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Abstract

The influence of an external harmonic excitation on the intrinsic localized modes of a chain of

nonlinear pendulums is numerically investigated. We show, in particular, how the existence and

stability domains of solitons are modified when the coupled pendulums are simultaneously sub-

jected to external and parametric excitations. This stabilization mechanism opens the way towards

the control of the energy localization phenomena in damped nonlinear periodic lattices for efficient

energy transport applications.
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1. Introduction

In the past few years, there were several studies focused on the dynamic behavior of coupled

nonlinear oscillators and the most used model is the array of coupled pendulums. This model and

its properties are used to investigate many physical phenomena like the propagation of solitons on

fluid surfaces [1, 2, 3], parametric generation of spin waves in ferro- and antiferromagnets [4, 5],

solitons in Josephson junctions [6] and microelectromechanical and intrinsic localized modes in

nanoelectromechanical systems (MEMS and NEMS) [7].

The array of coupled pendulums has been studied for more than thirty years and from different

points of view. Ikeda et al. [8] investigated the intrinsic localized modes for a small array of
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oscillators (two and three pendulums) subjected to horizontal sinusoidal excitation. The frequency

response was obtained by solving the derived equation of motion using Van Der Pols method. The

authors showed the effect of the linear coupling spring an added imperfection on the soliton and

they proved these results on an array of Duffing oscillators [9] subject to an external excitation.

For a large number of oscillators, Ivancevic et al. [10] transformed the equations of motion of an

array of coupled oscillators to one Sine-Gordon equation and reviewed the essential dynamics of

a nonlinear excitation in living cellular structures. Khomeriki et al. [11] studied the tristability of

a chain of pendulums driven periodically in one end and free at the other end.

There are two types of excitation : an external excitation [12, 13] by applying torques to the

pendulums and a parametric excitation [14, 15, 16, 17] by moving periodically the support of

the pendulums. The first type of excitation was simulated by Braiman et al. [12] on a chain of

coupled damped pendulums with a free end boundary condition. The authors showed that when

the chain is homogeneous (all pendulums have the same length), the oscillations become chaotic.

However, their motion becomes ordered when some impurity is added. The notion of impurity

was also tested numerically [13] on an array of 128 pendulums. The parametric excitation was

studied numerically by Alexeeva et al. [14] and experimentally by Chen et al. [15]. The authors

showed that ”long” impurities can extend the region of stability of the system and short impurities

are responsible of oscillatory instabilities.

In term of nonlinear energy localization, the equations of motion of the system have been trans-

formed into a nonlinear Schrodinger equation (NLS) using the multiple scale method in order to

analyze numerically [16, 17] and experimentally [18] the interactions between impurities and soli-

tons in parametrically driven coupled pendulums and the impurity proved their ability to stabilize

a chaotic oscillator. Nevertheless, to our knowledge, these phenomena have not been investiga-

ted when the pendulums are subjected to simultaneous excitations, even though beneficial effects

have been demonstrated in term of collective dynamics for coupled nonlinear oscillators under

simultaneous external and parametric excitations [19] and in terms of performances for micro and

nano-sensors under simultaneous primary and superharmonic resonances [20, 21].

In this paper, we derived the equations of motion describing the nonlinear dynamics of an

array of coupled pendulums under simultaneous external and parametric excitations. In order to
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investigate the intrinsic localized modes, the system of nonlinear equations is transformed into a

Schrodinger equation which has been numerically solved using the Runge-Kutta method. Nume-

rical simulations are performed on a typical design of 301 coupled pendulums proving that the

region of existence and stability of solitons can be significantly increased by means of simulta-

neous parametric and external excitations.

2. Design and model

The considered system, depicted in Figure 1, is composed of an horizontal axle A. Along this

axle, at equally spaced intervals, there are Npen equal pendulums. Each pendulum consists of a

rigid rod, attached perpendicularly to the axle, with a mass m at the end. At rest, all the pendulums

point down the vertical. a is the distance between two pendulums, g is the gravity acceleration, θn

is the angle between the nth pendulum and the downward vertical, kL is the linear torque constant.

The kinetic and potential energy of the system can be written as :

V =
∑
n

1
2kL(θn − θn+1)2 + 1

2kL(θn − θn−1)2
− mgl(sin (θn) + Aecos(2ωt)) (1)

T =
∑

n

1
2

mv2
n (2)

The potential energy V includes two parts : the strain energy due to the elongation of the spring

and the gravitational potential energy ; T is the kinetic energy due to the velocity vn of the moving

mass :
−→vn =

−−→
ṙOA + ~ω × −−→rAP (3)

where

−−→
ṙOA = Aeωesin(ωt)−→y ~ω = θ̇n

−→z (4)

−−→rAP = l(sin (θn)−→x + cos(θn)−→y ) (5)

we applied the Lagrange formulation

d
dt

(
∂L
∂θ̇n

)
−
∂L
∂θn

= Qn (6)
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Figure 1: Array of coupled pendulums under simultaneous parametric and external excitations.

where L = T −V is the Lagrangian of the system and Qn is the nonconservative generalized forces

applied to the nth pendulum (the sum of the friction force and the external force). Hence, the nth

pendulum’s equation of motion is determined as follows :

mln
2 d2θn

dt2 + αln
dθn
dt + kL (2θn − θn+1 − θn−1) = −mln

[
g + 4Aeω

2
e cos (2ωet)

]
sin (θn)

+ f cos(ωet); n = 1, 2, ..,N
(7)

where α is the damping coefficient. When neglecting the mass of the rigid rod, all pendulums have

the same moment of inertia I = ml2
n, where ln is the length of the nth pendulum.

The considered system is excited by two forces at the drive frequency ω : an external force

f cos(ωt) applied to one or several pendulums, and a parametric force 4Aeω
2cos(2ωt) due to the

base excitation of the system.

The boundary conditions associated to Equation (7) are θ0 = 0 and θN+1 = 0. By expanding

sin(θn) in Taylor series up to the third order, Equation (7) can be written as :

mln
2 d2θn

dt2 + αln
dθn
dt + kL (2θn − θn+1 − θn−1) = −mln

[
g + 4Aeω

2
e cos (2ωet)

]
(θn −

1
6θ

3
n)

+ f cos(ωet); n = 1, 2, ..,N
(8)

Equation (8) governs the dynamics of a chain of Duffing oscillators linearly coupled by the spring

coefficient kL and subjected to simultaneous external and parametric excitations.
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3. Nonlinear energy localization

3.1. Nonlinear Schrodinger equation

In order to investigate the effects of an external excitation on the nonlinear localization phe-

nomena in a chain of coupled pendulums, we use the multiple scales method on Equation (8) to

derive the nonlinear Schrodinger equation. To do so, we make the following assumption, where

ω0 ≈

√
g
l and ε is a small nondenominational fixed parameter :

ω = ω0

(
1 −

ε2

2

)
ω2 ≈ ω2

0(1 − ε2) 4Aeω
2 = 2hε2

α = γε2 kL = ε2k F = 2 f ε3

The displacement of the nnt resonator can be written as :

θn(T ) = 2ε[ψn (T ) e−iωt + ψ̄n (T ) eiωt] (9)

where T = ε2

2 t and Ψn is an unknown complex function. Therefore

θ̇n = ε3∂ψn

∂T
e−iωt − 2iωεψne−iωt + cc (10)

θ̈n = −2iωε3∂ψn

∂T
e−iωt − 2ω2εψne−iωt + cc (11)

θ3
n = 8ε3[ψ3

n (T ) e−3iωt + 3ψ2
nψ̄n (T ) e−iωt + cc] (12)

where cc corresponds to the complex conjugate. Substituting Equations (9-12) into equation (8),

we obtain :
ml2

(
−2iωε3 ∂ψn

∂T e−iωt − 2ω2εψne−iωt
)

+γlε2
(
ε3 ∂ψn

∂T e−iωt − 2iωεψne−iωt
)

+2ε3k
(
2ψne−iωt − ψn−1e−iωt − ψn+1e−iωt

)
=

−mlg
(
2εψne−iωt − 8

6ε
3ψ3

ne−3iωt − 4ε3ψ2
nψ̄ne−iωt

)
−2hε3mlψ̄ne−iωt + f ε3e−iωt

(13)

Keeping the terms proportional to e−iωt and ε3, we obtain :

−2iω0ml2 ∂ψn
∂T + 2ω2

0ml2ψn − 2iω0γlψn

+2k (2ψn − ψn−1 − ψn+1) = 4mlgψ2
nψ̄n − 2hmlψ̄n + f

(14)
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Equation (14) can be written as :

i∂ψn
∂T − ω0ψn −

k
ω0ml2 (2ψn − ψn−1 − ψn+1)

+2 g
ω0lψ

2
nψ̄n = h

ω0l ψ̄n − i γmlψn −
f

2ω0ml2

(15)

By choosing τ = ω0T , Equation (15) becomes :

i∂ψn
∂τ
− ψn −

k
ω2

0ml2
(2ψn − ψn−1 − ψn+1)

+2ψ2
nψ̄n = h

ω2
0l ψ̄n − i γ

mlω0
ψn −

f
2ω2

0ml2

(16)

Equation (16) is called the discrete nonlinear Schrodinger equation. In order to write it in its

continuous form, we introduce the spatial variable x so that ψn = ψ(xn) where xn+1 = xn + ∆x

The Taylor expansion of ψn gives :

ψn±1 = ψn ± ψ
′∆x +

(∆x)2

2
ψ′′ (17)

so

ψn+1 + ψn−1 − 2ψn = (∆x)2ψ′′ (18)

where ψ′ =
∂ψ

∂x and ψ′′ =
∂2ψ

∂x2 . We set (∆x)2 =
ω2

0ml2

k ; H = h
ω2

0l ; Γ =
γ

mlω0
and Fe =

f
2ω2

0ml2 .

Finaly, Equation (16) can be written as :

iψτ + ψxx − ψ + 2|ψ|2ψ = Hψ̄ − iΓψ − Fe (19)

Equation (19) is the continuous nonlinear damped Schrodinger equation (NLS) with external and

parametric excitations. When Fe = 0, we obtain a parametrically driven damped nonlinear Schr-

dinger equation, which can be used to study intrinsic localized modes in arrays of coupled pendu-

lums [14, 22] or arrays of coupled microelectromechanical systems [7] and to model parametri-

cally driven media in hydrodynamics [23] and optics [24, 25].

3.2. Intrinsic localized modes

We start by solving the nonlinear Schrodinger equation without damping (Γ = 0). Equation

(19) exhibits two stationary soliton solutions [26] :

ψ (x, t) = ψ± (x) = ψ0

(
1 +

2sinh2η

1 ± cosh (η) cosh (Ax)

)
(20)

where η is defined by

6



−30 −20 −10 0 10 20 30
−1.5

−1

−0.5

0

0.5

1

X

ψ

 

 

ψ+

ψ−

Figure 2: Soliton ψ±(x) for the undamped case Γ = 0. η = 1.5; Fe = 0.2454; H = 0.2

H (η) =
√

2cosh2η

(1+2cosh2η)3/2 = Fe

(1+H)3/2

H (η) being a monotonically decreasing function, η is uniquely determined by H . A/2 is the area

of ψ+ and ψ− solitons :

A = 2
∫

(ψ2
± (x) − ψ2

0)dx = 2sinh(η)ψ0

and ψ0 is the asymptotic value of ψ±

ψ±(x) →
x→∞

ψ0 ψ3
0 =

F
4cosh2η

Figure 2 presents the two exact soliton solutions ψ±(x) with the expression (20). The two solutions

exist when η > 0 that corresponds to Fe

(1+H)3/2 <
√

2
27

For Γ > 0, no exact solutions are available. Therefore, we use the continuous analog Newton’s

method to obtain numerically a soliton solution for Equation (19). The discretized Schrodinger

equation is written as :

G (Ψ) = 0 (21)
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Where Ψ = (ψ0, ψ1, . . . , ψN+1) is the discretized solution, with ψn = ψ(xn) and xn = − L
2 + n∆x.

Therefore, Gn could be written as :

Gn =
ψn+1+ψn−1−2ψn

(∆x)2 − ψn + 2|ψn|
2ψn + iΓψn

−Hψ̄n + Feψn ; n = 1, 2, . . . ,N
(22)

To define G0 and G(N + 1), we use the open-end boundary condition ψx

(
± L

2

)
= 0 coupled with the

second order finite difference approximation of ψx therefore :

G0 =
−3ψ0 + 4ψ1 − ψ2

2∆x
GN+1 =

ψN−1 − 4ψN + 3ψN+1

2∆x

Newtons method is one of the commonest methods to solve Equation (21) by introducing the

auxiliary parameter ξ in such a way that Ψ satisfies the differential equation :

∂

∂ξ
G (Ψ(ξ)) + G (Ψ(ξ)) = 0 (23)

With the initial condition Ψ (0) = Ψ(0), where Ψ(0) is an initial guess for the soliton solution.

Equation (23) could be transformed to :

Ψ(i+1) = Ψ(i) −

(
∂G
∂x

)−1

Ψ(i)

G(Ψ(i)) (24)

Where i = 0, 1, . . . until we minimize the error δ, which is defined as :

δ(i) = max
1≤n≤N

{∣∣∣∣Re
(
Gn

(
Ψ(i)

))∣∣∣∣ , ∣∣∣∣Im
(
Gn

(
Ψ(i)

))∣∣∣∣} (25)

To obtain a numerical solution of Equation (19), the following steps are used :

1. Choose Ψ(0), the exact solution of NLS without damping (Γ = 0), to be the initial approxi-

mation for the NLS with damping (Γ = 0.01).

2. Calculate Ψ(i+1) and δ(i) using Equations (24) and (25) until we minimize the error δ(i).

3. After computing the solution for the case Γ = 0.01, choose this solution as the initial

approximation for the equation with the incremented value of Γ.

4. Compute the numerical solution of Equation (19) as we did in step 2.

5. Keep doing steps 3 and 4 until reaching the desired value of Γ.
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Figure 3: Soliton solution in the damped case Γ = 0.2 η = 1.5; Fe = 0.2454; H = 0.2; Γ = 0.2

The final vector Ψ of this algorithm is the soliton solution of the NLS equation with the desired

damping Γ. Figure 3 displays the real and the imaginary parts of the soliton solution after applying

the previous algorithm. Unlike the undamped NLS equation and its exact solution given by Equa-

tion (20), the imaginary part of the soliton solution becomes nonzero when we add a non-null

damping coefficient Γ.

4. Numerical simulations and discussion

After showing that the equation of motion (8) can be transformed to a nonlinear Schrodinger

equation, numerical simulations are performed on the discretized equation (16) from x = −L/2 to

x = L/2. We choose L = 60 and the spacing between the oscillators ∆x = 0.2 which leads to a total

number of oscillators Npen = 301 . The system of nonlinear differential equations is numerically

solved using Runge-Kutta method and Ψ is used as an initial condition for Schrodinger equation.

When no external force is applied to the array of pendulums, Equation (16) becomes a para-

metrically excited undamped nonlinear Schrodinger equation. Barashenkov et al. [27] showed that

this equation has two stationary solutions ψ+ and ψ− where ψ− is always unstable. The chart of

stability of ψ+ is depicted in Figure 4 and it includes three main regions :
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Figure 4: Attractor chart of the continuous NLS equation (19) on the (Γ; H) plane (Fe = 0) [27].

— In region ”I” localization phenomena is impossible and the only existing solution is zero

attractor.

— In region ”II” the soliton ψ+ is a stable solution.

— In region ”III” the soliton ψ+ exist but it is unstable.

— The remaining regions are unstable with respect to a local mode :

* region ”1” denotes temporally periodic solutions.

* region ”2” marks the area where the only attractor is ψ = 0.

* region ”3” presents the domain of spatio-temporal chaos.

Figures 5(a, b) display the time series and phase portrait for the central oscillator ψ0 while

Figure 5(c) shows the evolution of the soliton solution with respect to time. It is clearly seen that

oscillations cease as the real and imaginary parts of ψ0 converge to a fixed point ψ0 = 0, which

presents an asymptotic stable spiral point. These plots correspond to the point with coordinates

(Γ = 0.1; H = 0.2) marked by a star in Figure 4. This point is in region ”2” which corresponds to

the trivial solution ψ(x, t) ≡ 0.

Next, a Schrodinger equation under external excitation can be obtained by cancelling the pa-

rametric excitation. This equation is numerically solved and the initial condition is determined by

applying the continuous analog Newton’s method for Γ = 0.1; H = 0; F = 0.166. It is shown in
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Figure 5: Time series and phase portrait of the soliton solution of the Schrodinger equation (19) with pure parametric

excitation (Fe = 0). Only the trivial solution Ψ = 0 found. Here Γ = 0.1; H = 0.2; Fe = 0
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Figure 6 that the same behavior as the previous case is obtained. Nevertheless, the soliton solution

converges to a constant solution Ψ ≡ cst due to the effect of the external force.

Truly, when the array of pendulums is excited with either a parametric or external force, we did

not have a soliton solution, while a remarkable formation of a stable soliton is notable when the

two type of forces are combined which is illustrated in Figure 7. As shown by the phase portrait for

the central oscillator ψ0, the oscillations of the amplitude are regular, and we observe a period-2

limit cycle.

Interestingly, if an external force is added to the system (Γ = 0.3; H = 0.25; Fe = 0.23), the

amplitude of the central oscillator ψ0, presented in Figure 8, converges to a constant value when

t goes to infinity. The point in the phase portrait, where the real and imaginary parts converge

to, corresponds to an asymptotic stable spiral point. It is clearly seen that the amplitude of the

soliton solution maintains the same shape with respect to time which confirms the stability of the

obtained intrinsic localized mode. Thus, the external force can be used as a tuning parameter to

modify the existence and stability of solitons in parametrically driven coupled pendulums. This

remarkable result can be exploited in order to control the nonlinear localization phenomenon in

periodic structures.

5. Conclusions

In this paper, we investigated the energy localization phenomenon in an array of coupled pen-

dulums under simultaneous external and parametric excitations by means of a nonlinear Schro-

dinger equation. The latter is obtained using the multiple scale technique which has been applied

on the system of coupled nonlinear equations of motion. The stationary solution of the undamped

nonlinear Schrodinger equation was determined analytically and based on this solution, the statio-

nary solution for the damped case was numerically computed using the continuous analog New-

ton’s method. Several numerical simulations have been performed on the Schrodinger equation

using the Runge-Kutta method and the stationary solution as an initial condition. We demonstra-

ted that the use of external and parametric excitations simultaneously enables the transformation

of a zero attractor soliton solution to a periodically stable one. Therefore, by adding an external
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Figure 6: Time series and phase portrait of the soliton solution of the Schrodinger equation (19) with pure external

excitation Γ = 0.1; H = 0; Fe = 0.166
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Figure 7: Time series and phase portrait of the soliton solution of the Schrodinger equation (19) with two excitations,

external and parametric. Here Γ = 0.1; H = 0.2; Fe = 0.166
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Figure 8: Time series and phase portrait of the soliton solution of the Schrodinger equation (19) with two excitation,

external and parametric. Here Γ = 0.3; H = 0.25; Fe = 0.231
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excitation one can increase the existence region of solitons. In practice, this stabilization mecha-

nism opens the way towards the control of the solitons in damped nonlinear periodic lattices for

efficient energy transport applications.
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