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Abstract—In this work, we consider the usage of wireless
sensor networks (WSN) to monitor an area of interest, in order
to diagnose on real time its state. Each sensor node forwards
information about relevant features towards the sink where the
data is processed. Nevertheless, energy conservation is a key issue
in the design of such networks and once a sensor exhausts its
resources, it will be dropped from the network. This will lead to
broken links and data loss. It is therefore important to keep the
network running for as long as possible by preserving the energy
held by the nodes. Indeed, saving the quality of service (QoS)
of a wireless sensor network for a long period is very important
in order to ensure accurate data. Then, the area diagnosing will
be more accurate. From another side, packet transmission is the
phase that consumes the highest amount of energy comparing to
other activities in the network. Therefore, we can see that the
network topology has an important impact on energy efficiency,
and thus on data and diagnosis accuracies. In this paper, we study
and compare four network topologies: distributed, hierarchical,
centralized, and decentralized topology and show their impact
on the resulting estimation of diagnostics. We have used six
diagnostic algorithms, to evaluate both prognostic and health
management with the variation of type of topology in WSN.

I. INTRODUCTION

Due to the increasing demand in reliability and quality
of service, modern industrial plants witness a continuously
growing complexity. As a result, the costs of failure and system
downtime are getting more expensive. Therefore, monitoring
these areas is very essential to evaluate their health and
diagnose them at any time, and then to plan maintenance
activities to avoid disastrous failure results. Prognostic and
Health Management (PHM) is a process that allows an ad-
vanced system to automatically test the area, diagnose it,
isolate the failure, and try to predict the Remaining Useful
Life (RUL) for an area before failure takes place [20]. By
doing so, a maintenance scheduling is then determined and
the area shutdown is prevented. It is worth mentioning that
if the prediction model and the provided measurements are
not accurate, there is a high possibility that the maintenance
activity will not be done on time.

Health assessment and diagnostics activity of the area, that
is followed by prediction of RUL, requires online measure-
ments of the operating conditions of the area of interest.
These information are usually gathered through a number
of sensor nodes. In this study, we consider the case where
sensors communicate their information within a Wireless

Sensor Network (WSN). WSNs are different from traditional
computer networks, as the former are composed by a large
number of sensor nodes with very limited and non-renewable
energy. Most of the time, they are deployed to capture the
occurrence of possible events in hostile and inaccessible
areas [21]. A classical assumption in PHM is that monitoring
data is available and complete, which is not always true. Due
to the nature of communication in this network and to the
characteristics of its devices, a WSN is at risk of failure so
this will have an effect on the accuracy and completeness of
the data that will be captured, and consequently on PHM.
Therefore, one of our objectives is to maintain the Quality
of Service (QoS) of WSN as long as possible to ensure the
accuracy of the data of the monitored area. If such issue is not
taken into consideration while building a PHM process over
a WSN, the provided results of diagnostic or prognostic may
not be reliable.

From several factors and important parameters in WSN like:
lifetime, security, data aggregation, packet transfer, density,
etc, the topology in WSN has an important impact on the
accuracy of data and then on PHM. The variability of network
topologies due to node failures, introduction of additional
nodes, variations in sensor location, requires the adaptability
of underlying network structures and operations. From an-
other side, in order to save more energy sensor nodes may
be activated or deactivated into scheduling mechanisms in
order of keeping as much as possible a dense coverage and
achieve fault tolerance. Thus, the diagnostic processes must be
compatible with these strategies, and with a device’s coverage
of a changing quality.

In this paper, we study the topologies in WSN and its
relation with prognostic and health management. We focus on
the impact of topologies on the accuracy of the data captured
by the wireless sensor network, and its consequences on the
diagnostic of the status of the monitored area. Our objective
is to show that usual diagnostic processes that perform well in
classical data provided by a well deployed wired network of
sensors, may face a dramatic decrease of performances in the
case where data are obtained via a WSN, due to the diversity
and variation of topologies. To do so, we used six machine
learning algorithms to diagnose the area state, namely the so-
called Support Vector Machines (SVM), Naive Bayes (NB),
Random Forests (RF), Gradient Tree Boosting (GTB), Tree-



Based Feature Selection (TBFS), and Nearest Neighbors (NN)
methods. In addition, we study four different types of topology
(the most used in WSN) which are: distributed, hierarchical,
centralized, and decentralized topology.

The remainder of this article is structured as follows.
Section II presents an overview of WSNs topologies. In
Section III, we detail the links that can be established between
PHM and the topologies in WSN field or research. We simulate
and describe four different topologies in WSN to show their
impact on diagnostics, and the results of these simulations
are given in Section IV. This article ends with a conclusion
section, where the contribution is summarized and intended
future work is provided.

II. TOPOLOGIES IN WIRELESS SENSOR NETWORKS

In wireless sensor networks, the connectivity of the network
is established via radio transmission between sensors. For two
sensors to be able to communicate, they must be within some
critical range of each other, as transmission capability is finite.
A network is connected if any node can communicate with any
other node, possibly using intermediate nodes as relays. The
variability of network topologies (connectivity) due to node
failures, introduction of additional nodes, variations in sen-
sor location, requires the adaptability of underlying network
structures and operations. Since sensors may be spread in an
arbitrary manner, One of the fundamental issues that arises in
sensor networks in addition to the connectivity is the coverage.
In order to ensure connectivity and data accuracy in addition
to coverage, WSN use redundant coverage where multiple
sensors nodes cover the same physical location. Therefore,
coverage may vary across the network. A solution to save
energy in the network rises on finding scheduling mechanisms.
The objective of such mechanisms is to activate or deactivate
redundant nodes while keeping as much as possible a dense
coverage and ensuring connectivity.

Another metric to save energy in sensor networks is to
reduce the amount of data collected and transmitted via the
network. Data gathering in WSNs can be either periodic
or event-driven [7]. In periodic applications [12], [13], data
is gathered periodically while in event-driven applications
gathering depends on the occurrence of some events. In both
cases, the goal from aggregation is reducing energy dissipation
by holding packets for as long as possible in intermediate
nodes. All packets will be combined together then forwarded
in the network. It is obvious to see that a decrease in energy
consumption leads to an increase in the overall delay, and vice
versa. A reliable solution would aim at finding an acceptable
trade off between energy consumption and delay in WSNs [6],
[10].

WSNs can be either heterogeneous or homogeneous [11].
In the latter, all nodes have the same role and characteristics.
In the former, nodes have different roles: some nodes simply
sense and forward information while others aggregate data,
manage their area, perform computations, etc. Consequently,
some of the nodes can be equipped with higher energy, longer
radio range, etc. Several WSN topologies were used in existing

monitoring applications, but all of them revolved around
four different types (or models) of topologies which are:
distributed, hierarchical, centralized, or decentralized topology.

• Distributed topology: in distributed topologies, there is
no management of the network by the central node (or
a region of it). They consist of a collection of nodes
having equal roles. Therefore, no aspect of hierarchy
is considered. No prior infrastructure is imposed be-
fore the network starts running; each node discovers its
surrounding area and decides which node (or nodes)
to communicate with. This decision usually relies on
the radio range and the transfer distance. Distributed
topologies render the network’s maintenance an easy task:
if a node fails, its neighbors, within their sensing range,
will establish new links with other nodes, and the network
will continue to work normally.

• Hierarchical topology: the organization of sensor nodes
can be in several levels, making a hierarchical topology
(or a tree topology). Level 0 is represented by the root
and there is no level above. From two adjacent levels,
sensor nodes are connected in an end to end manner.
The hierarchical model can be seen as three different
layers: (1) the core layer (the root), which is enhanced for
availability and performance, (2) the distribution layer,
which implements policies and forwards messages, and
(3) the access layer (the leaf nodes), which represents the
access point to the network. Scalability is the advantage
of Hierarchical WSN. The network is more manageable
and the task of isolating and detecting faults is simplified
due to the presence of different levels.

• Centralized topology: its one of the easiest topologies to
design and implement (also called star topology). All the
sensor nodes have a simple task which is sensing new
information and forwarding it to a central node where
all the data processing will be proceeded with. One of
the major problems of this topology is that it presents a
single point of failure. The whole network will become
paralyzed if a problem occurs at the central node: The
data packet cannot be forwarded nor processed when a
new event is detected.

• Decentralized topology: decentralized topologies are
considered as a combination of the distributed and the
centralized topologies. The network is divided into re-
gions (or clusters) which are locally managed by a central
node (called the Cluster Head CH). This topology offers
a reasonable settlement between energy consumption and
Quality of Service (QoS). In this type of topology, there
is a reduction of congestion problem and the network no
longer has a single point of failure.

III. WSN TOPOLOGIES IMPACT ON PROGNOSTICS AND
HEALTH MANAGEMENT

Maintenance is an important activity in industry which is
either performed to revive a machine/component, or to prevent
it from breaking down. It aims at increasing system avail-
ability, readiness and enhancing safety. Different strategies



Fig. 1: The process of PHM.

have evolved through time in order to bring maintenance to
its current state: condition-based and predictive maintenance.
The increasing demand of reliability in industry caused this
evolution. PHM is a tool to predict the Remaining Useful
Life (RUL) of engineering assets and is the key process
of condition-based and predictive maintenance. Nowadays,
industrial machines are required to avoid shutdowns while
offering safety and reliability [18]. Research in PHM field
has gained and was given a great deal of attention. Prognostic
models are developed in an attempt to predict the RUL of
machinery (or monitored area) before failure takes place.
If there is no accuracy in the prediction model and the
provided measurements, the maintenance activity will possibly
be performed either too soon or too late.

Condition Based Maintenance (CBM) was proposed and
developed in early nineties [8], and it is based on real-time
observations. It is an on-line approach that assesses machine’s
health through condition measurements. As any maintenance
strategy, CBM aims to increase the system reliability and
availability while reducing costs of maintenance. This partic-
ular strategy has benefits which include avoiding unnecessary
maintenance tasks and costs, as well as not interrupting the
normal machine operations [8]. CBM decreases the number
of maintenance operations and reduces the influence of human
error. A new maintenance has recently emerged which is the
Predictive maintenance (PM). It predicts the system health
in the future and defines the needed maintenance activities
accordingly based on the current condition. Shifting from tra-
ditional maintenance strategies to CBM and PM requires extra
tasks. These tasks encompass data analysis and modeling,
system surveillance, and decision making support system. This
scientific approach is called PHM. PHM is the core activity
of CBM and PM. The steps of PHM are: data acquisition,
data processing, health assessment, diagnostics, prognostics,
and decision making support [9], this is done following the
steps described in Figure 1.

The aim of diagnostics is to specify and quantify an actual
failure while the aim of prognostics is anticipating failures.
Prognostics estimate the RUL by considering the past events,
in addition to the machine’s current state, and operating con-
ditions [9]. By studying the evolution of continuous measure-
ments of parameters that need to be tracked in time to assess
the machine’s state, this estimation is done. These parameters

can be temperature, humidity, vibration, pressure, and so on.
There is a fixed threshold for the monitored parameter. Once
this threshold is reached, an alarm goes on indicating that a
symptom of system deteriorating has been detected. After that,
a diagnosis of the state of the system is made and the RUL is
computed with an associated confidence limit. There are two
causes for the uncertainties of the RUL predictions: either the
threshold value of monitored parameter, or the RUL prediction
itself. The necessary prerequisites for reliable prognostics are
proposed in [15].

Reliability is necessary in industry (monitored area in gen-
eral). For the past years, the research in prognostics resulted
in variety of tools and techniques that offer the possibility
for plants to survey their systems, anticipate failures, and
schedule maintenance activities. WSNs are mainly designed
for surveillance purposes. They can be deployed in many
fields such as military, automotive, agriculture, medicine, and
so on [11]. Recently, a great deal of attention was given to
WSN applications by industry. These sensor networks are
used to monitor their machinery for maintenance scheduling.
Furthermore, data will be provided by the sensors deployed
to survey the system/component in order to assess the health,
diagnose the system, and estimate the RUL. However, inac-
curacy in the data will cause the prediction based on it to be
irrelevant. The topologies in WSN have important impact on
the accuracy of data and therefore have an important impact
on PHM. Before the network starts running, studying and
choosing the topologies in WSNs need to be considered. The
aim of this study is to reveal the impact of topologies in WSN
on the accuracy of the captured data from the monitored area
and therefore on PHM. We can say that the accuracy of the
data is related to the topologies used in WSN from several
factors and important parameters in WSN. Lifetime is one
of the most important factors in WSN which is related to
topologies, and this is because the costs related to energy
consumption varies with the variation of topologies (data
aggregation, packet transfer distance, frequency, etc). Security
is another important factor also related to topologies, and
this is because the role and characteristics of nodes differ
according to topologies (some nodes simply sense and forward
information while others aggregate data, manage their area,
perform computations, etc). Several factors other than those
mentioned play an important role in the accuracy of data in
WSN with the variation of applications (topologies), such as
density, batteries of nodes, data aggregation, etc. What is worth
mentioning is that data aggregation is important in increasing
the lifetime of network as mentioned before, but on the other
hand, data aggregation always reduces the data accuracy, so
the error rate of diagnosis is greatly related to the method of
data aggregation. Since good predictions rely on real data, it is
certain that the first step to be done in the research is ensuring
a reliable source of information.

IV. NUMERICAL STUDY

A. Experimental protocol



1) WSN simulation: In this paper, in order to show the
impact of WSN topologies on the PHM, we used three
types of sensing fields: temperature, pressure, and humidity.
Therefore, we considered a network of 300 sensor nodes,
sensing respectively the levels of temperature (100 sensors),
pressure (100), and humidity (100 sensors). Each sensor node
has a battery of 300u (u is the battery unit), and captures
specific data depending on the operating age t. We consider
that no level of correlation is introduced between the different
features:

• Under normal conditions, temperature sensors follow a
Gaussian law of parameter (20× (1+0.005t), 1), in case
of a malfunction of the area in the range of this sensor,
these parameters are mapped to (350, 20). Finally, these
sensors return the value 2 when they break down.

• The pressure sensors produce data following a Gaussian
law of parameter (5 × (1 + 0.01t), 0.3) when they are
sensing a well-functioning area. The parameters changed
to (20, 2.5) in case of area failure in the location where
the sensor is placed, as long as the pressure sensors
return 1 when they are broken down.

• The Gaussian parameters are (52.5× (1 + 0.001t), 12.5)
when both the area and the humidity sensors are in
normal conditions. These parameters are set to (80, 10)
in case of area failure in the range of this sensor, whereas
malfunctioning humidity sensors produce the value 3.

Each sensor follows a Poisson process (Pp) of parameter
(200×(1−0.01t)+0.01), to determine if a breakdown occurs
in the location where sensor is placed. Subsequently all of
these sensors execute Algorithm 1.

Algorithm 1 Sensor algorithm

if Pp < 1 then
the area and the sensors are in normal conditions

else
if 1 ≤ Pp < 100 then

the area in failure (in the range of this sensor)
else

the sensor is broken down
end if

end if

Each category of sensors has its own constant threshold,
depending on the abnormality of the sensed data. If the
captured data by the sensor in a specific category exceeded the
threshold, this indicates that a symptom of system deteriorating
has been detected. Then a diagnostic study aims for specifying
and quantifying an actual failure (whether it failed or not). In
this work, we used six algorithms for diagnosis, which are
mentioned in Section IV-A2. In this study, we consider the
values of the thresholds as follows: 26 degrees for temperature,
7 bars in pressure, and 80 percents of humidity.

The deployment strategy (manually or randomly) of sen-
sors [17], the adjustment of the coverage range of sensors [23],
and the density in WSN [1] have an important impact on

the accuracy of the data captured by WSN that will be used
to diagnose the state of area. In order to study the impact
of topologies of WSN on diagnostics, in our simulation we
consider the following:

• Most of the times, the area to be monitored is haz-
ardous and hard to access because of the difficulty in
its geographical area like monitoring the forests, oceans,
military zones, etc. Therefore in this study, we used
random deployment for area monitoring.

• Suppose that in this work, the region to be monitored
is a rectangle of area A = L × W such that L and
W are the length and width of the monitored region
respectively. The area of the coverage range of the sensor
is mostly related to the area of the region to be monitored.
Therefore we consider the area of the coverage range to
be equal 1% of the total area of the region. Subsequently,
the coverage radius will be R = 1/10×

√
A/π.

• Suppose that the density of sensors in the monitored area
is constant (300 sensors), and that the area is fully covered
by these sensors at time t = 0 (when the WSN starts
working).

2) Machine learning algorithms: The research in PHM is
very broad and the authors working in this domain use several
algorithms in order to perform the diagnostic of the state
of system. These algorithms in literature are called machine
learning algorithms. In machine learning, classification refers
to identifying the class to which a new observation belongs, on
the basis of a training set and quantifiable observations, known
as properties. Machine learning displays a detailed study about
the system and from it, an algorithm is built. These algorithms
can be operated by building a model from examples inputs in
order for the algorithm to be able to diagnose or take decision
for new data.

We have chosen six machine learning algorithms (to diag-
nose the system) which were used before by several authors in
literature in order to evaluate the PHM. Our study in this work
focused on evaluating these six diagnostic algorithms with
the variation of the topology of WSN. These algorithms are:
Support Vector Machine (SVM) [5], Naive Bayes (NB) [16],
[22], Random Forests (RF) [2], [4], Gradient Tree Boosting
(GTB) [3], Tree-Based Feature Selection (TBFS) [19], and
Nearest Neighbors (NN) [14].

Finally we need a large and reliable data set in order to train
these algorithms. So that, later, we can diagnose the system
(area monitoring) from the new data that will be captured by
WSN. For that, we take data consisting of N lines, each line is
composed by T temperature data, P data of pressure, and H
data of humidity to train these algorithms. All of these data
are generated in the same way mentioned in Section IV-A1
(same type of data that will be captured by WSN during area
monitoring).

B. Simulation results

In order to illustrate the impact of topologies on the quality
of data and the diagnosing of the state of the monitored area,
we simulated four different topologies: decentralized topology,



distributed topology, hierarchical topology and centralized
topology.

1) Decentralized topology: In order to study the impact of
decentralized topology on the diagnosing of state of area, we
consider that the nodes are grouped into 30 clusters. Each
cluster is managed by a leader called cluster head (CH) or
aggregator which is equipped with batteries of 1500u. The
sensors capture the data from the area and send it to the CH,
the latter aggregates the data and send it to another CH or to
the sink. In this study, we consider that the data aggregation
at the CH happens as follows:

S−1∑
i=0

Dc
i /S (1)

where D is the data sent from the sensor to the aggregator,
c is the type of sensor (temperature, pressure, or humidity),
and S is the number of data that will be aggregated each time
(for example, every 3 data from a certain type which are sent
to CH from sensors, undergo aggregation).

(a) Sensors network at time t = 0. (b) Sensors network at time t = x.

Fig. 2: Scenario of decentralized topology.

The scenario of this topology is shown in Figure 2, the
deployment of sensors is random, and the distribution and par-
tition of CH on sensors follows K-means clustering method.
Each sensor sends data to its CH. The latter, after aggregating
these data, sends it to the closest CH on the condition that this
CH is closest to the sink. If no CH meets this requirement,
it will send it directly to the sink as shown in Figure 2a.
After time t = x, the CH and sensors may become inactive
for several reasons most importantly energy consumption or
activity scheduling. If a CH became inactive, sensors in this
cluster find other closest clusters to be in. In addition, CHs
communicating with this inactive CH change their routes to
the closest active CH. What is worth mentioning is that the
black circles are the active sensors, the white circles are the
inactive sensors, the black hexagons are the active CH, the
white hexagons are the inactive CH, and finally the crossed
circle is the sink.

In this study, we supposed that the area is fully covered
by these sensors after they have been randomly deployed.
As mentioned before, the topology may be dynamic, the
sensors or CHs on the long term will die (because of energy
consumption) or break down (due to various causes as the
operating age). Figure 3 shows the variation of error rate for
the six considered algorithms, in the case where the topology

Fig. 3: Error rate in diagnostics if the topology is decentralized
with the variation of the time.

is decentralized, with the variation of time t (operating age).
Each point in this figure is an average of error rates of a given
algorithm on 20 simulations (for a certain t). As shown in the
figure, during t = 0 | t = 60 (if 0 ≤ t ≤ 60), each algorithm
has a specific error interval (in %) as follows: [24, 30] for
SVM, [14, 20] for NB, [16, 20] for RF, [8, 12] for GTB, [12, 17]
for TBFS, and [22, 26] for NN. After that (if t > 60) the
error rate for each algorithm increased significantly at these
intervals to reach at t = 70, 44 % for SVM, 24 % for NB,
22 % for RF, 36 % for GTB, 23 % for TBFS, and 40 %
for NN. This shows that at this time the sensors and CH in
WSN are dying or breaking down, and this fact leads to the
presence of uncovered places in the area (coverage hole) and
therefore incomplete data for diagnostics. Then when the WSN
exceeds t = 60 (if t > 60) the error rate of algorithms increase
as time increase to reach 91 % at t = 100 if the algorithm
is SVM, 89 % if NB, 88 % if RF, 90 % if GTB, 89 % if
TBFS, and 90 % if NN (approximately the whole network is
inactive). What is worth mentioning is that the error rate in this
simulation (decentralized topology) is related to the method of
data aggregation.

2) Distributed topology: The scenario of distributed topol-
ogy is shown in Figure 4, where all sensor nodes in the
network have the same role and importance; i.e. there is no
aggregation role, no clusters, and no CHs. Data packets are
forwarded in a hop-by-hop manner. Each sensor is able to
discover its neighbors within a radio range of 2Rc (Rc is
the coverage range). We assume that every node can access
information about its neighbors, including their locations. The
nodes choose neighbors to communicate with, and the latter
should be closest to the sink within the sender’s radio range.
If the sensor is closest to the sink, the sensor will then send
it directly to the sink.

As explained in the scenario before, after certain time t = x,
the sensors may become inactive and the routes always change
in function of the closest neighbors to the sink as shown
in Figure 4b. What is worth mentioning is that the black,
white, and crossed circles represent the active sensors, inactive
sensors, and the sink respectively.



(a) Sensors network at time t = 0. (b) Sensors network at time t = x.

Fig. 4: Scenario of distributed topology.

Fig. 5: Error rate in diagnostics if the topology is distributed
with the variation of the time.

Figure 5 presents the variation of error rate for the six
considered algorithms in the case of distributed topology, with
the variation of time t (operating age). Each point in this
figure is an average of error rates of a given algorithm on
20 simulations (for a certain t). As shown in the figure, during
t = 0 | t = 40 (if 0 ≤ t ≤ 40), each algorithm has a specific
error interval (in %) as follows: [14, 20] for SVM, [7, 10] for
NB, [7, 12] for RF, [2, 6] for GTB, [4, 8] for TBFS, and [12, 17]
for NN. After that (if t > 40) the error rate for each algorithm
increased significantly at these intervals to reach at t = 50,
40 % for SVM, 20 % for NB, 16 % for RF, 30 % for GTB,
18 % for TBFS, and 36 % for NN. This shows that at this
time the sensors in WSN are dying or breaking down, and
this fact leads to the presence of uncovered places in the area
(coverage hole) and therefore incomplete data for diagnostics.
Then when the WSN exceeds t = 40 (if t > 40) the error
rate of algorithms increase as time increase to reach 90 % at
t = 90 if the algorithm is SVM, 89 % if NB, 88 % if RF,
90 % if GTB, 89 % if TBFS, and 91 % if NN (approximately
the whole network is inactive).

3) Hierarchical topology: As we have mentioned in Sec-
tion II, sensor nodes can be organized in several levels, making
a hierarchical topology. The sensor nodes are organized in a
tree hierarchy from the sink (being the root of a tree), until
sensor nodes having no descendants (leaf nodes). In order
to study the impact of hierarchical topology on diagnosis,
and to compare this topology to other topologies, we took
WSN composed of 300 sensors (leaf nodes), and each sensor

has 300u for battery. These sensors are considered as the
access layer in this topology (third layer). We considered 30
nodes playing the role of the second layer in topology (the
distribution layer), which implements policies and forward
messages. These nodes responsible for building the links
between the leaf nodes towards the sink (core layer). Each
sensor from these 30 has 300u for battery supply, on the
contrary, in a decentralized topology, CHs are given an extra
supply, therefore the batteries last longer and we dispose with
more data for diagnostics.

(a) Sensors network at time t = 0. (b) Sensors network at time t = x.

Fig. 6: Scenario of hierarchical topology.

The scenario of this topology is shown in Figure 6. After a
certain time t = x, the sensors in access layer or distribution
layer may become inactive for several reasons most impor-
tantly energy consumption. Unfortunately if a parent node (in
distribution layer) become inactive, its children can no longer
communicate with other nodes in the network. In this case, in
order to keep connectivity, each sensor will then communicate
with the closest active node in the distribution layer as shown
in Figure 6b.

Fig. 7: Error rate in diagnostics if the topology is hierarchical
with the variation of the time.

Figure 7 indicates the variation of error rate for the six
considered algorithms under the same conditions of the pre-
vious studies, but here it is the case where the topology is
hierarchical with the variation of time t. Each point in this
figure, is an average of error rates of a given algorithm on
20 simulations (for a certain t). As shown in the figure, during
t = 0 | t = 20 (if 0 ≤ t ≤ 20), each algorithm has a specific
error interval (in %) as follows: [15, 18] for SVM, [8, 10]



for NB, [8, 12] for RF, [4, 6] for GTB, [4, 8] for TBFS, and
[12, 15] for NN. These intervals are approximately the same
where the topology is distributed (where the whole network is
active), and this is because in these two topologies, there is no
data aggregation as the decentralized topology. After that (if
t > 20) the error rate for each algorithm increased significantly
at these intervals to reach at t = 30, 40 % for SVM, 20 % for
NB, 16 % for RF, 30 % for GTB, 18 % for TBFS, and 36 %
for NN. This shows that at this time the sensors in WSN (in
access or distribution layer) are dying or breaking down, and
this fact leads to the presence of uncovered places in the area
(coverage hole) and therefore incomplete data for diagnostics.
Then when the WSN exceeds t = 20 (if t > 20) the error
rate of algorithms increase as time increase to reach 91 % at
t = 100 if the algorithm is SVM, 90 % if NB, 89 % if RF,
90 % if GTB, 89 % if TBFS, and 90 % if NN (approximately
the whole network is inactive).

4) Centralized topology: In centralized topology, all the
sensor nodes have the simple task of sensing new information
and forwarding it to a central node where all the data process-
ing is done as shown in Figure 8a. In this topology, we can
notice that after t = x, the nodes that exhaust their energy first
are the farthest from the sink. This is due to the long distance
of packet transfer as shown in Figure 8b. The black and white
circles are the active and inactive sensors respectively, and the
crossed circle is the sink.

(a) Sensors network at time t = 0. (b) Sensors network at time t = x.

Fig. 8: Scenario of centralized topology.

Figure 9 shows the variation of error rate for the six con-
sidered algorithms under the same conditions of the previous
studies. Each point in this figure is an average of error rates of
a given algorithm on 20 simulations (for a certain t). As shown
in the figure, at t = 0 (when the WSN starts working) each
algorithm has a specific error rate (in %) as follows: 18 % for
SVM, 10 % for NB, 12 % for RF, 5 % for GTB, 7 % for
TBFS, and 16 % for NN. During the work of the network,
with time, the sensors that are located farthest from the sink
start dying first because they consume more energy than the
others, and this is due to the long distance of packet transfer.
For that at t = 10 the error rate increased in a noticeable way
to become 52 % with SVM, 35 % with NB, 28 % with RF,
44 % with GTB, 32 % with TBFS, and 48 % with NN. This
is a proof that the data became incomplete for diagnostic, and
this is because the regions far from the sink are no longer
covered by sensors. Then when the WSN exceeds t = 10 (if

t > 10) the error rate of algorithms increase as time increase
to reach 91 % at t = 90 if the algorithm is SVM, 89 % if NB,
88 % if RF, 90 % if GTB, 89 % if TBFS, and 90 % if NN
(approximately the whole network is inactive).

Fig. 9: Error rate in diagnostics if the topology is centralized
with the variation of the time.

5) Discussion: In this section we will explain and compare
the results we obtained in our study in order to focus on several
issues or parameters related to topologies which have a great
impact on diagnostics (PHM). We notice in Figure 5 (with
distributed topology), the noticeable variation of error rate of
the algorithms with time from what is shown in Figure 3 (with
decentralized topology). We note from these two figures that
in Figure 5 the sensors after t = 40 (t > 40) started dying
or breaking down, and the whole network became inactive at
t = 90, while in Figure 3 the sensors or CH started dying or
breaking down after t = 60 (t > 60), and the whole network
became inactive at t = 100. Moreover we can notice that
in Figure 3, during t = 0 | t = 60 (the whole network is
active) the error rate is evolving in a way larger than the one
in Figure 5 during t = 0 | t = 40 (where the whole network is
active). From this study and based on this comparison we can
conclude that the lifetime of the networks with decentralized
topology is greater than if it were distributed topology, and
this is due to that the data aggregation reduces the number of
packet transfer, and therefore it further reduces the overall
energy consumption in the network. But the error rate of
diagnosis is greatly related to the method of data aggregation
(if the topology is decentralized) because data aggregation
always reduces the data accuracy that will be used to diagnose,
and this is shown and clarified in these two figures where the
whole network is active.

We had a different scene in Figure 7 (with hierarchical
topology) because the variation of error rate of the algorithms
varied with time in a significant way from what is shown in
Figure 3 and 5 (with decentralized and distributed topology).
We notice from these figures that in Figure 7 the sensors after
t = 20 (t > 20) started dying or breaking down, while in
previous studies, the sensors became inactive after this time
as shown in the figures (variation of error rate with time).
Based on this study, we can conclude that the lifetime of the
network with hierarchical topology is smaller than if it were



decentralized or distributed topology (the network lifetime
defined as time until the first node dies). Furthermore, we
note that the whole network with hierarchical topology became
inactive at t = 100 as the network with decentralized topology,
while with distributed topology the whole network became
inactive at t = 90. Based on these results, we can conclude
the importance of dividing the WSN in area monitoring into
regions which are locally managed by a central node (or parent
node).

If we suppose that the network lifetime can alternatively
be defined as the time until the first node dies, then by
relying on the change of curves in these figures, we conclude
that the lifetime of the network with centralized topology is
smaller than if it were decentralized, distributed, or hierarchi-
cal topology. Moreover, the whole network with hierarchical
and decentralized topology became inactive at t = 100, while
with distributed and centralized topology the whole network
became inactive at t = 90. Based on these four results, we
confirm what we mentioned before about the importance of
dividing the WSN in area monitoring into regions which are
locally managed by a parent node (the network remains active
for a longer time, therefore the sink continues to receive
information from the monitoring area for a longer time). Based
on this work, we were able to notice the importance and impact
of each type of topology in WSN on diagnostics with the
increase of operating age of WSN, and focus on several issues
related to these types of topologies.

V. CONCLUSION AND FUTURE WORK

The WSNs provide a new way of distributed data collection
and wireless transmission for PHM to diagnose the state of an
area and to be informed if it is in failure or not. Topologies
in WSN are important factors to achieve QoS in WSNs
application. In this paper, we explained the relation between
WSN topologies and their impact on PHM and the area
diagnostic. We mentioned and studied four different topologies
in WSN, each one of them belonging to a certain type as
follows: distributed, hierarchical, centralized, and decentral-
ized topology. In this work, we focused on several issues
related to these types of topologies. We studied the lifetime
of each type, and concluded that the lifetime of decentralized
topology is larger than the other. Therefore we can say that
this type of topology is the best for PHM reliability, and this
is because the complete data from the area are available for
a longer time. We conclude also that dividing the WSN in
area monitoring into regions which are locally managed by a
parent node (like decentralized and hierarchical topology) is
very important, because the network in this case remains active
for a longer time. As a future work, we plan to study other
factors like density, data aggregation, coverage and scheduling,
communication, etc and their impact on PHM.

This work is partially funded by the Labex ACTION program
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