Network Characterization of Lattice-Based Modular
Robots with Neighbor-to-Neighbor Communications

André Naz", Benoit Piranda“, Thadeu Tucci,
Seth Copen Goldstein™ and Julien Bourgeois”

"FEMTO-ST Institute, UMR CNRS 6174, Univ. Bourgogne Franche-Comte (UBFC)
{andre.naz, benoit.piranda, thadeu.tucci, julien.bourgeois}@femto-st.fr

“*School of Computer Science, Carnegie Mellon University
seth@cs.cmu.edu

Abstract

Modular robots form autonomous distributed systems in which modules use communications to coordinate
their activities in order to achieve common goals. The complexity of distributed algorithms is generally
expressed as a function of network properties, e.g., the number of nodes, the number of links and the
radius/diameter of the system. In this paper, we characterize the networks of some lattice-based modular
robots which use only neighbor-to-neighbor communications. We demonstrate that they form sparse and
large-diameter networks. Additionally, we provide tight bounds for the radius and the diameter of these
networks. We also show that, because of the huge diameter and the huge average distance of massive-scale
lattice-based networks, complex distributed algorithms for programmable matter pose a significant design
challenge. Indeed, communications over a large number of hops cause, for instance, latency and reliability
issues.

1 Introduction

Modular robots form autonomous distributed systems in which modules communicate with each other
to coordinate their activities in order to achieve common goals. In this paper, we focus our attention
on lattice-based modular robots composed of identical modules that communicate together using only
neighbor-to-neighbor communications. In lattice-based modular robots, modules are arranged in some
regular 2-dimensional or 3-dimensional lattice structure. Modules are connected to their immediate neigh-
bors in the lattice. We consider different kinds of lattices, namely the square, the hexagonal, the simple
cubic and the face-centered cubic lattices (see Figure 1). In the neighbor-to-neighbor communication
model, modules communicate only with adjacent modules. This communication model is fundamentally
different than the global communication model where all modules can directly communicate together
through a global bus. This approach works well in small networks but it is not scalable. Indeed, the
number of hosts a bus can support is limited and packet collisions may frequently occur. Some hybrid
approaches have been proposed but they are not common in modular robotics.

The considered class of modular robots captures a wide variety of existing systems, e.g., the Tele-
cubes [1], the Miche [2] and the Distributed Flight Array [3] modular robots, some of the self-assembling
systems used in [4] and the modular robotic systems developed in the Smart Blocks [5] and the Claytron-
ics [6, 7] projects. As this work is part of the Smart Blocks and the Claytronics projects, we illustrate
it using the modular robots designed in these projects, namely the Smart Blocks, the millimeter-scale



2D Catoms [8], the Blinky Blocks [9] and the 3D Catoms [10] (see Figure 1). These modular robots are
respectively arranged in the square, the hexagonal, the simple cubic, and the face-centered cubic lattice.

The Smart Blocks and the Claytronics projects propose some interesting applications based on large-
scale modular robotic systems. The Smart Blocks project aims to build a large distributed modular
system to convey small and fragile objects, by attaching many modules together, each one equipped with
a conveyance surface. The goal of the Claytronics project is to use up to millions of modules to build
programmable matter, i.e., matter that can change its physical properties in response to external and
programmed events.

Lattice Type Robot Type

2D Catom

Figure 1: The different arrangement lattices considered in this paper associated with the modular robots
used to illustrate our work. For a lattice L, A denotes its coordination number, i.e, the maximum
number of modules to which a module can be connected.

Communication is central to module coordination. Message and time complexities of distributed



algorithms are generally expressed as a function of network properties (e.g., number of nodes, number of
links, node degree, radius/diameter of the system). Many algorithms target a specific class of networks.
For instance, some algorithms are more efficient in sparse networks than in dense networks (e.g, the
virtual coordinate-based routing protocol in [11]). Moreover, the diameter indicates the number of hops
that is required to broadcast information through the whole system. Many distributed algorithms have
a worst-case time complexity that is linear to the diameter (e.g., leader election algorithms [12, 13]) or a
precision that decreases with the number of hops that messages have to travel (e.g., time synchronization
protocol [14]). Thus, it is crucial to take into account the network properties in order to design and choose
appropriate algorithms, especially in large-scale systems.

The contribution of this paper is to characterize the network of our class of modular robots based
on their lattice type and the number of modules in the system. We demonstrate that these modular
robots form sparse and large-diameter networks. Moreover, we provide tight bounds on the radius and
the diameter of these networks. Note that we assume perfect alignment of the modules in the lattice.
However, defects in the lattice which may cause unreliable and intermittent connections, will only make the
network sparser and increase both its radius and its diameter. We also discuss our results and show that
efficient and effective distributed algorithms for programmable matter and more generally for massive-
scale lattice-based networks may be challenging to design. Indeed, communications over a large number
of hops cause, for instance, latency and reliability issues. To the best of our knowledge, this paper is the
first work to characterize the networks of our class of modular robots.

The rest of this paper is organized as follows. Section 2 presents the related work. Then, section 3
defines the system model and some terms. Afterwards, Section 4 characterizes the network density for our
class of modular robots. Section 5 provides tight bounds of the radius and the diameter of the networks
for our class of modular robots. Then, section 6 discusses our results. Finally, section 7 concludes this
paper and section 8 suggests future research directions.

2 Related Work

To the best of our knowledge, network characterization has attracted little attention in the modular
robotic community. In [15], the authors compare the efficiency of neighbor-to-neighbor communication and
global communication. Based on experimentally validated models, the authors compare the information
transmission time in different scenarios for systems composed of 10 to 1000 modules. As mentioned in
section 1, global communication through a shared medium is less scalable with system size. Since we
envision systems composed of millions of units, global communication is not an option. In this paper, we
focus our attention on lattice-based modular robots in which modules communicate with each other using
neighbor-to-neighbor communications. These modular robots form lattice-based networks.

As characterizing network properties is crucial for choosing appropriate algorithms and designing
efficient new ones, graphs and networks have been extensively studied. Studies have been conducted on
various graphs and networks, e.g., the Internet [16, 17, 18], the World Wide Web [19], sensor networks [20],
small-world networks [21, 22], unit disk graphs [23], and lattice-based networks [22, 24, 25]. These studies
are network specific. They are either measurement based (e.g., [16, 17, 19]), or purely theoretical using
the intrinsic characteristics of the network (e.g., [20, 23, 24, 25]).

Due to the regular tiling of the space in lattices, lattice-based networks obey certain geometric rules
that can be used to analyze these networks. In [22, 24], the authors study some lattice-based networks,
but they only consider networks embedded in the square lattice and restrict their analyze to specific
network topologies, e.g., the square, the ring, etc. Their results are not generalizable to other lattices
and arbitrary network topologies. In [25], the author states that the average distance between nodes in

lattice networks is on the order of nPz, where n is the number of nodes and Dy, is the dimension of the
considered lattice.

In this paper, we consider lattice-based networks embedded in any of the square, hexagonal, simple-
cubic and face-centered lattices. We show that these networks are sparse and large diameter. Moreover,
we provide tight lower and upper bounds for the radius and the diameter of these networks.



3 System Model and Definitions

In this paper, we consider lattice-based modular robots with neighbor-to-neighbor communications. In
lattice-based modular robots, modules are arranged in some regular 2-dimensional or 3-dimensional lattice
L. Here, we consider the Square (S), the Hexagonal (H), the Simple Cubic (SC) and the Face-Centered
Cubic (FCC) lattices. Modules can only occupy a set of discrete positions defined by L. Note that modular
robots may contain holes, i.e., some positions of L may be unoccupied. Because we assume neighbor-to-
neighbor communications, L also defines the module connectivity: Modules can directly communicate only
with their immediate neighbors in L. Dj, denotes the dimension of I and Ay, its coordination number,
i.e, the maximum number of modules to which a module can be connected.

Arbitrarily arranged modular robotic systems form lattice-based networks that can be modeled by
connected, undirected, unweighted and lattice-based graphs G = (V, E), where V is the set of vertices
(representing the modules), F the set of edges (representing the connections), |V| = n, the number of
vertices and |E| = m, the number of edges. d(v;) denotes v;’s degree, i.e., the number of vertices to which
v; is connected. d(v;,v;) refers to the distance between vertices v; and vj, i.e., the number of edges on
a shortest path between v; and v;. The radius, r, and the diameter, d, of G are respectively defined as

r = min max d(v;,v;) and d = max max d(v;,v;).
v €V v;eV v €V v;eV

Notice that we assume perfect alignment of the modules in the lattice. However, defects in the lattice
which may cause unreliable and intermittent connections, will only make the network sparser and increase
both its radius and its diameter.

We now define some specific graphs used in this paper. Let Vi, be the infinite set of vertices representing
the infinite set of positions in L. L-Sphere(v.,r) is a sphere embedded in L, where vertex v, is the center
of the sphere and r € N its radius. It contains the set of vertices in Vi, whose distance from v, is equal to
r:

L-Sphere(ve,r) = {v; € Vi, | d(vi,ve) =71} (1)

L-Ball(v,, ) is a ball embedded in L, where v, the center of the ball and r € N its radius. It contains
the set of vertices in V}, whose distance from v, is less than or equal to r:

L-Ball(ve,r) = {v; €V | d(vi,v.) <7} (2)
= U L-Sphere(v., i) (3)
i=0

By abuse of notation, L-Sphere and L-Ball can respectively refer to sphere and ball graphs embedded
in L where the connectivity between vertices is induced by the lattice structure of L. L-Sphere(r) and
L-Ball(r) respectively refer to a sphere and a ball of radius r in the lattice L. In all the illustrations of
this paper, L-Sphere(r) are gradually colored from red to blue according to the value of r.

4 Network Density

In this section, we show that the networks formed by our class of modular robots are all sparse.

Corollary 1. Let G = (V, E) be the network graph of an arbitrarily arranged modular robotic system
that fits the model described in section 3. The vertex degree, d(v;), of any vertex v; € V' is bounded by:

0<6d(v;) <AL (4)

Lemma 1. Let G = (V, E) be the network graph of an arbitrarily arranged modular robotic system that
fits the model described in section 3. The number of edges of G, m, is bounded as follows:

n—1<m<nApg (5)



Proof. Lower Bound. A connected graph must have at least n-1 edges [22].

Upper Bound. Because of Corollary 1, every module cannot be connected to more than Aj others.
Thus, the number of edges of G is upper-bounded by nAy. Note that a tighter upper bound can be
established by considering the lattice structure of L.

Theorem 1. Let G = (V, E) be the network graph of an arbitrarily arranged modular robotic system
that fits the model described in section 3. If |V| = n is large, then G is a sparse graph, i.e., m < n?.

Proof. If n is large, then A; < n. Thus, we have nA; < n%. Then, because of Lemma 1, we obtain
m < n?

5 Network Radius and Diameter

In this section, we establish tight lower and upper bounds of the radius and the diameter of the networks
of our class of modular robots.

5.1 Preliminary Materials

This section presents some preliminary results used in the computations and the demonstrations of the
radius and the diameter bounds of modular robot networks. We recall that V7, is the infinite set of vertices
representing the set of positions in the lattice L.

Corollary 2. Vv, € Vi, Vr € N, L-Ball(v.,r) is centrally symmetric: The reflection v; of every vertex
v; at distance d(v;, v.) = k through v, is also at distance k from v, and d(v;,v;) = 2k.

Proof. Let L-Ball(v,, 1) be the ball of radius 1 and v, its center. All the vertices except v, are at distance
1 from v.. Along every axis of the lattice L, two vertices, v; and vy, are connected to v., one in each
direction. These two vertices are symmetric through v., at distance 1 from v, and at distance 2 from each
other.

Let L-Ball(v.,7) be the ball of radius r and v, its center. We assume that L-Ball(v,,r) is cen-
trally symmetric. Let L-Ball(ve,7 4+ 1) be the ball of radius r + 1 with v, its center. By construction,
L-Ball(ve, 4+ 1) is obtained from L-Ball(v,,r) by adding all the vertices at distance r + 1 from v,. Let
us consider vs and vy in L-Ball(v.,r) such that vs and vy are symmetric through v, and d(vs,vs) = 2r.
In order to construct L-Ball(v.,r + 1), we add to vs and vy two vertices vs and vg on the same axis but
in the opposite direction such that d(vs,v.) = d(vg,v.) = 7 + 1. vs and vg are symmetric through v,.
Moreover, there is no shortcut between vy and vg, thus, d(vs,vg) = 1+ d(vs,v4) +1 =2+ 2r = 2(r + 1).
Thus, L-Ball(ve,r + 1) is centrally symmetric.

By induction, Yv. € Vi, Vr € N, L-Ball(v.,r) is centrally symmetric.

Lemma 2. Vv, € Vi, Vr € N, the diameter, d, of L-Ball(v.,r) is equal to 2r.

Proof. As stated in Corollary 2, L-Ball(v., ) is centrally symmetric. Thus, Yv; € L-Ball(v.,r) such that
d(vi,ve) =1, Jv; € L-Ball(v.,r) with d(v;,vj) = 2r. By construction, flv; € L-Ball(v.,r), d(vi,v.) > 7.
As a consequence, the diameter of L-Ball(v., ), i.e., the largest distance between any two vertices is equal
to d = 2r.

Corollary 3. Vv, € Vi, Vr € N, L-Ball(v.,r) is the minimum-radius and minimum-diameter existing
graph composed of nr_pai(ve,r) = | L-Ball(v., r)| vertices in L.

Proof. By construction, in L-Ball(v.,r) all the positions of the lattice L at distance less than or equal
to r from v, are occupied. Thus, if we remove a vertex v; and add it to an empty place adjacent to a
full one (the system should remain connected) occupied by the vertex vq, the new location of v; must be
at distance r 4+ 1 from v.. Moreover, every vertex would be at distance r + 1 or more from at least one
other vertex. Thus, the radius of the graph would be equal to r + 1. Moreover, because L-Ball(v,, 1)
is centrally symmetric (See Corollary 2), Jvs € L-Ball(v.,r), d(ve,v3) = 2r. Because of Lemma 2,
d(vg,v3) is the diameter of L-Ball(v.,r). Since there is no shortcut between v; and vs in its new location,
d(vy,v3) = d(va,v3) + 1 = 2r + 1. Thus, the diameter of the graph would be equal to 2r 4 1.



5.2 Radius and Diameter Bounds

Theorem 2. Let G = (V, E) be the network graph of an arbitrarily arranged modular robotic system
that fits the model described in section 3. Let L-Ball(rp) and L-Ball(ry+ 1) be two ball graphs embedded
in L such that the number of vertices of G, n, is between the number of vertices of these two balls, i.e.,
nr-pai(ry) <n < np pai(ry+1). The radius, r, and the diameter, d, of G are tightly bounded as follows:

J (6)
2r, <d<n-—1 (7)

Proof. Upper Bound. In a connected graph, any two vertices are at most separated by all the others.
In such a graph, the n vertices form a line of n — 1 edges. Thus, the largest distance between any two
vertices, i.e., the diameter of G, is at most equal to n — 1 edges. The radius of G is at most equal to the
half of that line, i.e, r < L%J

Lower Bound. Because of Corollary 3, L-Ball(r) is the minimum-radius and minimum-diameter graph
composed of ny_ga(ry) vertices. Thus, with n vertices, G has a radius at least equal to r, and a diameter
at least equal to the diameter of L-Ball(ry), which is, because of Lemma 2, equal to 2ry.

In the rest of this section, we establish the formula to compute the exact radius of an L-Ball according
to its number of vertices in the different lattices we consider.

5.2.1 Systems in Two Dimensions: The Square and Hexagonal Lattices

eee
(a) S-Ball(4) of Smart Blocks. (b) H-Ball(4) of 2D Catoms.
Ng g(4) = 1+4+8+12+16 = 41 N, ga(4) = 146+12+18+24 = 61

Figure 2: An S-Ball(4) and an H-Ball(4) with color gradient from the center of the ball.

In this section, we compute the exact radius of an L-Ball given the number of vertices it has for the
case of two-dimensional systems embedded in the Square (S) and Hexagonal (H) lattices. Figure 2 depicts
an S-Ball and an H-Ball of radius 4, respectively composed of Smart Blocks and 2D Catoms.

Lemma 3. In the square and the hexagonal lattices, the number of vertices in a sphere of radius r > 1,
Np-Sphere(T, AL), can be computed by:

nL—Sphe're(ra AL) = TAL (8)
Proof. As illustrated in Figure 2, in the square and the hexagonal lattices, a sphere of radius r > 1 is

composed of A, segments of length » modules. Consequently, the number of vertices is equal to rAy,.

Theorem 3. In the square and the hexagonal lattices, the radius of a ball composed of n > 1 vertices,
r1-Ba(n, Ar), can be computed by:

1 8(n—1)

rr-Bau(n, Ar) = 3 14 A, 1 (9)



Proof. By definition, L-Ball(r) is the union of all the L-Sphere(i) for i ranging from 0 to r. Thus, in the
square and the hexagonal lattices, for » > 1, the number of vertices in an L-Ball(r), ny-pan(r, AL), can
be computed as follows:

nL-au(r,AL) =Y ni-sphere(i, Ar) (10)
i=0

=1+ AL (11)
1=1

1 1
= §T2AL + §TAL +1 (12)

To obtain Equation 9, we solve Equation 12 for r and keep only the positive root.

5.2.2 Systems in Three Dimensions: The Simple Cubic and Face-Centered Cubic Lattices

In this section, we compute the exact radius of an L-Ball given the number of vertices it contains for the
case of three-dimensional systems embedded in the Simple Cubic (SC) and Face-Centered Cubic (FCC)
lattices. Figures 3 and 4 depict the SC-Ball and the FCC-Ball of radius 2, respectively composed of
Blinky Blocks and 3D Catoms. Both systems can be decomposed into horizontal layers.

The Simple Cubic Lattice

B

(d) Base Layer +2
is a S-Ball(0) 7

(c) Base Layer +1
is a S-Ball(1) 7

(b) Base Layer
is a S-Ball(2)

s a 5-Ball(1)

(a) Blinky Blocks arranged in SC-Ball(2)

(f) Base Layer -2
is a S-Ball(0) 7

Figure 3: An SC-Ball(2) of Blinky Blocks and its decomposition in horizontal layers with color gradient
from the center of the ball.

Lemma 4. In the simple cubic lattice, the number of vertices in a sphere of radius r > 1, ngc-sphere(7),
can be computed by:

r—1

NSC-Sphere (Ir) = NS-Sphere (Ir) +2 Z NS-Sphere (7/) (13)
=0

= 2(27"2 +1) (14)



Proof. As illustrated in Figure 3, a sphere of radius r in the simple cubic lattice can be decomposed into
2r 4+ 1 horizontal S-Spheres of different radii. Equation 13 is obtained by summing up all the size of the
S-Spheres.

Theorem 4. In the simple-cubic lattice, the radius of a ball composed of n > 1 vertices, rsc_pau(n), can
be computed by:

1,(v/3/243n2 + 125 + 27n)s 5
rsc-Ba(n) = 5 ( 7 -1 T
2 33 35 (v/3v/243n2 + 125 + 27n) s

Proof. By definition, L-Ball(r) is the union of all the L-Sphere(i) for i ranging from 0 to r. Thus, for
r > 1, the number of vertices in an SC-Ball(r), nsc_pau(r), can be computed as follows:

-1) (15)

nsc-an(r) = Y nsc-sphere(i) (16)
i=0
=1+ 2(2%+1) (17)
i=1
4 8
= grs +2r% 4+ gr +1 (18)

To obtain Equation 15, we solve Equation 18 for r and keep only the real root.

The Face-Centered Cubic Lattice

(d) Base Layer +2 ',
>

(c) Base Layer +1
>

b) Base Layer y >
(b) y @

(e) Base Layer -1

(a) 3D Catoms arranged in FCC-Ball(2)

(f) Base Layer -2 y [~ -

Figure 4: An FCC-Ball(2) of 3D Catoms and its decomposition in horizontal layers with color gradient
from the center of the ball.



Lemma 5. In the face-centered cubic lattice, the number of vertices in a sphere of radius r > 1,
npcc-sphere(T), can be computed by:

nEcc-sphere(T) = 47 +2(r +1)% + 2(r — 1)4r (19)
=2(5r% +1) (20)

Proof. As shown in Figure 4, a sphere of radius r in the face-centered cubic lattice can be decomposed
into 2r 4+ 1 horizontal layers. The base layer is an S-Sphere(r) and contains 4r vertices. The bottom
and the top layers both contain (r + 1)? vertices. The 2(r — 1) other layers contain 4r vertices each.
Equation 19 is obtained by summing up the number or vertices of each layer.

Theorem 5. In the face-centered cubic lattice, the radius of a ball of n > 1 vertices, rroc-pau(n), can
be computed by:

1 ( (V15+/4860n2 + 343 + 270n)3

r _Bau(n) =
FCC-Batl (1) 5 152

7
153 (v/151/4860n2 + 343 4 270n)3

Proof. By definition, L-Ball(r) is the union of all the L-Sphere(i) for ¢ ranging from 0 to r. Thus, for
r > 1, the number of vertices in an FCC-Ball(r), nrcc-pai(r), can be computed as follows:

—1) (@)

T

npcc-pan(r) = Y _ npcc-sphere(i) (22)
i=0
=1+ 2(5+1) (23)
i=1
10 11
=ttt ol (24)

To obtain Equation 21, we solve Equation 24 for r and keep only the real root.

6 Discussion

In this paper, we demonstrated some properties of networks of lattice-based modular robots with neighbor-
to-neighbor communications. As shown in [26], this class of modular robots is particularly suitable to
design programmable matter, i.e., matter that can change its physical properties in response to some
events. In our vision, programmable matter will be composed of up to millions of modules [6, 7]. This
section discusses our theoretical results and the impact on the efficiency of distributed algorithms for
programmable matter and more generally for massive-scale lattice-based networks.

More precisely, we compare lattice-based networks to small-world networks [21] (e.g., the Internet
network [18]) and to wireless ad-hoc networks (e.g., wireless sensor networks, multi-robot networks, etc.).
Since many large real-world networks are small-world networks, it is legitimate to consider them for
comparison. Wireless ad-hoc networks are highly spatially dependent, like our class of networks. Indeed,
in wireless ad-hoc networks, nodes can only communicate with some neighboring nodes within some
limited range. Note that wireless ad-hoc networks can fall in the class of lattice-based networks if they
are deployed in a lattice structure.

We demonstrated that lattice-based networks are sparse networks (i.e., m < n?). Because of Lemma 1
and because Ap, is bounded by a constant for all the lattices we consider, the number of edges is ©(n).
Thus, lattice-based networks are sparser than small-world networks that have Q(nlog(n)) edges [21].
Wireless ad-hoc networks can be sparse or dense depending on the deployment environment (area/volume,
obstacles, etc.), the deployment density and the node communication range.

_1
In regular lattice networks, the typical distance between two nodes is ~ nPr [25]. Thus, in lattice-

_1
based networks, i.e., lattice networks with potential holes, this distance is lower bounded by Q(n®r),



while in small-world networks, this distance is ~ log(n) [25]. Small-world networks have typically short
distances between arbitrary pairs of nodes due to the presence of few long-range edges. As a consequence,
small-world networks tend to have a small diameter. In lattice-based and sparse wireless ad-hoc networks,
such long-range edges do not exist. Thus, these networks tend to have a larger average distance and a
larger diameter. These phenomena are accentuated as the number of nodes in the network increases.
Because programmable matter is formed of millions of modules [6, 7], the networks we consider are much
larger and thus have a larger diameter than usual wireless ad-hoc networks that are typically composed
of dozens of nodes to tens of thousands of nodes. We demonstrated that the radius and the diameter of
lattice-based networks are lower bounded by Q(¥/n) (Equations 9, 15 and 21 are all Q(¥/n)).

Studies indicate that the diameter of the Internet is around 30 hops [16, 17]. This is corroborated
by the suggested values for Time-To-Live (TTL) for Internet Protocol (IP) packets. The TTL should be
twice the diameter of the Internet [27] and the actual value recommended is 64 [28, 29]. As shown in
Figure 5, systems with a million 3D Catoms have a diameter of at least 132 hops, while systems with
100 million 3D Catoms have a diameter of at least 620 hops. Blinky Blocks systems have similarly large
diameter, e.g., a 40,000 Blinky Blocks system has a diameter greater than 30 hops. Thus, a 40,000 Blinky
Blocks system which fits in a 1.4m? cube, would have a diameter larger than the entire Internet that
spans the whole world.

1000 |

100 |

Pl up ——
S-Lattice LB
H-Lattice LB -
SC-Lattice LB === 7
FCC-Lattice LB

Diameter (edge)

10 |

1 i M | i M | i M | i M | i M | i M | i i
10? 102 103 104 10° 106 107 108
Number of vertices

Figure 5: Diameter bounds versus the number of vertices in the network graph for the different considered
lattices. The terms “LB” and “UB” respectively stand for “lower bound” and “upper bound”.

It is crucial to take into account the large diameter and large average distance to design efficient and
effective distributed algorithms for large-scale modular robotic systems. For example, communication
over a large number of hops causes latency and reliability issues. Assuming link faults are independent
and identically distributed, the probability that a multi-hop communication fails increases exponentially
with the number of hops [30]. Let us consider time synchronization and data sharing algorithms. These
algorithms are required for real-time responsive programmable matter and to distribute, store and access
geometry data for self-reconfiguration. However, these algorithms are challenging to design for such huge
diameter and huge average distance systems. Unpredictable delays (due, for example, to queueing or
retransmissions) accumulate every hop, which tends to disturb the time synchronization process and
decrease the achievable synchronization precision. Moreover, in data sharing algorithms, lookup latency
may be extremely long if it involves messages that have to travel a large number of hops.
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7 Conclusions

In this paper, we characterize the networks of some lattice-based modular robots which use only neighbor-
to-neighbor communications. We demonstrate that they form sparse and large-diameter networks. More-
over, we provide tight bounds of the radius and the diameter of these networks. Our results are general-
izable to other networks embedded in the considered lattices. We also show that, it may be challenging
to design efficient distributed algorithms for massive-scale lattice-based networks because of their huge
diameter and their huge average distance.

8 Future Work

In future work, we will take into account the properties of huge diameter and huge average distance of
massive-scale lattice-based networks in order to design efficient and effective distributed algorithms for
programmable matter.

In addition, we will experimentally evaluate the practical impact of the diameter and the average
distance values on the performance of some distributed algorithms executed in our class of modular
robotic systems.

As previously mentioned, different communication models exist in modular robotic systems. In large-
scale systems, the global communication model where all modules can directly communicate together
through a global bus is not an option because the number of hosts a bus can support is limited by packet
collisions. As shown in this paper, using the neighbor-to-neighbor communication model in large-scale
systems implies a large diameter and a large average distance. In future work, we plan to study the
network properties of modular robotic systems that use hybrid communication models in which modules
communicate together through small buses, each one with a few participating modules, as proposed in [31].
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