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Abstract—Reservoir Computing is an attractive paradigm of
recurrent neural network architecture, due to the ease of training
and existing neuromorphic implementations. Successively applied
on speech recognition and time series forecasting, few works have
so far studied the behavior of such networks on computer vision
tasks. Therefore we decided to investigate the ability of Echo
State Networks to classify the digits of the MNIST database. We
show that even if ESNs are not able to outperform state-of-the-art
convolutional networks, they allow low error thanks to a suitable
preprocessing of images. The best performance is obtained with
a large reservoir of 4,000 neurons, but committees of smaller
reservoirs are also appealing and might be further investigated.

I. INTRODUCTION

For the past decade a branch of machine learning called
deep learning [1], [2] has gained increasing popularity, be-
coming a breakthrough technology thanks to its ability to
solve very efficiently various tasks such as computer vision. A
deep neural network learns the targeted task by automatically
extracting the most suitable representation of the input data [3].
It consists of multiple layers of processing units, or neu-
rons, with connections following a feedforward or a recurrent
model. A key reason of the current success of deep learning
approaches is the increasing availability of more and more
powerful computing architectures, especially general purpose
graphical processing units (GPU) [4], which allow to scale-up
and train such networks.

Various neural network architectures belong to the deep
learning family, like Deep Belief Networks [5], Convolutional
Neural Networks (ConvNet or CNN) [6], Stacked autoen-
coders [7], etc., and somehow the less known Reservoir Com-
puting [8], [9] approach with the emergence of deep Reservoir
Computing Networks (RCNs) obtained by chaining several
reservoirs [10]. Convolutional Neural Networks are known to
be very fruitful for solving classification or recognition tasks
on datasets of images or videos. They are the state-of-the-art
for many standard datasets such as the MNIST digits dataset
[11], or the CIFAR-10 and CIFAR-100 datasets [12].

When dealing with tasks such as speech recognition or time
series forecasting (like financial market time ones), input data
are temporal series, in that case recurrent neural networks
are usually the most suited to model temporal correlations.
However, compared to feedforward networks, recurrent ones
are known to be difficult to train. For example, BackPropa-
gation Through Time (BPTT) unfolds a recurrent network in
time into a feedforward multilayer network trained using the

backpropagation process. Therefore, Reservoir Computing is
appealing because the recurrent part of a RCN is not trained.

From the machine learning point of view, Reservoir Com-
puting refers to Echo State Networks (ESN) [13], [14], while
Liquid State Machines (LSM) [15] are the counterparts in
computational neuroscience. The background idea in RCNs
is to feed a large and sparsely connected recurrent network,
called the reservoir, with input data to produce nonlinear
signals among the neurons, which are then combined linearly
together in the output layer to obtain, after training, the
expected outputs. The training of a RCN is thus not only
easier, since it is focused on the output layer, but also because
it results in solving a system of linear equations.

Reservoir Computing is interesting from the neuromorphic
computing point of view as well, since different physical
implementations have been already proposed, in particular
optoelectronic [16] and fully-optical ones [17]. The design of
such neuromorphic processors, which allow an energy-efficient
and high-speed processing of input data, has been investigated
more recently for convolutional networks by IBM with the
TrueNorth chip [18]. This one embeds 4,096 cores, each
of them simulating 256 individually programmable neurons,
consumes about 70 milliwatts, and is claimed to be the first
step towards a brain-inspired computer.

As noticed previously, Reservoir Computing is able to deal
with real-time problems and neuromorphic implementations
are available. Therefore why not use this kind of networks
to fulfill computer vision tasks? In this paper, as a first step,
we study the use of ESNs for the classification of images
representing handwritten digits. Among the questions which
have to be answered we can notice the temporal encoding of
an image or the need of preprocessing the images to exhibit
relevant classification results.

The paper is organized as follows. In the next section
we briefly discuss some related works on the use of Reser-
voir Computing for solving the MNIST problem. Section III
presents the Echo State Networks, how they are trained and
setup to perform Reservoir Computing. Section IV describes
how we propose to apply an ESN on the MNIST problem
and gives the obtained results. We discuss our proposal in
Section V and compare it to other approaches, in particular
state-of-the-art convolutional neural networks. The final sec-
tion summarizes our contributions and gives some suggestions
for future works.



II. RELATED WORKS

Several research works have already investigated the appli-
cation of the reservoir computing paradigm on MNIST.

In [10], Jalalvand et al. studied how RCNs can be used
for real-time event detection in low quality videos using the
raw image pixels. In order to show that such networks are
relevant alternatives to state-of-the-art methods in computer
vision object recognition, they also looked the performance
of RCNs on the task of handwritten digits recognition. More
precisely, they applied to the MNIST image classification
problem a deep RCN consisting of three stacked reservoirs,
each of them composed of 16K neurons. For the inputs, since
RCNs are dynamical systems, an image (28× 28 pixels) must
be fed as a stream of inputs through time. Therefore, by
considering that 5 successive columns define the inputs for
a time step, the input vector has a size of 5×28 = 140 pixels.
Finally, an output vector of 11 scores, one for each possible
digit value and one for the blank space present in the image, is
obtained by accumulating the deep RCN outputs across time.
As each reservoir produces such an output vector, with the
outputs of a reservoir which are the inputs of the next one
in the stack, there are 528K trainable parameters in this deep
RCN. Using this 3-layer architecture, the authors were able to
reach a digit error rate of 0.92% on the MNIST problem.

In [19], another work related to the PhD thesis of Jalal-
vand, the noise robustness of RCNs for recognition tasks is
addressed. For handwriting recognition, several deep RCN
architectures are evaluated, with different ways of combining
horizontal and vertical image scanning. Horizontal scanning
means that the image is processed column-wise like in the
previous work, while in the vertical case it is row-wise.
The best result was gained with two 2 layer systems of
16K reservoirs in each layer, one for each scanning direction,
followed by a RCN of 16K neurons which takes as inputs the
outputs of both 2 layer systems. This deep RCN of 5 reservoirs
which has 880K trainable parameters, since each reservoir
produces an output vector of 11 components likewise the
reservoirs of the above chained deep RCN, allows to slightly
improve performances by achieving an error rate of 0.81%.

Hermans et al. have also considered the MNIST problem as
case study in [20], to assess the relevance of optimizing the
inputs of photonic delay systems implementing the reservoir
computing paradigm. As physical device they used a delayed
feedback electro-optical system exhibiting Ikeda-type dynam-
ics as reservoir, driven by an input time series encoded into
a continuous time signal. The output of the device is then
recorded and transformed into a high-dimensional feature set,
in order to be processed with linear regression like in other
RC approaches. In this context, the authors showed that an
optimization of the input encoding using BPTT provides a
significant improvement in the performance in comparison
with random input encodings. In fact, they trained both input
and output encodings in simulations with gradient descent
using backpropagation, and then applied them successfully to
the real physical device, obtaining an error rate of 1.16%.

III. IMPLEMENTATION OF RESERVOIR COMPUTING
WITH ECHO STATE NETWORKS

A. Echo State Networks

The main type of reservoir network used in this paper is the
Echo State Network (ESN), introduced by Herbert Jaeger in
2011 [13], which derives from a non-linear expansion vector
model where the state vector is defined by:

xt = g(
in

W ut +Wxt−1), t = 1, ..., T (1)

where xt ∈ RNx , with Nx the number of neurons in the
reservoir, is the activation vector (or state) of the reservoir’s

neurons at time t. Then, the matrix
in

W∈ RNx×Nu , with Nu
as the dimension of the input signal, represents the weights
applied to the network’s inputs. Finally, W ∈ RNx×Nx is the
weight matrix of the connections between the neurons inside
the reservoir. Usually, the reservoir is initialized with a null
state x0 = 0.

The readout (or output vector) ŷt is a linear combination of
the neuron’s activation xt:

ŷt = g(
out

W xt), (2)

where
out

W∈ RNy×Nx , with Ny the number of readouts, is
the weight matrix of the connections between the reservoir’s
neurons and the readouts.

This model can be extended to include bias weights and
feedback between the output signal and the reservoir, as
follows:

xt = g(
in

W ut +Wxt−1+
ofb

W yt−1+
bias

W ), t = 1, ..., T
(3)

where
ofb

W ∈ RNx×Ny is the weight matrix of the connections
between the outputs and the reservoir’s neurons. Feedback
connections are used in a mode called free-run where the ESN

is used to generate an output signal. The matrix
bias

W ∈ RNx

represents the biases of the neurons from the reservoir.
Regarding the output, direct connections can be added

between the inputs and the outputs:

ŷt = g(
out

W [xt;ut]). (4)

The output matrix is then
out

W∈ RNy×(Nx+Nu) and the op-
eration [· ; · ] is defined as the vertical concatenation of two
vectors. Figure 1 gives a good overview of the architecture of
the complete ESN.

A common issue in Reservoir Computing paradigm is that
the dynamic of the reservoir is not adapted to the dynamic of
the input signal. The idea behind Li-ESNs is then to adapt the
network to the temporal characteristics of target signal y.

Formally, the dynamic of a Li-ESN in continuous time is
defined in [14] by:

ẋ =
1

c
(−ax+ f(

in

W u+Wx+
ofb

W y)) (5)



Fig. 1. ESN architecture: the inputs un are connected to a recurrent network
of sigmoid units, while the output vector ŷt is the linear combination of the
units at time t.

where c > 0 is a time constant shared by all network’s units,
a > 0 is the leaking rate of the neurons, and f is the sigmoid
function (tanh(·)). The same dynamics discretized with a step
δ and a sampled input signal utδ is given by:

xt+1 =

(
1− aδ

c

)
xt+

δ

c
f(

in

W u(t+1)δ)+Wxt+
ofb

W yt) (6)

and with δ = c we get the complete Li-ESN equation:

xt+1 = (1− a)xt + f(
in

W ut+1 +Wxt+
ofb

W yt). (7)

The leaking rate a allows to modify the influence of past
states and the dynamics of the reservoir will slow down as it
goes towards zero.

B. Learning phases

The training phase consists in finding the weight matrix
out

W which minimizes the error E(y, ŷ) between the output ŷ
and the target signal y. Therefore, with the output weights

matrix
out

W∈ RNy×Nx , X ∈ RNx×T the matrix containing all
reservoir states during training phase, and Y ∈ RNy×T the
matrix containing the corresponding outputs (with Nx < T ),
the training is defined by the following equation:

out

W X = Y, (8)

which can be rewritten in normal form:

out

W XXT = Y XT . (9)

To solve this equation, a first solution is to compute the

inverse matrix in order to find
out

W as follows:

out

W= (Y XT )(XXT )−1. (10)

To get a better numerical stability, it is possible to rather
use the Moore-Penrose pseudo-inverse:

out

W= Y XT (XXT )+. (11)

However, the most common way to compute
out

W is to use
Ridge Regression (or Thikonov regularization) [21]. By adding

an additional cost to the least square optimization, Ridge

Regression minimizes the amplitude of the weights of the
out

W
matrix, mitigating the sensibility to noise and overfitting. The
training equation (10) becomes then:

out

W= Y XT (XXT + λI)−1 (12)

where I is the identity matrix (I ∈ RNx×Nx ) and λ is the
regularization factor. The regularization parameter λ has no
absolute meaning and should be optimized for each reservoir.

C. Reservoir Computing method and conditions

The original Reservoir Computing method introduced with
ESN in [13] includes the following steps :

1) Generate random input matrix and reservoir (
in

W ,W );
2) Compute reservoir states for each time step using the

input signal ut and save them successively in matrix X;

3) Compute the output matrix
out

W from states collected in 2)
with a linear regression method, minimizing the average
quadratic error E(y, ŷ) between the output signal ŷ and
the target signal y;

4) Use the trained network on a new input signal ut and

computes the output ŷt with the
out

W output matrix.
Several parameters can be taken into consideration, but it is
particularly important to ensure that the reservoir has the Echo
State Property (ESP) which establishes that the effect of past
states xt and past inputs ut on future states xt+k vanishes
gradually over time, and is not amplified.

The first method introduced to establish conditions to ensure
that a reservoir has this echo state property is the spectral ra-
dius, noted ρ(W ), which is the maximum absolute eigenvalue
of the matrix W . In this case, the formulation of conditions
to get the echo state property has been the object of a lot
confusion in publications about Reservoir Computing as it is
commonly asserted that the condition ρ(W ) < 1 is sufficient
and necessary to get the echo state property. Nevertheless, it
has been shown that this condition only applies to autonomous
systems (ut = 0), and is neither a sufficient nor a necessary
condition for the ESP. However, since it has been shown
empirically that the likelihood of the state transitions being
contractive is higher when ρ(W ) < 1, this condition is said to
be sufficient in practice. Then, the algorithm to generate the
reservoir weight matrix W is:

1) Generate a random matrix W ;
2) Divide the matrix W by the spectral radius ρ(W ).
Other studies and conditions have been proposed to get

a good reservoir. In fact, as randomly created reservoirs
have not the same performances on a task, the search for
methods allowing to create optimal reservoirs for a given
task has been the center of a lot of attention in the past
few years. Unfortunately, no such method has been found
so far. Nonetheless, some conditions and measures have been
proposed, most of them based on the border of chaos and the
Lyapunov exponent.



The border of chaos is a region of parameters of a dynamical
system in which the network operates at the limit between
ordered and chaotic behaviors. It is commonly asserted in
Reservoir Computing literature that a reservoir at this border
has a greater computing power and a maximum memory
capacity. This point has been the object of confusion in the
application of Reservoir Computing which has led to the
common method to set the value of spectral radius of the
reservoir connectivity matrix near 1, but just below, so that
the system dynamics be near the border of chaos. More
precisely, research works on LSMs showed that reservoirs
operating between an ordered and a chaotic behavior have
optimal computing performances. Concerning ESNs, it has
been suggested that they are optimal in a stable, but near
chaos, dynamic because they have richer dynamics without
drowning information. However, some doubts have been put
on the border of chaos. Mainly because it has been shown that
ESNs have better results with small spectral radius, especially
when requiring quick reservoir answers instead of an extended
memory. Therefore, it is not always beneficial to set the
spectral radius so that the reservoir dynamics are at the border
of chaos.

D. Committees of ESNs

In machine learning, committees of classifier are commonly
used to improve performance. In Reservoir Computing, it
has been used for voice recognition and financial time series
prediction, in [14] and [22] respectively. The output of a
committee of Nc members is defined by the average of all
ESN outputs. For example, in a classification problem, if
Prc(C = i) is the probability given by the reservoir c that
the class C of the current signal is i, then the probability of
the same event given by the committee satisfies:

Pr(C = i) =
1

Nc

Nc∑
c=1

Prc(C = i). (13)

The learning phase is done separately on each reservoir with
the same input signal u and target output y.

IV. APPLICATION ON THE MNIST PROBLEM

The MNIST database is commonly used to evaluate perfor-
mances of machine learning methods to recognize handwritten
digits. It is composed of a training set of 60,000 images, and
a test set of 10,000 images, with the corresponding labels
going from zero to nine. Classifiers are evaluated on their
error rate and the best score on MNIST, an error rate of
0.21%, is currently held by a committee of 5 neural networks
[11]. Each network consists of two convolutional layers with
32-64 feature maps in each respectively, followed by a fully
connected layer of 150 rectifier linear units sparsely connected
thanks to DropConnect, and a final softmax classification layer.

In this section, we first present the method used to classify
images with an ESN, and then we describe the transformations
applied to images to improve the performances. Third, we
specify the various kinds of output layers evaluated, and finally
the performances of each reservoir.

Fig. 2. Inputs and outputs of a ESN for image classification, with Ni = 28.

A. From images to temporal signals

Each digit to classify is represented in the MNIST database
as a 28 × 28 image where each pixel has a value between 0
(white) and 255 (black). The first modification is to transform
each image into a matrix In ∈ RNi×Ni , where n denotes the
image index and Ni = 28 is the image size, with normalized
pixel values. The corresponding label yn is an integer between
0 and 9 according to the digit represented by In.

The problem is then to classify each matrix In in the class
yn corresponding to the digit that it represents. It is therefore
a classification problem where the classifier ĉ : In → ŷn, with
ŷn ∈ {0...9}, has to establish to which class the matrix In
belongs to. We can then evaluate the classifier performances,
expressed as the percentage of matrix classified in the wrong
class (E(y, ŷ) ∈ [0, 100]), on the training and test sets.

To give matrices to the reservoirs, we have to transform
images into a temporal signal. To achieve this, we transform
one spatial dimension to a temporal one, passing images
column by column (or row by row depending on the selected
orientation). As we consider a processing column-wise (hori-
zonal scanning), we have Nu = Ni reservoir inputs and for
each input (ui)t = (In)ij , where t = n×Ni + j. Hence, the
i-th reservoir input takes, at time step t, the value of the (i, j)
element of the n-th matrix with both n and j defined according
to t. Then, as a result we get Ni time series composed of all
images put side by side. Figure 2 gives a better overview of
this process, we can see that for each time step t which is a
multiple of Ni a new image is introduced.
The idea behind this method is to put one dimension of the
images in the memory of the reservoir so that it can create a
set of features of the current image and use these features to
classify the image. Therefore, the reservoir must have enough
memory to store a full image.

B. Images transformations

To allow reservoirs to see images under different aspects
and extract various features, we introduce in this section two
kinds of image deformations. The resulting images are finally
introduced in the reservoir.

The first type of deformation (Sx) consists in the reframing
and resizing of images. The top line of Figure 4 gives three
examples of this transformation. Both reframing and resizing
are done on the part of the image which contains non-black
pixels, removing the borders. For example, this allows a digit
contained in a 22×22 square to be fitted into a 15×15 square.

The second type of transformation (Rθ) consists in the
rotation of the image, keeping the size constant. In Figure 4,



Fig. 3. Examples of image deformations and stacking. Example B Two
deformations, S15 and S15 + S30 stacked to give a Nu = 30 reservoir
inputs. Example C Three deformations, S15, S15 + S30 and S15 + S90,
stacked give Nu = 45 reservoir inputs.

the middle line represents the deformation R30 where each
image has been rotated by an angle of 30 degrees. The key
idea behind this transformation is to present the digit to the
reservoir through another angle and point of view to increase
the number of efficient features for classification.

Finally, we can create a framework from these deformations
by combining and multiplying them. The bottom line of
Figure 4 shows the combination of both deformations. We can
also give multiple representations to the reservoir by stacking
the transformed images. The entries B, C and D in Figure 3
present examples of this idea.

C. Output layer

For classification problems, the usual output layer consists
of one output per class Ny = 10, where each output returns the
likelihood that the signal at time t belongs to the corresponding
class. In addition to this classical output layer, we also
evaluated two other output layers obtained by joining reservoir
states. In the first case all the reservoir states are considered,
whereas in the second one only some selected reservoir states
are retained.

For the classical output layer, we trained 10 outputs (ŷi)t
with 0 ≤ i ≤ 9, one per digit, to copy a target 10-dimensional
signal yi where (yi)t = 1 if the current image at time t belongs
to the class i, (yi)t = 0 otherwise. Therefore we get the
probability that image n belongs to a class i by averaging
each output over time between the time where the first image
column was introduced (tbegin = Ni×n) and the time where
the last column was fed in the ESN (tend = Ni × (n + 1)).
More formally, the likelihood that the class Cn of image In

be c is Pr(Cn = c) = 1
Ni

tend∑
tbegin

(ŷi)t.

Fig. 4. Top. S20 deformation examples : image reframing and resizing, from
28×28 to 20×20 images. Middle. R30 deformation examples : 30 degrees
image rotation. Bottom. Combined deformation (S18, R30, S18, R60).

The second kind of output layer, named JS, which was
evaluated is obtained by joining all states resulting from the
feeding of the image into the reservoir. Hence, the joined state
is defined as x∗ = xtbegin ∪ xtbegin+1 ∪ ... ∪ xtend

, where
tend − tbegin = Ni. The learning phase consists therefore in

solving the equation Y =
out

W X∗, where
out

W∈ RNy×(Nx×Ni)

and X∗ ∈ R(Nx×Ni)×T . The idea behind this kind of layer is
to compute the class probability not on a single state, but on
the trajectory of a dynamical system.

The joined states output layer has an important drawback
as it increases enormously the complexity of the learning
phase, whether in terms of temporal or spatial complexity.
Consequently we introduced a new output layer, named MTS
(Mixed Three States), which consists in joining the last
state and two intermediary states between the first and the
last states. More formally, this mixed state is defined by
xmts = xtbegin+b 13Nic ∪ xtbegin+b 23Nic ∪ xtend

. The training
phase is done on this mixed state and the temporal and spatial
complexity is hugely reduced compared to the JS output layer.

D. Results

To apply the kind of previously defined reservoir, we first
sought good parameters with a grid-search for the following

parameters : input scaling, proportion of zero in both
in

W and
W , bias, spectral radius and leaking rate. The best configura-
tion corresponds to a spectral radius of 1.3, a proportion of

zero in
in

W of 90% and 10% in W, a input scaling of 0.6, bias
of 1.0, and a leaking rate of 0.2. It is worth noticing that the
spectral radius is here above one, much higher than the famous
border of chaos, and that the low leaking rate indicates that
this task requires a slow dynamic.

The average performance of 30 Li-ESN is 21.233% for a
reservoir of 100 neurons (Nx = 100), whereas it is 9.48% for
a reservoir of 1,200 neurons. A 1,200 neurons ESN shows a
performance slightly better than a linear regression. We must
then use different image transformations to allow the ESN to
take into account different aspects of the images and extract
improved features.

For this purpose, we selected the four input transformations
presented in Figure 3, where the digits are resized to a size of
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Fig. 5. Error rate of the different image deformations.

15× 15. As it is reasonable to make the assumption that each
transformation changes the dynamics of the input signal, we
therefore search for the best spectral radius and leaky rate for
each kind of transformation. For the transformations A to D,
the best spectral radius is respectively 1.2, 0.2, 0.3, and 0.1
(0.1 for no transformation), and the best leaky rate is 0.4 for
all transformations (compared to 0.2 for no transformation).
The increase of 0.2 of the leaky rate shows that resizing the
digits from 28×28 to 15×15 accelerates the input dynamics.

We can then evaluate the average performances of each
kind of input on 100 randomly generated reservoirs. Figure 5
shows the result of this experience. The input A reduces the
error rate from 20.57% to 17.4% (-3.17%). The inputs B, C,
and D reduce respectively the error rate to 12.88% (-7.69%),
11.95% (-8.62%) and 11.69% (-8.88%). For a reservoir of
1,200 neurons, the error rates for each transformation are
respectively 6.51%, 4.97%, 4.11%, and 4.65%.

Two remarks can be made on these results. First, the last
type of inputs, denoted by D, is less efficient than the type
C, which could be explained by the fact that additional trans-
formations of this kind do not give features and information
useful for classification. Second, the error rate goes down
fast as we increase the reservoir size, however, beyond 500
neurons, adding neurons has a much less significant impact
on the performance.

We evaluated the average error rate of 100 randomly gener-
ated reservoirs (Nx = 100) for each type of output layer with
the transformation C as input. In addition to JS and MTS, two
other output layers were considered: the Last State (LS) and a
concatenation of the middle and last states denoted by Mixed
States (MS). Figure 6 shows the obtained results. We can see
the good performance of the JS output, which reduces the error
rate from 11.95% to 3.45% (-8.5%). The LS output increases
the error rate (+6.05%), while the two other outputs, MS,
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Fig. 6. Error rate of the different outputs.

and MTS, have good performances with respectively 6.61%
(-5.34%) and 5.36% (-6.59%).

We introduced in Section II the commonly used committee
method where Nc ESNs are used together to reduce the error
rate. So we tested reservoirs of 50, 100, and 1,000 neurons,
for committees of 2 to 50 members. For reservoirs of 50
neurons, the lower error rate is achieved by a committee of
10 members with 3.83% of wrongly classified digits, compared
to 5.55% (-0.79%) for a single reservoir. For reservoirs of 100
neurons, the best performance is achieved by a committee
of 35 members with 2.77%, compared to 3.54% (-0.77) for
a single reservoir. For reservoirs of 1,000 neurons, the best
performance is gained by a committee of 21 members with
1.29% (-0.27) of wrongly classified digits against 1.56% for
a single reservoir. By using a majority voting rather than the
average probability given by equation (13), the committee of
21 members gives a slightly improved error rate of 1.25%.
Figure 7 shows typical examples of misclassified digits.

Fig. 7. Examples of wrongly classified digits by an ESN of 1,000 neurons
with a joined state output layer. Digits on the top-left side are the digits found
by the ESN, and the one on the top-right side are the real digits found in the
MNIST database.



E. Using larger reservoirs: a case study with 4,000 neurons

In order to see the influence of an increase in the number
of neurons, we have used an optimization loop in order to
optimize some parameters of the reservoir with a genetic
algorithm. These parameters are the number of neurons and the
leaking rate a. The lower and upper bounds are respectively set
to 1, 000 and 5, 000 for the number of neurons. The optimal
parameters found are 4, 000 for the number of neurons and
0.4 for a. With these parameters, the error rate on the MNIST
problem is equal to 0.93%. It should be noticed that these
parameters also depend on the seed used to initialize the values

of the reservoir, its connectivity, and the input matrix
in

W .

V. DISCUSSION

The obtained results can be used to compare the Reservoir
Computing method to other machine learning approaches. To
this end, we selected results achieved by several commonly
used methods in the field of image classification.

On our side, we have chosen different networks of the work
presented in this paper: reservoirs of 1,200 neurons with both
MTS and JS output layers, a committee of 21 reservoirs of
1,000 neurons with a JS output layer, and finally a large
reservoir of 4,000 neurons. Table I presents the error rate and
the complexity, in terms of addition/multiplication operations
to classify a single character, for each of these networks
compared to a set of other methods including deep learning
networks, support vector machines, and common feedforward
neural networks.

Table I also shows that our approach outperforms the first
deep learning network with respectively 1.68% and 1.42%,
compared to 1.7% for the LeNet-1. The complexity is higher
for the RC approach, but it is worth noticing that the sparsity of
the matrices in equation (7) has no impact on the error rate as
long as the number of non-zero elements does not drop below
a critical value. To reduce the complexity of our method, the
sparsity has been pushed from 10% to 0.3%, and from 90%

to 5%, for the matrix W and
in

W . The sparsity can still be
increased and we are therefore confident that the complexity
could be reduced to the level of the LeNet-1. We can observe
that the different RC networks studied in this paper are able
to reach good results for handwritten digits recognition.

As regards to other machine learning approaches, several re-
marks can be made. First, a support vector machine can reach
a very good error rate of 1.1%, but with a huge complexity.
Second, deep learning networks hold the top places, even if our
best reservoir computing approach, the one with a reservoir of
4,000 neurons, performs slightly better than the LeNet-4 and
LeNet-5 which have respectively, an error rate of 1.1% and
0.95%. In fact, Convolutional Neural Networks are the best
suited for the MNIST problem, leading to impressive results,
thanks to a committee decision. Hence, the three places on the
podium are occupied by committees of 7, 35, and 5 members,
yielding respective error rates of 0.27%, 0.23%, and 0.21%.
This last value is the best performance so far and is nearly the
human capacity (≈ 0.2%).

TABLE I
COMPARISON OF DIFFERENT MACHINE LEARNING APPROACHES.
Reservoir computing approaches studied in this work are in bold.

Classifier Error rate Add/mult
LeNet-1 (deep learning) 1.7% 1.6× 105

RC-aESN-MTS 1,200 neurons 1.68% 2.5× 105

RC-aESN-JS 1,200 neurons 1.42% 4.5× 105

21 × RC-aESN-JS 1,000 neurons 1.25% 15× 106

SVM degree 4 1.1% 14× 106

LeNet-4 1.1% 1.6× 105

LeNet-5 0.95% 4.0× 105

RC-aESN 4,000 neurons 0.93%
CNN 551 neurons 0.35%
7 × CNN 221 neurons 0.27%
35 × CNN 221 neurons 0.23%
5 × CNN with DropConnect 0.21%
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Fig. 8. Error rate of the different outputs.

However, convolutional networks have a huge learning time,
stretching from a few hours to several weeks. They can be used
nowadays thanks to GPU implementation. Our method on the
contrary has a learning time of only about 20 minutes for
a reservoir of 1,200 neurons. Moreover, better performances
can be achieved by extending the learning set with affine and
elastic transformations. Our method also shows an impressive
capacity to learn quickly with a small training set. Figure 8
shows the error rate for the network using transformations
of type C as input and each specific output layer. The error
rate drops quickly as the learning set size grows and reaches
values near its minimum with only one third of the set. This
demonstrates a huge capacity of generalization.

VI. CONCLUSION AND FUTURE WORKS

We have introduced a new image classification approach
using the Reservoir Computing paradigm and evaluated it on
the MNIST. This approach shows an interesting and encour-
aging error rate of 1.42% for a reservoir of 1,200 neurons
and 0.93% when using 4,000 neurons. It is worth noticing



that fast learning networks like ESN can reach such good
performances for a first application where lots of parameters
can be optimized.

Moreover, the performance analysis shows that the way we
presented image to the reservoir has an important impact on
the error rate. Deformation and rotation allow significant drops
of the number of wrongly classified digits. We think that these
transformations allow the reservoir to extract a set of useful
features for classification. The output layer seems also to have
a significant impact on the performances, and applying the
learning phase on joined state can lower the error rate of 70%.

Among other methods commonly used for image classifica-
tion, our approach outperforms already the simple feedforward
networks in terms of error rate and complexity, and can
bear the comparison with the first deep learning networks
such as the LeNet-1. It is worth noticing that deep learning
networks are highly specialized, as they are trained with semi-
supervised algorithms to extract the most significant features.
In comparison, the medium used for computation in our
approach, the reservoir, can be used for other tasks or to
extract new information about the input signal without creating
another neural network. Furthermore, ESN can be used as
computation and memory devices, a feature mandatory to build
future truly intelligent systems.

A large field of possibilities is still there to improve the
performances of our networks. First, we used the old fash-
ion method of selecting manually the set of transformations
applied to the digits, unable to determine which features are
the most useful for the task. Deep learning found a ground-
breaking solution to this problem by creating abstraction layers
where the deformations are selected by learning algorithms. In
the future, we will use methods inspired by deep learning to
create input layers that extract the most effective features for
reservoir networks. Another track is to define and evaluate
hybrid Reservoir Computing and deep learning networks:
the reservoir could be clustered into abstraction layers, or a
temporal dimension could be added to deep learning networks.
Second, we could largely reduce the time of the learning phase
by optimizing the implementation using GPU and CUDA,
and we could also reduce the memory used with recursive
least square algorithms. Finally, as the output layer seems to
have a significant impact, extended researches are possible
to determine which reservoir states should be used for the
learning phase. Indeed, as each state is a highly nonlinear
representation of the input signal and of its history as well, we
can reasonably infer that each state is useful for classification.

We also plan to test a different committee method using
three reservoirs. A first reservoir as standard classifier, a
second one trained only on the digits wrongly classified by
the first reservoir, and a last reservoir trained to decide which
of the two reservoirs has the right answer for each digit.
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