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Abstract

The model of tree automata with global equality and disequality con-
straints was introduced in 2007 by Filiot, Talbot and Tison, and extended
in various ways since then. In this paper we show that if there is at least
one disequality constraint, the emptiness problem is NP-hard.

1 Introduction
Tree automata are a pervasive tool of contemporary computer science, with
applications running the gamut from XML processing [12] to program veri-
fication [4, 13, 11]. Since their original introduction, they have spawned an
ever-growing family of variants, each with its own characteristics of expressive-
ness and decision complexity. Among them is the family of tree automata with
equality and disequality constraints, providing several means for comparing sub-
trees. Examples of such automata are the original class introduced in [14], their
restriction to constraints between brothers [3], and visibly tree automata with
memory and constraints [6]. In this paper we focus on a recently introduced vari-
ant: tree automata with global equality and disequality constraints [8, 9], later
extended [1, 2]. For this class of automata, the universality problem is undecid-
able [9], while membership is NP-complete [9], and emptiness is decidable [1, 2].
Several complexity results for subclasses were pointed out in the literature: the
membership problem remains NP-complete for rigid tree automata [13] but it is
polynomial for tree automata with a fixed number of equality constraints and no
disequality constraints [11]. The emptiness problem is EXPTIME-complete if
there are only equality constraints [9], in NEXPTIME if there are only irreflexive
disequality constraints [9], and in 3-EXPTIME if there are only reflexive dise-
quality constraints [7]. The latter, closely related to key constraints for XML
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documents, disallowed in [8, 9], were introduced in [1] – we use such constraints
in this paper. However, emptiness is decidable in polynomial-time for rigid tree
automata [13].

It is known that the emptiness problem is NP-hard for tree automata with
global disequality constraints, by reduction of emptiness for DAG1 automata [5]:
c.f. [15, Thm. 4.1]. Those automata run on DAG representations of terms, such
that identical subterms must be rooted in the same node of the DAG. Therefore
any subterms evaluated in different states must be rooted at different positions in
the DAG, and thus must be different. The reduction from DAG automata to tree
automata with global disequality constraints is easy: the rules are unchanged,
and it suffices to add disequality constraints between every couple of distinct
states.

Whereas that reduction requires an arbitrary number of disequality con-
straints, in this paper we show that a single (reflexive) disequality constraint
is sufficient: the emptiness problem is NP-hard for tree automata with global
equality and disequality constraints if there is at least one disequality constraint.

2 Formal Background
A ranked alphabet is a finite set F of symbols equipped with an arity function
arity from F into N. Symbols of arity 0 are called constants. The set of terms
on F , denoted T (F) is inductively defined as the smallest set satisfying: for
every t ∈ F such that arity(t) = 0, t ∈ T (F), if t1, . . . , tn are in T (F) and
if f ∈ F has arity n > 0, then f(t1, . . . , tn) ∈ T (F). The set of positions of
a term t, denoted Pos(t), is the subset of N∗ (finite words over N) inductively
defined by: if arity(t) = 0, then Pos(t) = {ε}; if t = f(t1, . . . , tn), where n > 0
is the arity of f , then Pos(t) = {ε} ∪ {i · αi | αi ∈ Pos(ti)}, where · denotes
the concatenation of positions. A term t induces a function (also denoted t)
from Pos(t) into F , where t(α) is the symbol of F occurring in t at the position
α. The subterm of a term t at position α ∈ Pos(t) is the term t|α such that
Pos(t|α) = {β | α · β ∈ Pos(t)} and for all β ∈ Pos(t|α), t|α(β) = t(α · β). For
any pair of terms t and t′, any α ∈ Pos(t), the term t[t′]α is the term obtained
by substituting in t the subterm rooted at position α by t′. Let X be an infinite
countable set of variables such that X ∩ F = ∅. A context C is a term in
T (F ∪X ) (variables are constants) where each variable occurs at most once; it
is denoted C[X1, . . . , Xn] if the occurring variables are X1, . . . , Xn. If t1, . . . , tn
are in T (F), C[t1, . . . , tn] is the term obtained from C by substituting each Xi

by ti. The depth of a term t is the maximal length of the words in Pos(t).
A tree automaton on a ranked alphabet F is a tuple A = (Q,∆, F ), where

Q is a finite set of states, F ⊆ Q is the set of final states and ∆ is a finite
set of rules of the form f(q1, . . . , qn) → q, where f ∈ F has arity n and the
qi’s and q are in Q. A tree automaton A = (Q,∆, F ) induces a relation on
T (F ∪Q) (where elements of Q are constant), denoted →A or just →, defined
by t →A t′ if there exists a transition f(q1, . . . , qn) → q ∈ ∆ and α ∈ Pos(t)

1directed acyclic ordered graphs with maximal sharing property
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such that t′ = t[q]α, t(α) = f and for every 1 ≤ i ≤ n, t(α · i) = qi. The reflexive
transitive closure of →A is denoted →∗A. A term t ∈ T (F) is accepted by A if
there exists q ∈ F , such that t →∗A q. A run ρ in A for a term t ∈ T (F) is a
function from Pos(t) into Q such that if α ∈ Pos(t) and t(α) has arity n, then
t(α)(ρ(α · 1), . . . , ρ(α · n))→ ρ(α) is in ∆. An accepting run is a run satisfying
ρ(ε) ∈ F . It can be checked that a term t is accepted by A iff there exists an
accepting run ρ for t and, more generally, that t→∗A q if there exists a run ρ for
t in A such that ρ(ε) = q. The set of the terms accepted by A is denoted L(A).

A tree automaton with global equality and disequality constraints (TAG∧

for short, following the notations of [2]) on a ranked alphabet F is a tuple
(A, R1, R2), where A = (Q,∆, F ) is a tree automaton on F and R1, R2 are
binary relations over Q. The relation R1 is called the set of equality con-
straints and the relation R2 the set of disequality constraints. A term t is
accepted by (A, R1, R2) if there exists an accepting run ρ for t in A such that:
if (ρ(α), ρ(β)) ∈ R1, then t|α = t|β , and if α 6= β and (ρ(α), ρ(β)) ∈ R2,
then t|α 6= t|β . The set of the terms accepted by (A, R1, R2) is denoted
L((A, R1, R2)).

For a ranked alphabet F , let TAG∧(k′,k) denote the class (A, R1, R2) of
TAG∧, where A is a tree automaton over F , |R1| ≤ k′ and |R2| ≤ k.

3 TAG∧ and the Hamiltonian Path Problem
The paper focuses on proving the following theorem.

Theorem 1 The emptiness problem for TAG∧(0,1) is NP-hard.

The proof of Theorem 1 is a reduction from the Hamiltonian Path Problem
defined below.

Hamiltonian Path Problem
Input: a directed finite graph G = (V,E), with |V | ≥ 1;
Output: 1 if there exists a path in G visiting each element of V exactly
once, 0 otherwise.

The Hamiltonian Path Problem is known to be NP-complete [10]. A path
in a non-empty directed graph visiting each vertex exactly once is called a
Hamiltonian path. Before proving Theorem 1, let us mention the following
direct important consequence, which is the main result of the paper.

Corollary 2 For every fixed k ≥ 1, and every fixed k′ ≥ 0, the emptiness
problem for TAG∧(k′,k) is NP-hard.

We have divided the proof of Theorem 1 into a sequence of lemmas, that
can be sketched as follows. Firstly, we show that in a directed graph G with n
vertices (with n ≥ 1), the number mG of paths of length n−1 can be computed
in time polynomial in n (Lemma 4). Secondly, we show how to construct in
time polynomial in log(mG) a tree automaton AmG

accepting a single term
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having exactly mG leaves (Lemma 5). Next, we build an automaton accepting
encodings of paths of length n−1 in the graph that are not Hamiltonian paths: at
least one vertex is visited twice (Lemma 7). Combining these two constructions,
one obtains a tree automaton that accepts terms encoding the multisets of
cardinality mG whose elements are encodings of non-Hamiltonian paths of G
of length n − 1. Adding a global disequality constraint allows us to obtain a
TAG∧ that accepts terms encoding the sets (rather than multisets) of cardinality
mG whose elements are encodings of non-Hamiltonian paths of G of length n−1.
By a direct cardinality argument, this TAG∧ accepts at least one term iff there
is no Hamiltonian path in G (Lemma 8).

Lemma 3, below, is immediately obtained by a cardinality argument.

Lemma 3 In a directed graph G with n vertices, with n ≥ 1, there exists a
Hamiltonian path iff there is a path of length n− 1 that does not visit the same
vertex twice.

Lemma 4 Let G = (V,E) be a non-empty directed graph. One can compute
mG in time polynomial in the size of G.

Proof. Let us denote by mG,k,u,v, for any k ≥ 0, any u ∈ V and any v ∈ V ,
the number of paths of length k from u to v in G. One has mG,k+1,u,v =∑

(u,u′)∈EmG,k,u′,v, and mG,0,u,v = 1 if u = v and mG,0,u,v = 0 otherwise.
Therefore, every mG,k,u,v, for k < |V |, can be computed recursively in time
polynomial in |V |. Note that mG =

∑
u,v∈V mG,|V |−1,u,v, concluding the proof.

2

Note that mG ≤ |V ||V |.
Let F1 = {f, g, A}, where f has arity 2, g arity 3, and A is a constant.

The following construction aims to build in time polynomial in log(m) a tree
automaton accepting a unique term having exactly m leaves.

Let m be a strictly positive integer and let β1 . . . βk be the binary represen-
tation of m (β1 = 1 and βi ∈ {0, 1}).

Let Am = (Q1,∆1, F1) be the tree automaton over F1, where Q1 = {qi |
1 ≤ i ≤ k}, F1 = {qk} and ∆1 = {A → q1} ∪ {f(qi, qi) → qi+1 | 1 ≤ i ≤
k − 1 and βi+1 = 0} ∪ {g(qi, qi, q1)→ qi+1 | 1 ≤ i ≤ k − 1 and βi+1 = 1}.

Lemma 5 The tree automaton Am can be computed in time polynomial in k.
Moreover, L(Am) is reduced to a single term having exactly m leaves, all labelled
by A.

Proof. The automaton Am has k states and ∆1 is built directly by reading
the βi’s. Therefore Am can be computed in time polynomial in k.

The proof is by induction on k. If k = 1, then m = 1 = β1 (since m 6= 0).
In this case Q1 = F1 = {q1} and ∆1 = {A → q1}; therefore L(A1) = {A} and
the lemma result holds.

Now assume that the lemma is true for a fixed k ≥ 1. Let 2k ≤ m < 2k+1

and setm = β1 . . . βkβk+1, the binary representation ofm. Two cases may arise:
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• βk+1 = 0: In this case, by construction, the terms accepted by Am are
exactly the terms of the form f(t1, t2), with t1 →∗Am

qk and t2 →∗Am
qk.

They correspond to the terms f(t1, t2), with t1, t2 ∈ L(Am
2

). By induction
hypothesis, L(Am

2
) is a singleton containing a unique term with m

2 leaves,
all labelled by A. It follows that L(Am) accepts a unique term with
2 · m2 = m leaves, all labelled by A.

• βk+1 = 1: Similarly, the terms accepted by Am are exactly the terms of
the form g(t1, t2, A), with t1, t2 ∈ L(Am−1

2
). By induction, it follows that

L(Am) accepts a unique term with 1 + 2 · m−1
2 = m leaves, all labelled

by A.

Therefore, the lemma result holds also for k + 1, which concludes the proof. 2

Since, by Lemma 4, mG can be computed in time polynomial in |V |, then,
using Lemma 5, the construction of AmG

can be done in time polynomial in
|V |, proving the following lemma.

Lemma 6 Let G be a non-empty directed graph satisfying mG 6= 0. The tree
automaton AmG

can be computed in polynomial time in the size of G.

The next construction is dedicated to a tree automaton P(2)
G accepting terms

encoding sequences of vertices of G of length |V |. More formally, let G = (V,E)
be a non-empty directed graph and let n = |V |. Let F2 = {⊥} ∪ {Av | v ∈ V },
where ⊥ is a constant and the Av’s are of arity 1. Let P(2)

G = (Q2,∆2, F2) be
the tree automaton over F2, where Q2 = {q0, . . . , qn}, F2 = {qn}, and

∆2 = {⊥ → q0} ∪ {Av(qi)→ qi+1 | v ∈ V and 0 ≤ i ≤ n− 1}.

The automaton P(2)
G accepts the set of terms of the form Av1(. . . Avn(⊥) . . .) of

depth n over F2.
Now let P(3)

G be the tree automaton (Q3,∆3, Q3 \ {q⊥}) over F2, with Q3 =
{q⊥}∪{qv | v ∈ V } and ∆3 = {⊥ → q⊥}∪{Av(q⊥)→ qv | v ∈ V }∪{Av(qw)→
qv | (w, v) ∈ E}. By construction, the automaton P(3)

G accepts terms of the
form Av1(. . . Avk(⊥) . . .) where vk . . . v1 is a path in G (possibly of length 0).

Let P(4)
G be the tree automaton (Q4,∆4, {qfinal}) over F2, where Q4 = {qall,

qfinal} ∪ {qv | v ∈ V } and ∆4 = {⊥ → qall} ∪ {Av(qall) → qv, Av(qall) → qall |
v ∈ V } ∪ {Av(qv) → qfinal, Aw(qv) → qv | v, w ∈ V } ∪ {Av(qfinal) → qfinal | v ∈
V }. The automaton P(4)

G accepts the terms of the form Av1(. . . Av`(⊥) . . .) of
arbitrary depth on F2 such that at least two Avi ’s are equal.

The tree automata P(2)
G , P(3)

G and P(4)
G can be constructed in time polynomial

in the size of G. Therefore, using classical product of automata, one obtains
the following result. The uniqueness of the final state can also be obtained in
polynomial time using classical ε-transition removal.
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Lemma 7 Let G = (V,E) be a non-empty directed graph. One can compute in
time polynomial in |V |, a tree automaton PG on F2, with a unique final state,
and accepting the terms of the form Av1(. . . Av|V |(⊥) . . .) such that v|V | . . . v1 is
a non-Hamiltonian path in G of length |V | − 1.

Let G = (V,E) be a non-empty directed graph satisfying mG 6= 0. Without
loss of generality, one can assume that the set of states of AmG

= (Q1,∆1, {qk})
and PG = (Q,∆, {qf}) are disjoint except that q1 = qf . We consider the
automaton DG = (Q5,∆5, F5) over (F1 ∪ F2) \ {A} defined by: Q5 = Q ∪ Q1,
F5 = {qk} and ∆5 = (∆ ∪∆1) \ {A→ q1}.

Lemma 8 Let G be a non-empty directed graph satisfying mG 6= 0. The TAG∧

(DG, ∅, {(q1, q1)}) can be constructed in time polynomial in the size of G. More-
over, it accepts the empty language iff there exists a Hamiltonian path in G.

Proof. Using Lemma 5, the terms accepted by DG are those of the form
C[t1, . . . , tmG

], where C[A, . . . , A] is the unique term accepted by AmG
and

each ti is accepted by PG. By Lemma 5 and 7, and the definition of DG, it
follows that the construction can be done in polynomial time with respect to the
size of G. With the disequality constraint, (DG, ∅, {(q1, q1)}) accepts an empty
language iff |L(PG)| < mG. But, by Lemma 7 |L(PG)| is exactly the number of
non-Hamiltonian paths in G of length |V |−1. Since mG is the number of paths
of length |V | − 1 in G, using Lemma 3, L((DG, ∅, {(q1, q1)})) = ∅ iff there exists
a Hamiltonian path of length |V | − 1 in G. 2

Assume that the Hamiltonian Path Problem restricted to non-empty directed
graphs G such that mG 6= 0 can be solved in polynomial time in the size of G.
Then, given a non-empty directed graph G, one can first test (in polynomial
time by Lemma 4) whether mG 6= 0. If mG = 0, then there is no Hamiltonian
path in G. Otherwise, one can test in polynomial time in the size of G whether
there is a Hamiltonian path in G. Since the Hamiltonian Path Problem is NP-
complete [10], the Hamiltonian Path Problem restricted to non-empty directed
graphs G such that mG 6= 0 is NP-complete too. Therefore, Theorem 1 is a
direct consequence of Lemma 8.

4 Conclusion
In this paper we have proved that the emptiness problem for tree automata with
global constraints is NP-hard if there is at least one disequality constraint. It
is known that the emptiness problem for tree automata with global constraints
with only irreflexive disequality constraints is in NEXPTIME [9], and that it
is NP-hard – by reduction of emptiness for DAG automata [5]. If there are
only reflexive disequality constraints, emptiness is known to be solvable in 3-
EXPTIME [7]. The gap between these bounds is large and deserves to be
refined.
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