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Abstract. We propose a multi-modal vibration energy harvesting approach based

on arrays of coupled levitated magnets. The equations of motion which include the

magnetic nonlinearity and the electromagnetic damping are solved using the harmonic

balance method coupled with the asymptotic numerical method. A multi-objective

optimization procedure is introduced and performed using a Non-dominated Sorting

Genetic Algorithm (NSGA) for the cases of small magnet arrays in order to select the

optimal solutions in term of performances by bringing the eigenmodes close to each

other in terms of frequencies and amplitudes. Thanks to the nonlinear coupling and the

modal interactions even for only three coupled magnets, the proposed method enable

harvesting the vibration energy in the operating frequency range of 4.6−14.5Hz, with

a bandwidth of 190% and a normalized power of 20.2mWcm−3g−2.
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1. Introduction

The natural energy sources have been frequently taken to produce inexhaustible electric

energy in their local environment. The purpose is related to the reduction of power

requirement and to replace a battery that has a limited lifetime, requires maintenance

and cannot be used in hostile environments. Then, the mechanical structures were

exposed to ambient and internal vibrations to produce energy by using adequate

transducers [1] which convert the mechanical force to electric power. The accumulated

energy in these cases can be stored and used. Within the emerging trend of smart

systems, Vibration Energy Harvesters (VEHs) can be used in many fields such as

environmental monitors, wireless sensors and medical implants [2, 3, 4].

In order to make VEHs usable, there are several types of transduction, where the

most common transduction modes are piezoelectric [5, 6, 7, 8, 9], and electromagnetic

[10, 1, 11, 12]. The conventional linear VEHs are usually designed to be resonantly

tuned to the ambient dominant frequency. They have a narrow operating bandwidth

that limits their application in real-world environments where the ambient vibrations

have their energy distributed over a wide spectrum of frequencies, with significant

predominance of low frequency. In order to overcome this limitation, several approaches

have been proposed such as resonant frequency tuning techniques, multi-modal energy

harvesting and the exploitation of nonlinearities.

Resonant frequency tuning technique can be implemented in a manual way by

applying a preload [13, 14, 15], adjusting the pre-deflection [16], regulating the distance

between the magnets with using a spring-screw mechanism [17] and varying the vertical

relative distance to modify the attractive magnetic force [18] and adjusting the gravity

center of the tip mass [18] or in a self-tuning way [19], applying voltage to the transducer

[20], switching the shunt electrical load [21] and implementing an automatic controller
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[22, 18].

The multi-modal energy harvesting technique can be implemented by exploiting

multiple bending modes of a continuous beam or by exploiting a cantilever array

configuration. For instance, Roundy et al. [23] proposed multiple proof masses attached

on a clamped-clamped beam and the implementation of this idea was realized by Yang

et al. [24] with an electromagnetic generator based on three fixed magnets along a beam

vibrating at the top of three coils and operating in three modes of vibration. Sari et

al. [25] studied a structure composed of different assembly generators resonating at

different resonance frequencies. This structure contains 35 beams in different lengths

and each beam supports a coil that moves to the top of a stationary magnet. Yang

et al. [26] analyzed a VEH based on coupled flexural vibration of two elastically and

electrically connected piezoelectric beams, while Eurturk et al. [27] modeled an L-shaped

cantilever piezoelectric energy harvester. Tadesse et al. [28] proposed a multimodal

hybrid harvester consisting of piezoelectric crystals bonded to a cantilever beam and at

its tip, a permanent magnet is attached to oscillate within a stationary coil fixed to the

top of the package. Arafa et al. [29] presented a 2-DOFs cantilever piezoelectric VEH

with a dynamic magnifier consisting of a spring-mass system which is placed between

the fixed end of the piezoelectric beam and the vibrating base structure, while Kim

et al. [30] suggested a VEH composed of two piezoelectric cantilevers coupled with a

common proof mass and utilizing both translational and rotational degrees of freedom.

Despite the fact that multimodal techniques enable wide bandwidth energy

harvesting, they require more sophisticated interface circuits than that for a single-

mode harvester due to the phase difference between the output signals in array

configurations [31]. Consequently, several researches have been oriented towards the

study of nonlinear systems. For instance, Daqaq et al. [32] reported softening
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frequency response characteristics in a parametrically forced piezoelectric device with

structural nonlinearities. Masana and Daqaq [33] proposed a nonlinear analysis of

electromechanical generator composed by piezoelectric clamped clamped beam. Mann

and Sims [34] showed analytically and experimentally how magnetic levitation could

be used to extend device bandwidth through a hardening response. Nevertheless, this

extension is limited by dry friction dissipation phenomenon. Mahmoudi et al. [35]

proposed an alternative to overcome this issue by guiding the moving magnet vertically

in an elastic way by means of sandwich beams, combined with an hybrid piezoelectric

and electromagnetic transductions.

In this paper, unlike classical VEHs either linear [23, 25, 27, 30] and multimodal or

nonlinear and mono-frequency [32, 34, 35], to our knowledge we propose for the first time

a vibration energy harvesting approach based on an array of coupled levitated magnets

combining the benefits of nonlinearities and modal interactions. These benefits consist

essentially in enlarging the bandwidth and increasing the harvested power. The set of

coupled nonlinear equations of motion is solved using the harmonic balance method

(HBM) coupled with the asymptotic numerical method (ANM) [36]. Then, in order to

improve the performances of the proposed method in terms of bandwidth and harvested

power, a multi-objective optimization procedure is introduced and performed using

NSGA-II algorithm [37] for the cases of two and three coupled magnets. Comparisons

have been made between uncoupled VEHs based on a single levitated magnet, two and

three coupled levitated magnets and state of the art VEHs in order to emphasize the

high performances of the proposed multi-modal vibration energy harvesting method.
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2. System modeling

2.1. Design

Inspired by vibration energy harvesting based on a single levitated magnet [34], we

propose an extension of magnetic levitation for a multi-degree of freedom (MDOF)

VEH. Using this approach, one can take advantage of modal interactions and magnetic

nonlinearities in order to obtain high performances in terms of bandwidth and harvested

power. As shown in Figure 1, the considered device is composed of n + 2 magnets Mi

where i ∈ [0, n+ 1]. M0 and Mn+1 are fixed with respect to a Teflon tube inside which

M1, M2...Mn−1 and Mn are subjected to magnetic levitation forces. All magnets are

placed vertically in such a way that all opposed surfaces have the same pole and wire-

wound copper coils are wrapped horizontally around the separation distance between

each two adjacent magnets.

Figure 1: A schematic diagram of the MDOF VEH based on magnetic levitation.
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2.2. Magnetic forces

In order to describe the electromagnetic induction model represented in Figure 1, n+1

reference frames have been applied. The first reference frame is fixed in space and is used

to describe the motion amplitude Y0 and excitation frequency Ω of the outer housing.

The other reference frames (designed as x1, x2...xn−1 and xn) describe the motion of

the moving magnets which are subjected to gravitational forces P⃗j = Mj g⃗ and magnetic

forces (Figure 2) expressed as follows [10]:

F⃗j,j−1 = −µ0

4π

QMj−1
QMj

(d− xj + xj−1)
2 x⃗ (1)

F⃗j,j+1 =
µ0

4π

QMj+1
QMj

(d+ xj − xj+1)
2 x⃗ (2)

Figure 2: Schematic of a moving magnet subject to magnetic and gravitational forces.

where QMj
is the magnetic intensity of the jth magnet, µ0 is the magnetic

permeability, d is the gap separating each two adjacent magnets, x0 = xn+1 = Y is

the excitation amplitude and g = 9.81m/s2 is the gravitational constant. A change of

variable vj = xj − Y yields the resulting restoring force applied on each moving magnet
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Mj:

F⃗m
j = F⃗j,j−1 + F⃗j,j+1 + P⃗j

=
(

µ0QMj

4π

(
QMj−1

(d+vj−1−vj)
2 −

QMj+1

(d+vj−vj+1)
2

)
−Mjg

)
x⃗

(3)

where the magnetic intensity of each magnet Mj is written as QMj
= SjHcj, with

Sj and Hcj are respectively the cross section and coercive force of the magnet Mj.

At static equilibrium, the resulting restoring force verifies F⃗m
(j) = 0⃗. Assuming that

the equilibrium position of each moving magnet is vj = 0, we obtain the following

equation:

QMj
=

4πMjgd
2

µ0(QMj−1
−QMj+1)

(4)

Substituting Equation (4) into Equation (3), yields:

F⃗m
j =

(
Mjgd

2

(QMj−1
−QMj+1)

(
QMj−1

(d+vj−1−vj)
2 −

QMj+1

(d+vj−vj+1)
2

)
−Mjg

)
x⃗ (5)

2.3. Electromagnetic damping forces

When the device is subjected to an external mechanical vibration, each moving magnet

Mj oscillates around its equilibrium position and a current is induced in each coil as

shown in Figure 3, resulting in the following electrical damping forces:

F e
j = αj−1ij−1 − αjij (6)

where the electromechanical coupling coefficient αj = NjBl, with B the average

magnetic field strength, Nj is the number of coil turns and l is the coil length.
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Figure 3: Equivalent electro-mechanical system with n moving magnets based on

magnetic levitation system.

In order to overcome the issue of phase difference between the output currents

in array configurations, an independent interface circuit is proposed for each current

(Figure 3). By applying Kirchhoff’s theory to the electrical circuits, we obtain the

following equation:

Rjij = αj (v̇j+1 − v̇j)− rintij (7)

Equations (6) and (7) give the following expression:

F e
j = cej−1 (v̇j − v̇j−1)− cej (v̇j+1 − v̇j) (8)

The electrical damping can be expressed as a function of the internal resistance

of the coil, the resistance of the harvesting circuit and the electromechanical coupling

coefficient αj [9].

cej =
αj

2

Rj + rint
(9)

2.4. Equations of motion

The application of Newton’s first law to each moving magnet Mj leads to the following

equation of motion:

Mj v̈j + cv̇j + F e
j + Fm

j = −MjŸ ; j = 1, 2, ...n (10)
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Expanding the non-linear magnetic forces written in Equation (3) in Taylor series

up to the third order, a system of coupled nonlinear equations is obtained as follows:

Mj v̈j + (c+ cej−1 + cej)v̇j − cej v̇j+1 − cej−1v̇j−1

+kj,j+1 (vj − vj+1) + kj,j−1 (vj − vj−1)

+αj,j+1(vj − vj+1)
2 − αj,j−1(vj − vj−1)

2

+λj,j+1(vj − vj+1)
3 + λj,j−1(vj − vj−1)

3

= −MjŸ ; j = 1, 2, ...n (11)

This expansion is valid for magnet displacements below 50% of the gap [35]. The

change of variable QMj
= Q′

Mj
Mj is substituted into Equation (5), and assuming that

the magnetic intensities are equal (Q′
Mj−1

= Q′
Mj+1

), the linear and nonlinear stiffnesses

can be written as:

kj,j+1 =
2g
d

MjMj+1

(Mj−1−Mj+1)
kj,j−1 =

2g
d

MjMj−1

(Mj−1−Mj+1)

αj,j+1 =
3
2d
kj,j+1 αj,j−1 =

3
2d
kj,j−1

λj,j+1 =
2
d2
kj,j+1 λj,j−1 =

2
d2
kj,j−1

(12)

Equation (11) can be written in its matrix form. Then, in order to ensure the

symmetry of the rigidity matrix, we assume that kj,j+1 = kj+1,j which results in the

following relation between the magnets in term of mass

Mj−1 −Mj+1 = Mj −Mj+2; j = 1, 2, ...n− 1 (13)

Moreover, the positivity of the linear rigidity terms (kj,j+1 ≥ 0) is conditioned by

the following inequality:

Mj−1 −Mj+1 ≥ 0; j = 1, 2, ...n (14)
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2.5. Power transferred to the electrical circuit

The magnetic transduction is ensured by n − 1 coils. The oscillations of the movable

magnets cause magnetic field variations in the separation zones, which provides an

induced current (Lenz’s Law). The induced current can be expressed as a vibration

velocity function v̇j(t) = VjΩ sin(Ωt). The instantaneous electrical power P (t) can be

written as follows:

P (t) =
Ω2

2

(
n+1∑
j=1

(
cej(Vj−1 − Vj)

2)) (1− Cos(2Ωt)) (15)

When the system reaches the steady state regime, the average power delivered to the

electrical load takes the following form:

Pm =
Ω

2π

∫ 2π
Ω

0

P (t)dt =
Ω2

2

(
n+1∑
j=1

(
cej(Vj−1 − Vj)

2)) (16)

Assuming that rint << Rj, the mean power Pm is a good approximation of the harvested

power. The proposed configuration has the advantage of avoiding the phase difference

between the induced currents. However, it requires sophisticated circuits in order to

deliver the energy separately.

2.6. Solving procedure

The solving procedure is purely computational and based on the harmonic balance

method (HBM) coupled with the asymptotic numerical method (ANM) [36]. This

technique gives the periodic solutions of a dynamical system when a control parameter

is varied. But its limitation is that the equation to solve should be quadratic and it

is not always easy to recast any system to a polynomial quadratic form. Once the

system is transformed into a quadratic form, the HBM is used to obtain the associated

nonlinear algebraic system which is solved using the ANM. The application of this

solving technique to Equations (11) and (16) is detailed in the Appendix.
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3. Results and discussion

3.1. Specifications of a nonlinear SDOF VEH

We start by calculating the response of a single nonlinear levitated magnet under

harmonic base excitation shown in Figure 4. Although, previous calculations of this

problem exist in the literature [34], they are either limited to slightly nonlinear oscillators

and/or the dependence of the excitation amplitude on the drive frequency is not taken

into account. We solve it here while addressing both issues and as a precursor to the

many-oscillator case, treated in the following sections.

S

S

S

N

N

N

Figure 4: A schematic diagram of a SDOF VEH based on magnetic levitation.

For n=1, the equation of motion of a Single Degree-of-Freedom (SDOF) VEH based

on magnetic levitation can be written as follows:

M1v̈1 + (c+ ce1 + ce2)v̇1 + (k12 + k10) v1

+(α12 − α10) v1
2 + (λ12 + λ10) v1

3 = −M1Ÿ (17)

The natural frequency of the associated linear oscillator is:

fr =
1

2π

√
k12 + k10

M1

(18)
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Substituting Equation (12) into Equation (18), the natural frequency becomes:

fr =
1

π

√
g (M0 +M2)

2d (M0 −M2)
(19)

where M0 ≥ M2 as given by the inequality (14). Remarkably, the natural frequency

depends only on the masses of the two fixed magnets. This is a consequence of assuming

equal magnetic intensities and surfaces for the three magnets. Obviously, this is difficult

to obtain in practice and the frequency may slightly depend on the mass of the moving

magnet. Introducing the frequency f0 =
1

π

√
g/2d and the dimensionless parameter

µ = M2/M0, Equation (19) becomes:

fr = f0

√
1 + µ

1− µ
(20)

Figure 5: Variation of the natural frequency of a VEH based on a single moving magnet

with respect to the gap d and the mass ratio µ.

Figure 5 displays the variation of the natural frequency of a single moving magnet

with respect to the dimensionless parameter µ and the gap d separating the magnets.

Notably, fr has a lower bound which is f0 when µ = 0, i.e. M2 = 0. It corresponds

to the case of a single repulsive force provided by the fixed magnet on the bottom

which is indispensable to counter gravity. Moreover, Equation (19) is incompatible with

the configuration M2 = M0 for which the static equilibrium position of the moving
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magnet changes due to multistability and hence the resonance frequency expression will

be modified.

Substituting Equation (12) into Equation (17) and dividing by M1, we obtain the

following equation:

v̈1 + 2ξωrv̇1 + ω2
rv1 −

3g

2d2
v21 +

2

d2
ω2
rv

3
1 = κ cos(Ωt) (21)

where ωr = 2πfr, ξ =
c+ ce1 + ce2

2M1ωr

and κ = Y0Ω
2. Equation (21) is a Duffing equation

with a quadratic nonlinearity under harmonic excitation. To analyze this equation of

motion, we use perturbation techniques which are well adapted to small excitation and

damping, typically valid in levitated magnet-based resonators [34]. To facilitate the

perturbation approach, in this case the method of averaging [38] for its ease of use, a

standard constrained coordinate transformation is introduced, as given by:

v1 = A(t) cos[Ωt+ β(t)] (22)

In addition, since near-resonant behavior is the principal operating regime of the

proposed system, a detuning parameter, σ, is introduced, as given by:

Ω = ωr + ϵσ (23)

where ϵ is the small nondimensional bookkeeping parameter. Separating the resulting

equations and averaging them over the period in the t-domain results in the system’s

averaged equations, in terms of amplitude and phase, which are given by:

Ȧ =
1

2ωr

[
κ sin β − 2ξω2

rA
]

(24)

β̇ = −σ +
1

2Aωr

[
3ω2

r

2d2
A3 + κ cos β

]
(25)

The steady-state motions occur when Ȧ = β̇ = 0, which corresponds to the singular

points of Equations (24) and (25). Thus, the frequency response equation can be written
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in its parametric form with respect to the phase β as follows:

σ =
3κ2

16d2ξ2ω3
r

sin2 β + ξωr cot β (26)

A =
κ

2ξω2
r

sin β (27)

The critical amplitude is the oscillation amplitude Ac above which bistability occurs

[39, 40, 41]. Thus, Ac is the transition amplitude from the linear to the nonlinear

behavior. At the critical drive, the resonance curve exhibits a point of infinite slope,

called the critical point. Moreover, at the same point, the phase curve also exhibits an

infinite slope at the same detuning as the resonance curve itself. Mathematically, Ac is

defined as the oscillation amplitude for which the equation dσ
dβ

= 0 has a unique solution

βc =
π
3
. Thus, the critical force is deduced:

κc =
8
√
2

3 4
√
3
dξ3/2ω2

r (28)

The critical amplitude Ac is obtained by substituting Equation (29) into Equation (27)

at the point β = π/2.

Ac =
4
√
2

3 4
√
3
d
√

ξ (29)

Excitation frequency Ω (rad/s)
20 30 40 50 60 70 80

H
ar

m
on

ic
s 
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itu
de

 (
m

)

0

0.005
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B
2

Nonlinear
Critical
Linear

3dB
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A
c
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L
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Figure 6: Forced frequency responses of the SDOF VEH with design parameters listed in

Table 1 for three configurations: linear (Y0 = 0.7mm), critical (Y0 = 2mm), nonlinear

(Y0 = 4.8mm). Solid lines denote stable periodic solutions and dashed lines represent

unstable periodic solutions.
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Table 1: Design parameters of the considered SDOF VEH.

Parameter M0

(g)

M1

(g)

M2

(g)

ce1
(Ns/m)

ce2
(Ns/m)

c

(Ns/m)

d

(mm)

Value 80 80 10 0.303 0.303 0.119 15

Figure 6 shows the evolution of the harvester frequency response (Equations (26) and

(27)) with respect to the excitation amplitude for design parameters listed in Table 1.

These parameters have been chosen in order to obtain a SDOF VEH resonating at a

frequency below 10Hz (fr = 6.5Hz) with a low electromagnetic damping. Beyond the

critical amplitude, the bandwidth definition is reconsidered and determined with respect

to the highest bifurcation point. Notably, the harvester bandwidth is significantly

enlarged when the moving magnet is driven in the nonlinear regime.

3.2. Multi-objective optimization of a 2-DOFs VEH

For n=2, Equation (11) leads to the following coupled equations of motion:


M1v̈1 + (c+ ce1 + ce2)v̇1 − ce2v̇2

+k12 (v1 − v2) + k10v1 + α12(v1 − v2)
3

−α10v1
2 + λ12(v1 − v2)

3 + λ10v1
3

 = −M1Ÿ


M2v̈2 + (c+ ce2 + ce3)v̇2 − ce2v̇1

+k23v2 + k21 (v2 − v1) + α23v2
2

−α21(v2 − v1)
2 + λ23v2

3 + λ21(v2 − v1)
3

 = −M2Ÿ

(30)

In this case, we seek to take advantage of the nonlinear magnetic coupling between the

oscillators in order to enhance the bandwidth and the harvested power of the considered

device. To do so, two objective functions g1 and g2 have been defined: the first one is

related to the distance between the two natural frequencies of the system f1 and f2

while the second one concerns the intermodal distance between the harvested powers
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Figure 7: Application of the adapted Morris method to the objective functions g1 and

g2.

taken at the eigenfrequencies.

g1 =
f2 − f1

f1
(31)

g2 =
|P1 − P2|

Pn1

(32)

Where P1 and Pn1 are the harvested and normalized powers at the frequency f1

(Equation (16) for Ω = Ω1 = 2πf1) and P2 is the harvested power at the frequency

f2 (Equation (16) for Ω = Ω2 = 2πf2).

Since g1 and g2 depend in several design parameters, as a first step, a Sensitivity

Analysis (SA) has been performed in order to select unessential parameters that can

be held constant. Among several SA methods, the Morris method is a specialized

randomized one-factor-at-time SA design [42] and its efficiency was improved by using

a Latin hypercube sampling instead of a random sampling and radial points instead of

trajectories [43]. This method was used to determine the boundary between high and

low influence factors among the parameters ce1, ce2, ce3 ,M1, M2, M3 and d0. This limit

is defined as the first variation is equal or greater to dmax/γ, where dmax is the largest

distance between two consecutive maximum factors and γ = 10.
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Figure 7 shows that the first objective function g1 depends only on the magnet

masses and the parameters ce1 and ce2 have a low influence on the variation of the second

objective function g2. Consequently, ce1 and ce2 are held constant in the optimization

procedure discussed below.

In order to improve the performances of the two degrees-of-freedom nonlinear VEH,

the resonance peaks must be very close to each other in terms of natural frequencies and

modal harvested power amplitudes. To do so, the objective functions g1 and g2 are used

in an optimization procedure (NSGA-II) [37]. The two cost functions are simultaneously

minimized with respect to the five retained design parameters (M1, M2, M3, d, ce3).

Minimize [g1(x), g2(x)] ,

x = [M1,M2,M3, d, ce3]
T ,

subject to M3 +M0 = M1 +M2,

M0 ≥ M2, M1 ≥ M3

(33)

g
1

(cm
3

g
2
) 

0 0,001 0,002 0,003

g
2

0.6

0.7

0.8

0.9

1

1.1
generation 200 / 200

generation 10 / 200

2 3

1

Figure 8: Preferred solutions of the multi-objective optimization problem written in

Equation (33).

The sensitivity analysis was followed by a global optimization in order to localize

local and global optima for each objective function separately using Monte Carlo

simulations in the design space. Then, the multi-objective optimization was performed
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Figure 9: Forced frequency responses of a 2-DOFs VEH in terms of (a) amplitude and

phase (b) harvested power. The design parameters correspond to those of solution 1 in

Table 2 and the excitation amplitude is Y0 = 2mm.

around the global optima. The Pareto-optimal solutions obtained by NSGA-II after

200 generations are shown in Figure 8. The Pareto optimal front is convex and its

density and range depend on the design parameter constraints. Three solutions have

been chosen on the Pareto front and their corresponding design parameters are listed in

Table 2.

Table 2: Design parameters of the three selected optimal solutions in Figure 8.

Solution 1 Solution 2 Solution 3 Range of variation

[ ]

g1(cm
3g2) 2.5 ∗ 10−7 3.6 ∗ 10−3 5.2 ∗ 10−3

g2 0.72 0.63 0.62

M1 (g) 80 80 80 [10-250]

M2 (g) 32 31.6 32 [10-250]

M3 (g) 10 26.3 32 [10-250]

ce3 (Ns/m) 0.27 0.71 1.1 [0.1-5]

d0 (mm) 15 15 15 [5-15]

ce1 (Ns/m) 1.19 1.19 1.19 -

ce2 (Ns/m) 0.13 0.13 0.13 -

c (Ns/m) 0.119 0.119 0.119 -
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The frequency responses in terms of amplitude, phase and harvested power are

displayed in Figure 9 for design parameters of solution 1 and an excitation amplitude

Y0 = 2mm. It is shown that the two moving magnets vibrate in phase up to an

excitation frequency of 5.7Hz. Then, a phase between the two signals rises and reaches

a maximum of π/3 for an excitation frequency equal to 9.5Hz. Unlike the case of a

single moving magnet, the bandwidth of a multi-degree of freedom VEH is measured on

the power frequency response between an attenuation of −3db on the first peak and the

horizontal slope preceding the last resonance peak as shown in Figure 9(b). Remarkably,

the bandwidth is significantly high; it reaches 110% with respect to the first natural

frequency.
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Figure 10: Forced frequency responses of the three optimal solutions for a 2-DOFs VEH

in term of normalized harvested power.

The frequency responses of the three selected solutions are compared in term of

normalized harvested power as shown in Figure 10. The first retained solution has

the highest normalized power close to 12mWcm−3g−2. The specifications of the three

design solutions are given in Table 3, approving the high performances of the first

optimal solution.
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Table 3: Performances of 2-DOFs VEHs for the three selected optimal solutions in

Figure 11.

Solution 1 2 3

f1(Hz) 5.2 6.1 6.5

f2(Hz) 8.9 10 10.6

Pn(mWcm−3g−2) 10.4 8.8 9.2

BW (%) 120 85 84

3.3. Multi-objective optimization of a 3-DOFs VEH

Similarly to the case of two moving magnets, an optimization procedure is performed

using NSGA-II for n = 3. It involves four objective functions: two of them concern

the distance between the eigenfrequencies while the two others represent the distance

between the resonance peaks in term of harvested power.

g1 =
|P3 − P1|
g∗1Pn1

(34)

g2 =
|P2 − P1|
g∗2Pn1

(35)

g3 =
f3 − f1
g∗3f1

(36)

g4 =
f2 − f1
g∗4f1

(37)

where g∗i is the extrema of the function gi. The adapted Morris method was used to

eliminate parameters with a low influence on the objective functions leading to four

retained design parameters which are M2, M3, M4 and d. The considered optimization
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Figure 11: Preferred solutions of the multi-objective optimization problem written in

Equation (38).

problem is written as follows:

Minimize [g1(x), g2(x), g3(x), g4(x)] ,

x = [M2,M3,M4, d]
T ,

subject to M1 −M3 = M2 −M4,

M0 −M2 = M1 −M2,

M1 −M3 = M2 −M4,

M0 ≥ M2, M1 ≥ M3, M2 ≥ M4

(38)

The Preferred solutions of the obtained distribution by 25 population size for 1000

generation are shown in Figure 11(a). Three solutions displayed in Figure 11(b) have

been chosen and their corresponding design parameters are listed in Table 4. The

frequency responses in terms of amplitude, phase and harvested power are displayed in

Figure 12 for design parameters of solution 1 and an excitation amplitude Y0 = 2.3mm.

It is shown that the two moving magnets M2 and M3 vibrate either in phase or with a

low phase shift in the frequency range [0 20]Hz. Remarkably, the displacement of M1

has a low phase shift with respect to M2 and M3 displacements, up to an excitation

frequency of 6Hz and reaches a maximum of 2π/5 for an excitation frequency equal to

11Hz. Finally, M1 and M3 vibrate in phase for f = 15Hz.
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Table 4: Design parameters of the three selected optimal solutions in Figure 11.

Solution 1 Solution 2 Solution 3 Range of variation

[ ]

g1 0.27 0.48 0.62 [0− 1]

g2 0.01 1 0.05 [0− 1]

g3 0.86 0.85 0.85 [0− 1]

g4 0.63 0.92 0.92 [0− 1]

M2 (g) 90 110 128 [10− 250]

M3 (g) 10 67 63 [10− 250]

M4 (g) 10 43 50 10− 250]

d0 (mm) 15 15 15 [5− 15]

ce1 (Ns/m) 1.02 1.02 1.02 −
ce2 (Ns/m) 0.76 0.76 0.76 −
ce3 (Ns/m) 1.24 1.24 1.24 −
ce4 (Ns/m) 1.7 1.7 1.7 −
c (Ns/m) 0.119 0.119 0.119 −
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Figure 12: Forced frequency responses of a 3-DOFs VEH in terms of (a) amplitude and

phase (b) harvested power. The design parameters correspond to those of solution 1 in

Table 4 and the excitation amplitude is Y0 = 2.3mm.

f(Hz)

0 5 10 15

P
(m

W
c
m

-3
g

-2
)

0

5

10

15

20 Solution 1

Solution 2

Solution 3

Figure 13: Forced frequency responses of the three optimal solutions for a 3-DOFs VEH

in term of normalized harvested power.
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The frequency responses of the three selected solutions are compared in term of

normalized harvested power as shown in Figure 13. The first retained solution has

the highest normalized power close to 25mWcm−3g−2. The specifications of the three

design solutions are given in Table 5, approving the high performances of the first

optimal solution.

Table 5: Performances of 3-DOFs VEHs for the three selected optimal solutions in

Figure 11.

Solution 1 Solution 2 Solution 3

f1(Hz) 4.3 5.4 5.3

f2(Hz) 6.8 9.9 9.7

f3(Hz) 11 13.8 13.5

Pn(mWcm−3g−2) 20.22 19.42 18.68

BW (%) 190 168 173

3.4. Comparative study

In this section, comparisons between several magnetic levitation based-VEHs will be

presented in order to highlight the advantages of devices having an array of coupled

nonlinear oscillators in terms of bandwidth, harvested power and operating frequency

range.

3.4.1. Nonlinear coupling benefits The performances of two SDOF VEHs denoted

V EH1
1 and V EH1

2 are compared to those of a 2-DOFs VEH denoted V EH2. The design

parameters of the 2-DOFs VEH correspond to those of the first optimal solution listed

in Table 2. A significant comparison is obtained if the design parameters of V EH1
1 and

V EH2
1 are chosen in such a way that their natural frequencies match perfectly those of

V EH2. The latter has its first natural frequency equal to 5.2/,Hz which is higher than

the lower bound limit of the natural frequency of a SDOF VEH given by f0 =
1
π

√
g/2d

(see section 3.1) if we maintain the same gap value. Consequently, the gap between
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Figure 14: Forced frequency responses of two SDOF VEHs in terms of (a) amplitude

and phase (b) overall harvested power. The design parameters are listed in Table 6 and

the excitation amplitude is Y0 = 3mm.

the magnets is chosen d = 24mm for V EH1
1 and V EH1

2 while the values of the other

design parameters are taken from those of V EH2 except the top magnet masses which

are adjusted to ensure a perfect matching between the natural frequencies (Table 6).

Table 6: Design parameters of V EH1
1 and V EH1

2 .

Parameter M0

(g)

M1

(g)

M2

(g)

ce1
(Ns/m)

ce2
(Ns/m)

c

(Ns/m)

d

(mm)

V EH1
1 80 80 10 1.19 0.13 0.119 24

V EH1
2 80 32 46 1.19 0.27 0.119 24

The frequency responses of V EH1
1 and V EH1

2 in terms of amplitude, phase and

harvested power are displayed in Figure 14 for design parameters listed in Table 6 and

an excitation amplitude Y0 = 3mm. It is shown that the dynamic behavior of V EH1
1 is

linear while V EH1
2 is characterized by a hardening frequency response below the critical

amplitude. The maximum of phase between the two VEHs exceeds π/2 and the overall

normalized harvested power of the two SDOF VEHs is about 6.4mWcm−3g−2 which

lower than the one of the V EH2 as shown in Figure 15.
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Figure 15: Forced frequency responses of V EH1
1 + V EH1

2 and V EH2 in term of

normalized harvested power.

The performances of V EH2 are compared to the overall performances of V EH1
1 and

V EH2
1 in Table 7, which emphasize the advantages of the nonlinear coupling between

the moving magnets. Indeed, the magnetic coupling induces nonlinearities leading to

an enhancement of the frequency bandwidth via a nonlinear spring hardening effect.

Moreover, unlike the case of two SDOF harvesters, the magnetic parameters can be

tuned to modify the coupling terms in such a way that the natural frequencies of the

2-DOFs VEH become closer and consequently the modal interactions increase leading

to high vibration amplitudes, i.e. the harvested power increases.

Table 7: A comparison of performances between V EH1
1 + V EH1

2 and V EH2.

Parameter Frequency (Hz) Pn(mWcm−3g−2) BW (%)

V EH1
1 + V EH1

2 5.3-12.6 6.4 115

V EH2 5.1-12.1 10.4 120

3.4.2. Modal interaction benefits The frequency responses of V EH2 and a 3-DOFs

VEH denoted V EH3 are compared in term of normalized harvested power as shown

in Figure 16. The design parameters of the 3-DOFs VEH correspond to those of the

first optimal solution listed in Table 4. The 3-DOFs VEH has the highest normalized

power close to 25mWcm−3g−2. The performances of both devices are given in Table
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8, approving the high performances of V EH3 compared to V EH2 and giving credits to

the modal interactions and their benefits in such systems. The remarkable specifications

of the proposed devices based on arrays of levitated magnets are highlighted in Table 9

with respect to existing magnetic harvesters.
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Figure 16: Forced frequency responses of V EH2 and V EH3 in term of normalized

harvested power.

Table 8: A comparison of performances between V EH2 and V EH3.

Parameter Frequency (Hz) Pn(mWcm−3g−2) BW (%)

V EH2 5.1 - 12.6 12.1 120

V EH3 4.6 - 14.5 20.2 190

Table 9: A comparison of performances between several energy harvesters based on

magnetic levitation and the proposed VEHs.

Refs Frequency

(Hz)

Acceleration

(g)

Power

(mW )

Normalized Power

(mWcm−3g−2)

Abu Riduan et al. [10] 7-10 0.5 2.090 0.1

Daniel et al. [44] 13 0.25 5.9 15.33

Marin et al. [45] 47.75-51.75 0.2 25.5 0.54

Cepnik et al. [46] 50 1 20.6 1.01

Byung-chul et al. [47] 16 0.2 1.52 1.07

V EH2 5.1-12 0.22 335 10.4

V EH3 4.6-14.5 0.17 795 20.2
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4. Conclusion

In this paper, we propose a multi-modal vibration energy harvesting method based

on arrays of coupled levitated magnets. The equations of motion have been derived

taking into account the magnetic nonlinearity and electromagnetic damping. They have

been solved using the harmonic balance method coupled with the asymptotic numerical

method while considering frequency dependent excitation amplitude. The case of a

SDOF VEH has been analytically investigated and close form expression of the critical

amplitude was extracted. Multi-objective optimization procedures are introduced and

performed using NSGA-II algorithm for the cases of two and three moving magnets

in order to select the ideal solutions in term of performances. The advantages of

the nonlinear coupling have been pointed out by comparing the joint performances

of two uncoupled VEHs and those of a 2-DOFs VEH. The latter enables harvesting

the vibration energy in the frequency range 5.1 − 12Hz with a bandwidth of 120%

and a normalized harvested power of 10.4mWcm−3g−2. Moreover, a 3-DOFs VEH

proves to be even more performant with an operating frequency range of 4.6− 14.5Hz,

a bandwidth of 190% and a normalized harvested power of 20.2mWcm−3g−2 which

highlights the benefits of modal interactions within the proposed harvesting energy

method.

With these promising results, the work in progress concerns the modeling of

multimodal interactions for large oscillator arrays. Indeed, when the number of coupled

magnets increases, the number of excited modes increases over a wide frequency range

leading to ultra-wide bandwidth devices and a high harvested power. Finally, the

nonlinearity can be functionalized in such periodic structures in order to generate

particular collective dynamics [48] with a large number of stable multi-mode solution

branches suitable for energy harvesting.
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Finally, the experimental validation of the proposed multi-modal energy harvesting

method is an important task that we will attempt to accomplish in the near future.

Even though the implementation of an experimental protocol is expensive and takes

time, it remains one of our principal objectives.
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Appendix

Equations (11) and (16) can be written in the following form:

ẇ = f(t, w,Ω) (39)

Where w is a vector of unknowns, f is periodic in t and (Ω) is a real parameter.

The key point of this method lies in the quadratic recast of Equation (39) by

introducing the following set of auxiliary variables:

uj = v̇j, wj = vj
2;∀j ∈ [1, n− 2]

wj,j+1 = vjvj+1;∀j ∈ [1, n− 3]

r1 = Ω, r2 = Y0 cos(Ωt), r3 = Ω2

(40)

Then, Equation (39) can be written in matrix form as follows :



29

v̇j

u̇j

0

0

0

0

0

0



=



0

0

0

0

0

Y0 cos(Ωt)

0

0



+



uj

Ulj

−wj

−wj,j+1

−r1

−r2

−r3

P



+



0

0

0

0

Ω

0

0

0



+



0

Uqj

vj
2

vjvj+1

0

0

r1
2

Pq


m(Ż) = c(t,Ω) + l(Z) + Ωlc1 + q(Z,Z) (41)

with :

Ulj =



− c+cej−1+cej
Mj

uj +
cej
Mj

uj+1 +
cej−1

Mj
uj−1

−kj,j+1

Mj
(vj − vj+1)− kj,j−1

Mj
(vj − vj−1)

−αj,j+1

Mj
(wj + wj+1 − 2wj,j+1)

+
αj,j−1

Mj
(wj + wj−1 − 2wj,j−1)


Uqj =

 −λj,j+1

Mj
(vjwj − vj+1wj+1 + 3vjwj+1 − 3wjvj+1)

−λj,j−1

Mj
(vjwj − vj−1wj−1 + 3vjwj−1 − 3wjvj−1) + r3r2


Pq = − r3

2

n−1∑
j=1

(cej (wj + wj+1 − 2wj,j+1))

(42)

where:

Z =

[
v1...vn u1...un w1...wn w12...wn−1,n r1 r2 r3 P

]T
is the vector of

unknowns with size Neq = 4(n − 2) + 3, c(t,Ω) and lc1 are constant vectors, m(Ż)

and l(Z) are linear vectors and q(Z,Z) is a quadratic vector.

The harmonic balance method is applied to Equations (41) to decompose the

solution Z(t) into a truncated Fourier series.

Z(t) = Z0 +
H∑
k=1

Zc,k cos(kΩt) +
H∑
k=1

Zs,k sin(kΩt) (43)
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The column vector U , with size (2H+1)Neq, where Neq is the number of equations

in Equation (41), collects the components of the Fourier series as:

U =
[
ZT

0 + ZT
c,1 + ZT

s,1 + ZT
c,2 + ZT

s,2 + ...+ ZT
c,H + ZT

s,H

]T
(44)

Substituting Equation (44) into Equation (41), assembling the terms of the same

harmonic and neglecting the highest order, we obtain the following system:

ΩM(U) = C + L(U) +Q(U,U) (45)

where M(.), C, L(.) and Q(., .) are operators which depend on m(.), c, l(.) and q(., .) as

it is defined by Cochelin et al. [36]. Once the algebraic system is obtained, we solve it

using a continuation technique. In order to apply the ANM, equation (45) is transformed

into:

R (U, ω) = C + L (U) +Q (U,U)− ωM (U) = 0 (46)
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