no undesirable behaviour is
present while performing the specified tasks.

Among existing workflow specifications, this paper focuses on modal speci-
fications that allow the description of necessary and admissible behaviours over
workflow nets, a suited class of Petri nets. As in [1], the validity of a modal
specification can be inferred from the satisfiability of a corresponding constraint
system, by using Constraint Logic Programming (CLP). Besides the theoretical
assessment of the approach, a proof-of-concept toolchain has enabled to success-
fully evaluate its effectiveness and reliability. However, as advocated in [1], these
first encouraging experimental results need to be confirmed by extensive exper-
imentation, in particular to definitively assess the scalability and the efficiency
of the approach. This paper precisely investigates these issues: it aims to em-
pirically (1) assess the scalability, (2) evaluate the efficiency of the verification
approach by (3) comparing two resolution methods: Satisfiability Modulo The-
ory (SMT) and CLP over Finite Domains to solve the Constraint Satisfaction
Problem (CSP) that represents the modal specifications to be verified.



On the one hand, using Logic Programming for solving a CSP has been
investigated for many years, especially using CLP over Finite Domains, writ-
ten CLP(FD). This approach basically consists in embedding consistency tech-
niques [2] into Logic Programming by extending the concept of logical variables
to the one of the domain-variables taking their values in a finite discrete set
of integers. On the other hand, SMT solvers are also relevant to solve the con-
straint systems (a conjunction of boolean formulas expressing the constraints)
since they can determine whether a first-order logic formula can be satisfied with
regards to a particular theory (e.g., Linear Arithmetic, Arrays theories). Basi-
cally, SMT solvers aim to generate counter-examples [3] by combining a SAT
solver, assigning a truth value to every atom composing the formula so that the
truth value of the latter is true, with a theory solver determining whether the
resulting interpretation can be met with regard to the theory used. The formula
is satisfiable if and only if at least one interpretation from the SAT solver can
be met by the theory solver.

Layout of the paper and contributions. Section 2 briefly recalls common con-
cepts and standard notations concerning workflow nets as well as the key aspects
of the formal method given in [1] for verifying modal specifications over workflow
nets. Afterwards, Sect. 3 defines an experimental protocol designed, on the one
hand, to evaluate the efficiency of each resolution approach, and, on the other
hand, to compare their execution times when applied to a broad range of modal
specifications and workflow nets of growing size and complexity. To achieve this
goal, a mature toolchain has been developed to automatically produce, from a
workflow net and its modal specification, a constraint system whose satisfiability
can then be checked using either CLP or SMT. Section 4 reports on the exper-
imental results obtained using the experimental protocol. The lessons learned
as well as the reported feedback constitute the main contribution of this paper.
Finally, Sect. 5 suggests directions for future work.

2 Preliminaries

This section presents workflow nets [4], modal specifications as well as the veri-
fication method proposed in [1].

2.1 Workflow Nets

Workflow nets (WF-nets) [4] are a special case of Petri nets. They allow the
modelling of complex workflows exhibiting concurrencies, conflicts, as well as
causal dependencies of activities. The different activities are modelled by transi-
tions, while causal dependencies are modelled by places and arcs. For instance,
the Petri net depicted in Fig. 1 is a workflow net.

Definition 1 (Workflow net [4]). A Petri net N = 〈P, T, F 〉 is a workflow net
(WF-net) if and only if P is a finite set of places, T is a finite set of transitions,
F ⊆ (P × T )∪ (T × P ) is a finite set of arcs, P ∩ T = ∅, and N has two special
places i and o, where i has no predecessor and o has no successor.
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Fig. 1. An example of a WF-net

Let g ∈ P ∪ T and G ⊆ P ∪ T . We use
the following notations: g• = {g′|(g, g′) ∈ F},
•g = {g′|(g′, g) ∈ F}, G• = ∪g∈G g•, and
•G = ∪g∈G •g. The state of a WF-net N =
〈P, T, F 〉 is given by a marking function M :
P → N that associates a number of tokens to
places. A transition t is enabled in a marking
M if and only if ∀p ∈ •t,M(p) ≥ 1. When
an enabled transition t is fired, it consumes one token from each place of •t and
produces one token for each place of t•. Let Ma and Mb be two markings, and t a

transition ofN ,Ma
t−→Mb denotes that the transition t is enabled in markingMa,

and firing it results in the marking Mb. Let σ = t1, t2, .., tn−1 be a sequence of

transitions of a Petri net N , M1
σ−→Mn denotes that M1

t1−→M2
t2−→ ..

tn−1−−−→Mn.
We denote Mi the initial marking (i.e. Mi(n) = 1 if n = i, and 0 otherwise) and
Mo the final marking (i.e. Mo(n) = 1 if n = o, and 0 otherwise). A correct

execution of a WF-net is a transition sequence σ such that Mi
σ−→Mo.

The behaviour of a WF-net is defined as the set Σ of all its correct executions.
Given a transition t and an execution σ, the function Ot(σ) gives the number of
occurrences of t in σ. In addition to ordinary WF-nets [4] (i.e. WF-nets with arcs
of weight 1), this paper deals also with the following well-known and popular
WF-net classes whose expressiveness is based on structural features:

– State-Machines (SM) without concurrency, but with possible conflicts among
tasks (transitions): ∀t ∈ T, | t• |=|• t |= 1

– Marked-Graphs (MG) without conflict, but there can be concurrent tasks:
∀p ∈ P, | p• |=|• p |= 1

– Free-Choice nets (FC) where there can be both concurrency and conflict,
but not at the same time: ∀p ∈ P, (| p• |≤ 1) ∨ (•(p•) = {p}).

2.2 Modal Specifications

Modal specifications have been designed to allow loose specifications to be ex-
pressed by imposing restrictions on transitions. They allow specifiers to indicate
that a transition is necessary or just admissible. In [1], modal specifications allow
specifiers to express requirements on several transitions and on their causalities.
The modal specifications of a workflow net N = 〈P, T, F 〉 are specified using
the language S of well-formed modal specification formulae inductively defined
by: ∀t ∈ T, t is a well-formed modal formula, and given A1, A2 ∈ S, A1 ∧ A2,
A1 ∨A2, and ¬A1 are well-formed modal formulae. These formulae allow speci-
fiers to express modal properties about WF-nets correct executions. Any modal
specification formula m ∈ S can be interpreted as a may-formula or a must-
formula. A may-formula describes a behaviour that has to be ensured by at
least one correct execution of the WF-net whereas a must-formula describes a
behaviour that has to be ensured by all the correct executions of the WF-net.
Further, given a well-formed may-formula (resp. must-formula) m ∈ S, a WF-
net N satisfies m, written N |=may m (resp. N |=must m), when at least one
(resp. all) correct execution(s) of N satisfies (resp. satisfy) m.
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2.3 Modal Specifications Verification Method

This section provides an overall description of the verification method introduced
in [1] to verify modal specifications of workflow nets. This method, based on
the resolution of constraint systems, serves as a basis to compare SMT and
CLP resolution approaches. Basically, a constraint system is a set of constraints
(properties), which must be satisfied by the solution of the problem it models. To
achieve that, each variable appearing in a constraint of the system should take its
value from its domain. Such a system defines a Constraint Satisfaction Problem
(CSP). Formally, a CSP is a tuple Ω =< X,D,C > where X is a set of variables
{x1, . . . , xn}, D is a set of domains {d1, . . . , dn}, (di is the domain associated
with the variable xi), and C is a set of constraints {c1(X1), . . . , cm(Xm)}, where
a constraint cj involves a subset Xj of the variables of X.

A CSP thus models NP-complete problems as search problems where the
corresponding search space is the Cartesian product space d1 × . . . × dn. The
solution of a CSP Ω is computed by a labelling function L, which provides a
set v (called valuation function) of tuples assigning each variable xi of X to
one value from its domain di such that all the constraints C are satisfied. More
formally, v is consistent—or satisfies a constraint c(X) of C—if the projection of
v on X is in c(X). If v satisfies all the constraints of C, then Ω is a consistent or
satisfiable CSP. In the rest of the paper, the predicate SAT (C, v) is true if the
corresponding CSP Ω is made satisfiable by v, and the predicate UNSAT (C) is
true if there exists no such v.

In our context, to verify a modal specification m of a WF-net N , the con-
straint system is composed of a set of constraints representing the correct execu-
tions of N completed with the constraint issued from m. This constraint system
can then be solved to validate or invalidate the modal specification m regarding
the WF-net N . Considering a WF-net N = (P, T, F ), this method first models

all the correct executions leading from Ma to Mb, i.e. all σ such that Ma
σ−→Mb.

To reach that, the following constraint systems are defined:

Definition 2 (Minimum places potential constraint system). Let N =
〈P, T, F 〉 be a WF-net and Ma, Mb two markings of N , the minimum places
potential constraint system ϕ(N,Ma,Mb) associated with it is (ν : P ∪ T → N
defines a valuation function):

∀p ∈ P.ν(p) =
∑
t∈p•

ν(t) +Mb(p) =
∑
t∈•p

ν(t) +Ma(p) (1)

The solution’s space of the constraint system from Eq. (1), Def. 2, defines an
over-approximation of the executions of a workflow net based on the well-known
state-equation [5]: If Ma

∗−→Mb then a valuation satisfying ϕ(N,Ma,Mb) exists.

Definition 3. Let θ(N) be the following constraint system associated with a
WF-net N = 〈P, T, F 〉 (ξ : P → {0, 1} defines a valuation function):

– ∀p ∈ P,∀t ∈• p.
∑
p′∈•t ξ(p

′) ≥ ξ(p)
–

∑
p∈P ξ(p) > 0
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This second constraint system from Def. 3 allows concluding on the existence
of a siphon—an important structural feature describing a set of places G ⊆ P
such that G 6= ∅ and •G ⊆ G•—in a WF-net: N contains a siphon if and only
if there is a valuation satisfying θ(N). Given a solution of the constraint system
in Def. 2, it is then possible to build a subnet composed of the places (excluding
places i and o) and of the transitions of the modelled execution as described in
Def. 4.

Definition 4. Let N = 〈P, T, F 〉 be a WF-net, Ma, Mb two markings of N , and
ν : P ∪T → N a valuation satisfying ϕ(P,Ma,Mb). The subnet sN(ν) is defined
as 〈sP, sT, sF 〉 where:

– sP = {p ∈ P \ {i, o} | ν(p) > 0}
– sT = {t ∈ T | ν(t) > 0}
– sF = {(a, b) ∈ F | a ∈ (sP ∪ sT ) ∧ b ∈ (sP ∪ sT )}

By Th. 1, the above constraint systems can be combined to model executions
of a workflow net.

Theorem 1. Let N = 〈P, T, F 〉 be a WF-net, and Ma, Mb its two markings. If
there is ν : P ∪ T → N such that SAT (ϕ(N,Ma,Mb), ν) ∧ UNSAT (θ(sN(ν)))

∧∀n ∈ P ∪ T. ν(n) ≤ 1 then Ma
σ−→Mb and ∀t ∈ T. Ot(σ) = ν(t).

An execution modelled by the constraint system of Th. 1 is called a seg-
ment. Further, any execution of a workflow net can be modelled by a succes-
sion of segments as stated by Th. 2, in which the constraint system is denoted
φ(N,Ma,Mb, k), where k is the number of segments composing the execution.

Theorem 2. Let N = 〈P, T, F 〉 be a WF-net, and Ma, Mb its two markings.

Ma
σ−→ Mb if and only if there exists k ∈ N such that M1

σ1−→ M2 · · ·Mk

σ(k)−−→
Mk+1, where M1 = Ma, Mk+1 = Mb and for every i, 0 < i ≤ k, there is νi s.t.
SAT (ϕ(N,Mi,Mi+1), νi) ∧ UNSAT (θ(sN(νi))) ∧ ∀n ∈ P × T. νi(n) ≤ 1.

Our method to verify modal specifications relies on their expression by con-
straints. To build these constraints, for every transition t ∈ T , the corresponding
terminal symbol of the modal formulae is replaced by ν(t) > 0, where ν is the
valuation of the constraint system. Given a modal formula f ∈ S, C(f, ν) is the
constraint built from f , where ν is a valuation of the constraint system.

Theorem 3. Let N = 〈P, T, F 〉 be a WF-net and 〈m,M〉 a modal specification.
The WF-net N satisfies the modal specification 〈m,M〉 if and only if:

– there is no ν, k ∈ N such that SAT (φ(N,Mi,Mo, k) ∧ ¬C(m, ν), ν), and
– for every f ∈ M , there exist ν, k ∈ N such that SAT (φ(N,Mi,Mo, k) ∧
C(f, ν), ν).

By Th. 3, using a fixed K, the K-bounded validity of a modal formula (i.e.
validity of the modal formula over correct executions formed by at most K seg-
ments) can be inferred by evaluating the satisfiability of the corresponding con-
straint system. Furthermore, it has been shown that for K sufficiently large the
K-bounded validity of a modal formula corresponds to its unbounded validity [1].
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3 Experimental Protocol

This section introduces the experimental protocol designed to evaluate the ef-
ficiency and limitations of the compared resolution approaches, i.e. CLP and
SMT, applied to the verification of modal specifications as described in Sect. 2.3.

To empirically assess the scalability and the efficiency of both resolution
methods, and to be able to have convincing clues to compare them as objectively
as possible, we are interested in gathering the following abilities of the methods:

1. To assign a verdict about the (in)validity of the given modal specification;
2. To return such a response as quick as possible (and in an admissible time).

Moreover, to make conclusion and feedback relevant and credible, and to be
able to evaluate reliability as well as scalability of the methods, this information
has to be calculated from a broad range of modal specifications and workflow
nets. Indeed, the type of modal specifications shall be taken into account be-
cause, to conclude about their validity, the verification method may require the
computation of the over-approximation of the workflow nets executions or a full
decomposition into segments. The size of the modal formula to be verified is also
important since a larger formula may constrain further the system to be solved.

The proposed experimental protocol thus considers workflow nets of realistic
size by evaluating workflow nets of size up to 500 nodes. Moreover, not only the
size of the workflow nets is considered but also their complexity by evaluating
workflow nets of classes with a growing expressiveness (cf. Sect. 2.1). Therefore,
to experimentally evaluate both resolution approaches over instances of growing
size and complexity, the following parameters are taken into account:

– Class of the workflow nets:
• State machine,
• Marked graph,
• Free-choice, and
• Ordinary nets

– Size of the workflow nets:
• 50 ∗ i where i ∈ {1, .., 10}

– Type of modal specification:
• Valid may-formula,
• Invalid may-formula,
• Valid must-formula, and
• Invalid must-formula

– Size of the modal formula:
• 5 and 15 literals

For each combination of the above parameters, a corresponding modal for-
mula and a workflow net are randomly generated. This forms a data set of 320
instances of growing size and complexity. All the evaluations have been per-
formed on three different data sets, i.e. a total of 960 workflow nets and modal
specifications have thus been experimented. Moreover, in order to restrict the
total time needed to perform these experiments, a time-out of 10 minutes (arbi-
trary admissible time) was fixed for each resolution call to the solvers. Finally,
all the executions have been computed on a computer featuring an Intel(R)
Xeon(R) CPU X5650 @ 2.67GHz.
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A complete and mature toolchain able to carry out this experimental protocol
has been developed. To evaluate the constraint systems produced by the method
in Sect. 2.3, this toolchain relies on either Z3 [6] version 4.4.0, an SMT solver,
which finished first during the 2014 SMT-COMP challenge1 for solving non-
linear arithmetic problems, or SICStus Prolog [7] version 4.3.2, a CLP solver
which obtained the third place during the 2014 MiniZinc challenge2.

Figures 2 and 3 illustrate the encoding used to model the constraints seen
in Sect. 2.3 respectively for the SMT-Lib and Prolog language. The constraints
correspond with the workflow N = (P, T, F ) depicted in Fig. 1. Let n ∈ P ∪ T ,
we use the following conventions: An stands for Ma(n), Bn for Mb(n), Pn for ν(n)
when n is a place, Tn stands for ν(n) when n is a transition, and Xn stands for
ξ(n), M1n, M2n and M3n stand for M1(n), M2(n) and M3(n). For example, Tt2
and M2p1 respectively denotes ν(t2) and M2(p1).

1 ; Variables declaration here

2 ( de f ine−fun i n i t i a l M a r k i n g ( ( Ai In t ) (Ao In t ) ( Ap1 In t ) ) Bool ( and (= Ai 1) (= Ao 0) (= Ap1 0 ) ) )
3 ( de f ine−fun f i na lMark ing ( ( Bi In t ) ( Bo In t ) ( Bp1 In t ) ) Bool ( and (= Bi 0) (= Bo 1) (= Bp1 0 ) ) )
4 ( de f ine−fun s tateEquat ion (
5 ( Ai In t ) (Ao In t ) ( Ap1 In t ) ( Bi In t ) ( Bo In t ) ( Bp1 In t ) ( Pi In t ) ( Po In t ) ( Pp1 In t ) ( Tt1 In t ) ( Tt2 In t ) ( Tt3 In t ) ) Bool
6 ( and
7 (>= Ai 0) (>= Ao 0) (>= Ap1 0) (>= Bi 0) (>= Bo 0) (>= Bp1 0)
8 (>= Pi 0) (>= Po 0) (>= Pp1 0) (>= Tt1 0) (>= Tt2 0) (>= Tt3 0)
9 (= Pi Ai ) (= Pi (+ Bi Tt1 ) )

10 (= Po (+ Ao Tt3 ) ) (= Po Bo)
11 (= Pp1 (+ Ap1 Tt1 Tt2 ) ) (= Pp1 (+ Bp1 Tt2 Tt3 ) ) ) )
12 ( de f ine−fun formula ( ( Tt1 In t ) ( Tt2 In t ) ) Bool ( and (> Tt1 0) (> Tt2 0 ) ) )
13 ( de f ine−fun noSiphon (
14 ( Ai In t ) (Ao In t ) ( Ap1 In t ) ( Bi In t ) ( Bo In t ) ( Bp1 In t ) ( Pi In t ) ( Po In t ) ( Pp1 In t ) ( Tt1 In t ) ( Tt2 In t ) ( Tt3 In t ) ) Bool
15 ( not ( e x i s t s ( ( Xi In t ) (Xo In t ) ( Xp1 In t ) )
16 ( and
17 (> (+ Xi Xo Xp1) 0)
18 (>= Xi 0) (<= Xi 1) (>= Xo 0) (<= Xo 1) (>= Xp1 0) (<= Xp1 1)
19 (=> ( or (> Ai 0) (> Bi 0) (= Pi 0) ) (= Xi 0) )
20 (=> ( or (> Ao 0) (> Bo 0) (= Po 0) ) (= Xo 0) )
21 (=> ( or (> Ap1 0) (> Bp1 0) (= Pp1 0) ) (= Xp1 0) )
22 (=> (> Tt1 0) (>= (+ Xi ) Xp1 ) ) (=> (> Tt2 0) (>= (+ Xp1) Xp1 ) ) (=> (> Tt3 0) (>= (+ Xp1) Xo ) ) ) ) ) )
23 ( de f ine−fun segment (
24 ( Ai In t ) (Ao In t ) ( Ap1 In t ) ( Bi In t ) ( Bo In t ) ( Bp1 In t ) ( Pi In t ) ( Po In t ) ( Pp1 In t ) ( Tt1 In t ) ( Tt2 In t ) ( Tt3 In t ) ) Bool
25 ( and
26 ( s ta teEquat ion Ai Ao Ap1 Bi Bo Bp1 Pi Po Pp1 Tt1 Tt2 Tt3 )
27 ( noSiphon Ai Ao Ap1 Bi Bo Bp1 Pi Po Pp1 Tt1 Tt2 Tt3 ) ) )

Fig. 2. SMT-Lib code of a segment of workflow

1 i n i t i a l M a r k i n g ( [ 1 , 0 , 0 ] ) .
2 f i na lMark ing ( [ 0 , 1 , 0 ] ) .
3 s tateEquat ion ( [ Ai , Ao , Ap1 ] , [ Bi , Bo , Bp1 ] , [ Pi , Po , Pp1 ] , [ Tt1 , Tt2 , Tt3 ]):−
4 domain ( [ Ai , Ao , Ap1 , Bi , Bo , Bp1 , Pi , Po , Pp1 , Tt1 , Tt2 , Tt3 ] , 0 , 10) ,
5 Pi #= Ai , Pi #= Bi + Tt1 ,
6 Po #= Ao + Tt3 , Po #= Bo ,
7 Pp1 #= Ap1 + Tt1 + Tt2 , Pp1 #= Bp1 + Tt2 + Tt3 .
8 formula ( [ Tt1 , Tt2 ]):− Tt1 #> 0 , Tt2 #> 0 .
9 s u b n e t I n i t ( [ Ai , Ao , Ap1 ] , [ Bi , Bo , Bp1 ] , [ Pi , Po , Pp1 ] , [ Xi , Xo , Xp1]):−

10 domain ( [ Xi , Xo , Xp1 ] , 0 , 1 ) ,
11 ( Ai #> 0 #\/ Bi #> 0 #\/ Pi #= 0) #=> Xi #= 0 ,
12 (Ao #> 0 #\/ Bo #> 0 #\/ Po #= 0) #=> Xo #= 0 ,
13 (Ap1 #> 0 #\/ Bp1 #> 0 #\/ Pp1 #= 0) #=> Xp1 #= 0 .
14 s iphon ( [ Tt1 , Tt2 , Tt3 ] , [ Xi , Xo , Xp1]):−
15 Xi + Xo + Xp1 #> 0 ,
16 Tt1 #> 0 #=> Xi #>= Xp1 , Tt2 #> 0 #=> Xp1 #>= Xp1 , Tt3 #> 0 #=> Xp1 #>= Xo ,
17 l a b e l i n g ( [ l e f tmost , step , up ] , [ Xi , Xo , Xp1 ] ) .
18 noSiphon ( [ Ai , Ao , Ap1 ] , [ Bi , Bo , Bp1 ] , [ Pi , Po , Pp1 ] , [ Tt1 , Tt2 , Tt3 ]):−
19 s u b n e t I n i t ( [ Ai , Ao , Ap1 ] , [ Bi , Bo , Bp1 ] , [ Pi , Po , Pp1 ] , [ Xi , Xo , Xp1 ] ) ,
20 l a b e l i n g ( [ l e f tmost , step , up ] , [ Tt1 , Tt2 , Tt3 ] ) ,
21 \+ s iphon ( [ Tt1 , Tt2 , Tt3 ] , [ Xi , Xo , Xp1 ] ) .
22 segment ( [ Ai , Ao , Ap1 ] , [ Bi , Bo , Bp1 ] , [ Pi , Po , Pp1 ] , [ Tt1 , Tt2 , Tt3 ]):−
23 s tateEquat ion ( [ Ai , Ao , Ap1 ] , [ Bi , Bo , Bp1 ] , [ Pi , Po , Pp1 ] , [ Tt1 , Tt2 , Tt3 ] ) ,
24 noSiphon ( [ Ai , Ao , Ap1 ] , [ Bi , Bo , Bp1 ] , [ Pi , Po , Pp1 ] , [ Tt1 , Tt2 , Tt3 ] ) .

Fig. 3. Prolog code of a segment of workflow

1 www.smtcomp.org
2 www.minizinc.org/challenge.html
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The two next inputs allow to determine, using respectively Z3 and SICStus,
whether there exists a correct execution of the workflow in Fig. 1 made of three
segments such that both t1 and t2 are fired.

Z3 input:

( a s s e r t ( i n i t i a l M a r k i n g M1i M1o M1p1) )
( a s s e r t ( f ina lMark ing M3i M3o M3p1) )
( a s s e r t ( formula (+ T1t1 T2t1 T3t1 ) (+ T1t2 T2t2 T3t2 ) ) )
( a s s e r t ( segment M1i M1o M1p1 M2i M2o M2p1 P1i P1o P1p1 T1t1 T1t2 T1t3 ) )
( a s s e r t ( segment M2i M2o M2p1 M3i M3o M3p1 P2i P2o P2p1 T2t1 T2t2 T2t3 ) )
( a s s e r t ( segment M3i M3o M3p1 M4i M4o M4p1 P3i P3o P3p1 T3t1 T3t2 T3t3 ) )
( check−sat−us ing smt )
( get−model )

SICStus input:

i n i t i a l M a r k i n g ( [ M1i , M1o , M1p1 ] ) ,
f i na lMark ing ( [ M4i , M4o , M4p1 ] ) ,
segment ( [ M1i , M1o , M1p1 ] , [ M2i , M2o , M2p1 ] , [ P1i , P1o , P1p1 ] , [ T1t1 , T1t2 , T1t3 ] ) ,
segment ( [ M2i , M2o , M2p1 ] , [ M3i , M3o , M3p1 ] , [ P2i , P2o , P2p1 ] , [ T2t1 , T2t2 , T2t3 ] ) ,
segment ( [ M3i , M3o , M3p1 ] , [ M4i , M4o , M4p1 ] , [ P3i , P3o , P3p1 ] , [ T3t1 , T3t2 , T3t3 ] ) ,
S1 #= T1t1 + T1t2 , S2 #= T2t1 + T2t2 , formula ( [ S1 , S2 ] ) .

Both solvers give the following interpretation for the three segments:

1 M1i = 1 , M1o = 0 , M1p1 = 0 , M2i = 0 , M2o = 0 , M2p1 = 1 , M3i = 0 , M3o = 0 , M3p1 = 1 , M4i = 0 , M4o = 1 , M4p1 = 0 ,
2 P1i = 1 , P1o = 0 , P1p1 = 1 , P2i = 0 , P2o = 0 , P2p1 = 2 , P3i = 0 , P3o = 1 , P3p1 = 1 ,
3 T1t1 = 1 , T1t2 = 0 , T1t3 = 0 , T2t1 = 0 , T2t2 = 1 , T2t3 = 0 , 3 t1 = 0 ,
4 T3t2 = 0 , T3t3 = 1

These segments are given in Fig. 4, starting (resp. ending) in the initial (resp.
final) marking where only the input place i (resp. output place o) is marked.

Fig. 4. The three segments of execution proposed by both solvers

Finally, let us precise that multiple combinations of labelling heuristics have
been experimented when using SICStus. Though some of them may marginally
improve the results on specific workflows, none was found to significantly and
generally improve all results. Therefore, all the experiments have been conducted
with the default options (i.e. [leftmost, step, up]). However, when using Z3,
since the SMT tactic improved all results, this strategy has always been used.

4 Results and Feedback from Experiments

This section presents the experimental results obtained using the dedicated tool
applying the protocol introduced in the previous section. To provide relevant
feedback regarding the initial challenges given in Sect. 1, the obtained results
are discussed by distinguishing two different categories of modal specifications:

– May-valid and must-invalid specifications;
– May-invalid and must-valid specifications.
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Note that the algorithm given in Sect. 2.3 is applied to all generated work-
flows and specifications, no matter what type of specification is being verified.
Thus, our implementation first checks if an over-approximation is sufficient to
conclude about the validity or the invalidity of a specification and, only if it is
not the case, computes an under-approximation before concluding. Indeed, using
the verification algorithm given in Sect. 2.3, most may-valid and must-invalid
modal specifications can be verified by using only an over-approximation of cor-
rect executions of the workflow. This over-approximation is less complex than
the under-approximation that must very often be computed to verify may-invalid
and must-valid modal specifications.

In this context, even though may-valid and must-invalid specifications express
two different behaviours (i.e. a may-valid specification is not necessarily a must-
invalid specification), most of the specifications of this category may only require
the computation of over-approximations of correct executions of the workflow.
On the contrary, even though may-invalid and must-valid specifications express
two opposite behaviours (i.e. a may-invalid specification is never a must-valid
specification and vice versa), most of these specifications often require the costly
computation of under-approximations of correct executions.

We also categorise the results according to the different classes of workflow
nets considered in our experimental protocol. The average execution times given
in the following subsections have been computed without considering time-outs.
Thus, since time-outs may have occurred, similar average execution times do not
always induce similar performances from both solvers. Nonetheless time-outs are
stated an discussed separately. Finally, for clarity, all time-outs and singulari-
ties have been withdrawn from the plots but systematically taken into account
in our feedbacks. The interested reader can also study the complete data sets
and results given at https://dx.doi.org/10.6084/m9.figshare.2067156.v1.

Tables 1, 2, 3 and 4 summarize the average verification times, number of
time-outs as well as the overall appreciation of the results obtained over the
different studied workflow net classes. Figures 5, 6, 7, 8, 9, 10, 11 and 12 depict
the plots displaying the verification times spent by SICStus and Z3 for each class
of workflow nets and types of modal specifications.

The next subsections comment on these obtained results and indicate the
most important feedback for each class of workflow nets.

4.1 Observation from State-Machine Workflow Nets Verification

May-Valid and Must-Invalid specifications. Both solvers were able to con-
clude in a comparable and reasonable time. On average, Z3 execution time was
332ms whereas SICStus execution time was 704ms. However, despite good results
for both solvers, it should be noted that 49.2%(59/120) of SICStus executions
did not finish within 10 minutes, while Z3 did not suffer from any time-outs.
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Fig. 5. State-Machine - May-Valid and Must-Invalid modal specifications

Must-valid and May-Invalid specifications. Both solvers were able to con-
clude in a reasonable time. On average, Z3 execution time was 79ms whereas
SICStus execution time was 43803ms. These results clearly show that Z3 per-
forms better than SICStus on this type of modal specifications. Moreover, it
should be noted that 85.8%(103/120) of SICStus executions did not finish within
10 minutes, whereas Z3 did not suffer from any time-outs. Indeed, SICStus was
not able to conclude about workflow nets of size greater than 250.
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Fig. 6. State-Machine - Must-Valid and May-Invalid modal specifications

Synthesis. Over the class of State-Machines we conclude that SICStus is clearly
overwhelmed due to the high number of choice points arising from the structure
of state-machine workflow nets of size greater than 100 nodes. We conclude from
these results that the SMT approach seems to be more suited for the modal
specifications verification over State-Machine workflow nets.

4.2 Observation from Marked-Graph Workflow Nets Verification

May-Valid and Must-Invalid specifications. Both solvers were able to con-
clude in a reasonable and comparable time. On average, Z3 execution time was
635ms whereas SICStus execution time was 767ms. It should also be pointed
out that for large sized Marked-Graph workflow nets (greater than 400 nodes)
SICStus performs slightly better than Z3.
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Fig. 7. Marked-Graph - May-Valid and Must-Invalid modal specifications

Must-valid and May-Invalid specifications. Both solvers were able to con-
clude in a reasonable and fairly comparable time. On average, Z3 execution time
was 108ms whereas SICStus execution time was 415ms. Besides, notice that, for
this type of modal specifications, Z3 performs slightly better than SICStus.
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Fig. 8. Marked-Graph - Must-Valid and May-Invalid modal specifications

Synthesis. Over the class of Marked-Graph, we can conclude that SICStus and
Z3 performs similarly. However SICStus seems to perform better when verifying
May-Valid and Must-Invalid specifications while Z3 seems to perform better
when verifying Must-valid and May-Invalid specifications. A further investigation
has shown that, in general, Z3 is more effective than SICStus for the computation
of the over-approximation used by the verification method, while SICStus is
more effective than Z3 for the computation of the segments needed to conclude
whenever the over-approximation is not sufficient.

4.3 Observation from Free-Choice Workflow Nets Verification

May-Valid and Must-Invalid specifications. Both solvers were able to con-
clude in a reasonable and comparable time. On average, Z3 execution time was
396ms whereas SICStus execution time was 842ms. Beyond these conclusive re-
sults for both solvers, it is important to underline that 25%(30/120) of SICStus
executions did not finish within 10 minutes, whereas Z3 did not suffer from any
time-outs.
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Fig. 9. Free-Choice - May-Valid and Must-Invalid modal specifications

Must-valid and May-Invalid specifications. Over this type of modal spec-
ifications, Z3 clearly performs better than SICStus. On average, Z3 execution
time was 90ms, while SICStus execution time was 45512ms. We also note that
62.5%(75/120) of SICStus executions did not finish within 10 minutes, whereas
Z3 did not suffer from any time-outs. After investigation, these results stem from
the fact that the verification of such modal specifications mostly relies on the
results of an over-approximation for which Z3 performs far better off.
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Fig. 10. Free-Choice - Must-Valid and May-Invalid modal specifications

Synthesis. Over the class of Free-Choice workflow nets, we observe that Z3
performs better than SICStus. We thus conclude from these obtained results
that the SMT approach seems to be more suited for the modal specifications
verification over Free-Choice workflow nets.

4.4 Observation from Ordinary Workflow Nets Verification

May-Valid and Must-Invalid specifications. Both solvers were able to con-
clude in a reasonable and comparable time. On average, Z3 execution time
was 985ms whereas SICStus execution time was 10634ms. Besides these re-
sults, it should be underlined that 58.3%(70/120) of SICStus executions and
that 32.5%(39/120) of Z3 executions did not finish within 10 minutes.
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Fig. 11. Ordinary - May-Valid and Must-Invalid modal specifications

Must-valid and May-Invalid specifications. Both solvers were able to con-
clude in a reasonable time. On average, Z3 execution time was 107ms whereas
SICStus execution time was 7717ms. Despite these conclusive results for both
solvers, it is important to note that 58.3%(70/120) of SICStus executions did
not finish within 10 minutes, whereas Z3 did not suffer from any time-outs. As
for the previous classes, Z3 indeed performs better than SICStus to compute the
over-approximation constraints, which were often sufficient to conclude.
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Fig. 12. Ordinary - Must-Valid and May-Invalid modal specifications

Synthesis. Over the class of ordinary workflow nets, we observe that Z3 per-
forms better than SICStus, especially when verifying Must-valid and May-Invalid
specifications. We can thus conclude from these results that the SMT approach
seems to be more suited for the modal specifications verification over ordinary
workflow nets. The next section summarizes the lessons learned and the benefits
noticed from these experiments according to the initial challenges.

4.5 Lessons Learned from Experience

Scalability. On the basis of the results, we can confidently state that the ver-
ification method proposed in [1] is scalable in terms of modal specification and
workflow net complexity, as well as regarding their size (up to at least 500 nodes).
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Efficiency. The developed implementation of the method proposed in [1] and
the underlying constraint solvers (i.e. Z3 and SICStus) have shown to be very
efficient for the intended verification computation. Indeed, the toolchain was
always able to conclude about the validity of modal specification over workflow
nets of growing size and complexity within the alloted time of 10 minutes (for
each constraint system to solve, at least one resolution method was indeed able
to assign a verdict, and furthermore within only few seconds in almost all cases).
Furthermore, we observed that memory usage does not seem to be a limiting
factor because, for the biggest instance of workflow verification, the memory
usage for SICStus and Z3 was less than 350MB.

SMT vs CLP. According to these experiments, we can infer that the SMT
approach (computed using Z3) generally performs significantly better than the
CLP one (computed using SICStus). However, they also highlight that the CLP
approach performs better, especially when verifying modal specifications over
Marked-Graph workflow nets. We indeed observed that the CLP approach is less
efficient than the SMT approach when the number of choice points increases as
shown by the results over State-Machine workflow nets. It stems from the labeling
done after constraints propagation by CLP solvers: an exponential number of
backtracking steps may occur w.r.t. the number of pending choice points.

5 Related Work and Conclusion

On workflow nets verification. Verifying properties over business processes
has been widely investigated using Petri-net-based approaches. Among them,
workflow nets constitute a suited class for modelling business process [4]. Thus,
approaches and tools [1, 8, 9] have emerged to verify properties over these work-
flow nets and, as a consequence, over the processes they model. However, re-
garding verification of such WF-nets, the reachability problem, proved to be an
EXPSPACE problem in [10], is the key problem that all approaches are facing.

Regarding verification methods, some research results have also been pro-
posed to express and verify properties against a given system. Let us quote [11]
where the expression of properties with modalities is investigated for automata/-
transition systems, and also [12] where they are studied for Petri nets. In this
context, the great expressiveness of modalities makes them popular and relevant
for precisely describing a possible or necessary behavior over a system.

Using constraint solving for verification. Formal verification methods based
on constraints solving have been studied intensively, with most concrete imple-
mentations using the SMT or CLP approaches. On the one hand, for example,
SMT has been used in [13] for checking the reachability of bounded Petri nets,
as well as in [14] for verifying properties of business processes where execution
paths are modelled as constraints. On the other hand, CLP has been also exten-
sively experimented to verify business processes [15] as well as Petri nets [9]. In
a very similar way, a CLP approach has been used in [16] to detect the presence
of structures potentially leading to deadlocks in Petri nets. The present paper
has the originality to compare SMT and CLP resolution methods.
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Conclusion. This paper has compared the SMT and CLP approaches to
verify modal specifications over WF-nets using constraint solving. For this pur-
pose, an experimental protocol has been designed and a mature toolchain has
been developed. Using the obtained experimental results over four classes of
nets with particular features, we have empirically demonstrated that the veri-
fication method is efficient and scalable over workflow nets of size at least up
to 500 nodes. In general, the SMT approach performs significantly better than
the CLP approach, except when verifying modal specifications over conflict free
workflow nets, i.e. Marked-Graphs. As a future work, we plan to apply our ap-
proach to real-life industrial workflows to confirm its efficiency, and to investigate
innovative strategies mixing both SMT and CLP methods in order to embrace
the benefits from each of them, and to take advantage of the potential synergy.
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