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Abstract. Damping presents one of the most important physical aspects to 

model and estimate, since it plays a large role in determining the performance of a 
dynamic system and the amplitude of vibrations. The present study employs the 
modal strain energy method to estimate the modal damping associated with the  
localized dissipative interfaces of a global linear structure. This method is accurate 
in the case of proportional or classical damping model. But in the real case when 
modes are coupled with damping due to the localization of the dissipation, as in 
the case of most assembled structures, this method may present significant errors. 
In this paper an appropriation method is proposed and associated to the modal 
strain energy method in order to get a good estimation of the modal damping.              
The impact of appropriation on the modal damping estimation in the case of    
non-proportional viscous damping model is studied for a multi-degree of freedom 
system. Results are compared with the reference one obtained by the state space 
method. Simulated academic examples, where accurate estimations of the exact 
solutions are available, will be used to illustrate the methodology and to explore 
the potential difficulties that may arise in more complex industrial applications. 
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1 Introduction 

Analytical techniques for estimating structural vibration have become increasingly 
sophisticated. However the estimation of damping remains difficult and uncertain, 
due to the variety and complexity of its physical origin. Indeed, damping can arise 
from many different sources, such as (Mead 1998): intrinsic damping of the struc-
tural material, coulomb friction and partial-impact energy loss at structural inter-
faces (Gaul and al 2008, Caignot and al 2010), energy lost into surrounding air, 
water or ground and into contained fluids; friction between the structure and 
mounted equipment, furnishings, payload and people, and viscous damping (Ad-
hikari 2014, Krifa and al 2015) between sliding and lubricated machines surfaces. 

In all generality, the dissipated forces can be expressed as a non-linear function 
of the displacement y and the velocities y&. 

( , )d df f y y= &   (1) 

For simplification reasons, in this study the damping is assumed to be linear 
with respect to the velocities (viscous damping) and independent of y. 

The main purpose of this paper is to highlight the performance of appropriation 
method for the estimation of modal damping in the case of localized dissipation 
modeled with viscous damping model. Advantages and drawbacks of the modal 
strain method with and without appropriation will be presented and compared to 
the reference one obtained by the state space method, in order to explore the po-
tential difficulties that may arise in more complex industrial applications. 

2 Theoretical background 

In order to estimate the damping of structures with a multi-degree of freedom 
when the modes are well separated, we can use the following methods: the state 
space method, modal strain energy and the appropriation method. We describe 
here briefly these methods. 

Assuming a linear and dissipative problem of assembled structures, the discrete 
form of the damped vibration problem may be governed by the following equa-
tion: 

( ) ( ) ( ) ( )My t Cy t Ky t f t+ + =&& &   (2) 

where K, M and C are respectively the stiffness, mass and damping matrices, y is 
the response of the system, f is the vector of the external loads. We distinguish 
two cases : proportional damping (Rayleigh 1896) and non-proportional damping. 
In both cases the frequency response of the system governed by equation (2) is 
equal to 
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2 1( ) ( )y K j C M fω ω ω −= + − ×   (3) 

Unfortunately, the use of equation (3) may be computationally very expensive 
especially for large order systems. The assumption of proportional damping is 
generally used in order to resolve the system with an acceptable cost and duration 
by projecting on the undamped modal basis : 

1

( )
n

i i
i

y qνω φ
=

=∑   (4) 

where iφ  and iq  are respectively the eigenmode and the modal amplitude corre-
sponding to the ith eigenfrequency iω . The contribution of all modes is taken into 
account using this equation. But the contribution of all these modes can contribute 
to a non accurate estimation of the modal damping of a specific mode as demon-
strated later in the numerical simulations. 

To avoid this problem, a projection of the response on a single mode of         
vibration is generally used, thus ensuring an accurate estimation of the modal 
damping, so the equation (4) becomes 

( )y qν ν νω φ=   (5) 

2.1  Reference method 

The reference method is the state space method (Geradin and Rixen 2014). It is 
chosen for two main reasons: first for its accuracy in computing the modal    
damping, and secondly for its capacity to be used in both non-proportional (local-
ized) and proportional damping cases. The state space equation is classically    
written in the following form: 
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  (6) 

However, the state space method uses complex eigenvalue solutions by solving 
a double size system ( 2n 2n× ). So, this method is time-consuming for large finite 
element model. And there is no physical meaning behind the use of complex vari-
ables. 

The resolution of the equation (6) gives n complex eigenvalues sν  and n con-
jugate complex eigenvalues sν . When the modal damping factor νξ  verifies 

1νξ = , these eigenvalues can be expressed as follows: 
21s jν ν ν ν νξ ω ω ξ= − ± −   (7) 
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Eigenfrequency and modal damping are deduced from the equation (7) by the   
following expressions : 

2 2Re ( ) Im ( )s sν ν νω = +   (8) 

Re( )sν
ν

ν

ξ
ω

= −   (9) 

This method has been implemented in Matlab and will be considered as the ref-
erence one, as it generates "the exact" estimation of the modal damping. 

2.1  Modal strain method (MSE) 

The Modal Strain Energy method (MSE) was firstly suggested by Ungar and 
Kerwin in 1962, and has been used since to address viscoelastic damping        
problems of sandwich structures by Johnson and Klenholz (1982). Later, a     
modified MSE was proposed by (Dokainish 1995) in order to improve the estima-
tion of modal damping. The advantage of the MSE method is that it allows one to      
compute modal damping by a real instead of a complex, eigenvalue solution.   
Consequently, the computational cost is greatly reduced. The objective of the   
modal strain energy is to determine the damping factor corresponding to each    
vibration mode of the structure. It is based on the concept of the dissipated energy 
in the interfaces for which the close form expression of the loss factor is the ratio        
between dissipated energy and maximal potential energy, over a cycle of periodic 
vibration (Krifa and al 2015), as shown in this relation: 

1
4

diss

pot

E
E
ν

ν
ν

ξ
π

=   (10) 

where dissEν  and potEν  are respectively the dissipated energy and maximal      
potential energy. 

Dissipated energy is calculated by the following expression: 

Eν
diss = !y(t)T fd (t)dt

0

τ

∫   (11) 

where 

- 2

ν

π
τ =

ω
 cycle of periodic vibration of mode ν . 

- fd (t) =C!y(t)   dissipative force 

- !y(t) = Re( jων y(ων )e
jων t )  velocity  
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The potential energy is calculated as follows: 

1 ( ) ( )
2

pot TE y Kyν ν νω ω=   (12) 

Equation (5) supposes that only one mode, in the same time, is responsible for 
the vibration, and that the others neighbouring modes are not involved when a 
forced harmonic excitation is applied. This is of course true only if an appropriate 
force is applied. 

3 Proposed appropriation method 

The force appropriation method is widely used in the aeronautical community 
to perform modal testing (Ewins 1995). The specificity of force appropriation test-
ing is its ability to identify one by one the normal modes of vibration of the  asso-
ciated undamped system through the cancellation of the damping forces by the  
excitation system  (Piranda 2001). 

From the equation (2) one can deduce the frequency expression for a given  an-
gular frequency ω . 

2( - ) ( )K j C M y fω ω ω+ =   (13) 

The appropriated force is then deduced from the equation (13) when the structure 
is oscillated at the resonance frequency νω : 

2( - )f K j C M j Cν ν ν ν ν νω ω φ ω φ= + =  (14) 

In the case of a complex structure where the physical damping matrix C is    
unknown, it is sufficient to apply a force proportional to the eigenmode in the   
following form: 

fν ν να φ= ×  where    cteνα =                   (15) 

Later we will discuss examples to show the effectiveness of this choice of    
appropriation in calculating the coefficients of modal damping by modal strain  
energy. 
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4 Numerical simulations 

The results of an academic example consisting of a system with 8 dofs masses,  
springs, and dampers located (between dofs 1 and 2, 4 and 5, 7 and 8) will be    
presented in this part (Figure 1). We show here the influence of extra-diagonal 
damping coefficients on the dynamic responses of the damped system, using the 
proposed method. 

 
Fig. 1 : Linear array of n spring-mass oscillators, n = 8, m = 10 Kg, k = 105  N/m.                  

Localized dampers are between 1st and 2nd, 4th and 5th, 7th and 8th masses, c = 50 Ns/m. 

The natural frequencies of the undamped system are summarised in the table 1. 
  

Table 1 : Eignfrequencies of the undamped system 

Mode 1 2 3 4 5 6 7 8 
Eigen fre-

quency (Hz) 5.53 10.89 15.92 20.46 24.38 27.57 29.91 31.35 

 
In the case of localized dissipation, the modal damping estimated by modal 

strain energy depends on the applied excitation. In the following, we will compare 
the influence of the type of the external force on the estimation of the modal 
damping. 

If one applies a non-appropriated force to the localized spring mass damper 
system, the MSE method may not provide a good estimation of damping for all 
modes. For instance, the first excitation (a) applied gives a reasonable estimation 
for just the first five modes about 0.25 % (Table 2a), while the two coefficients 

6ξ  and 8ξ  are miscalculated. One can notice an error equals to 13.98 % and 18.91 
% respectively for modes 6 and 8, which is not acceptable. 

 
Figure 2a shows a comparison of the coefficients of damping estimated be-

tween the reference method and the modal strain energy without force appropria-
tion. The corresponding errors committed are given in Figure 2b. 
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Fig. 2 : (a) : Comparison of estimated damping coefficients (b): Estimation Error 

The errors of estimation can be explained by the importance of non-diagonal 
terms in the generalized damping matrix. In order to solve this problem of       
coupled modes by damping, one can apply an appropriated force using equation 
(14). Consequently, a good estimation of the modal damping by the appropriate 
force method is ensured. 

Table 2: Impact of the appropriation force on the modal damping estimation. Three stud-
ied cases: (a) non appropriated force, (b) appropriated force, and (c) quasi-appropriated 

force 

 
(a) Excitation { } 1 0 0 0 0 0 0 0 Tfν =  

Mode 1 2 3 4 5 6 7 8 

 (%)
ν
ξ  

0.29 0.57 0 1.07 1.28 2.48 1.62 1.95 

(%)err  0.04 0.25 0 -0.04 -0.21 13.98 -3.12 -18.91 
 (b) Appropriated Excitation    f Cν ν νω φ=  

 (%)
ν
ξ  0.29 0.57 0 1.07 1.27 2.88 1.57 1.64 

(%)err  -0.01 -0.06 0 0.03 -0.07 0 0.08 0.02 
 (c) Quasi-appropriated Excitation   fν να φ=  

 (%)
ν
ξ  

0.29 0.57 0 1.07 1.26 2.88 1.56 1.64 

(%)err  -0.01 0.07 0 0.26 1.05 0 0.86 0.17 

(b) 

(a) 
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For each eigenfrequency, the simulation with an appropriated excitation is run 

and the corresponding modal coefficient is obtained using the appropriate            
response. The advantage of this method is that appropriation guarantees the excita-
tion of only one mode at a given time, so thereafter a good estimation of the modal 
damping is obtained (Table 2b). 

 
However, the drawback of the appropriation method is that the appropriated 

force is expressed in terms of the damping matrix C which is not necessarily 
known in practical problems. To overcome this difficulty it is proposed to apply a 
quasi-appropriate force which is proportional to the eigenvector as expressed by 
the equation (15). 

As illustrated in the Table 2c, this quasi-appropriate force gives a good predic-
tion of modal damping.  

Figure 3 shows the frequency response using the modal damping estimated by 
the modal strain energy approach associated to the appropriation force method. 
The estimated FRF coincides with the reference FRF obtained using the reference 
state space method.  

 

 
Fig. 3 : Forced response related to the non-proportional case                                                

using modal damping estimated by the proposed method 
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5 Conclusion 

The modal strain energy (MSE) method has been presented to estimate the 
modal loss factor of structures with viscous dampers. An appropriation approach 
has been proposed and associated to the MSE method. This method estimates the 
modal loss factor of structures with respect or not to the condition of proportional-
ity. The results obtained by different methods (reference state space method and 
MSE method) are generally consistent with respect to the prediction of the modal 
loss factor, particularly when the structure has a proportional matrix damping. 
However, for a non-proportional matrix damping, both methods can give different       
results for certain excitations. This problem was address by using an appropriated 
excitation. Finally the modal strain energy associated with the appropriation 
method was illustrated by a 8 DOF spring-mass system with (proportional and 
non-proportional matrix damping). 
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