I. INTRODUCTION

Crystalline silicon wafers are used in many indus- ${ }^{38}$ trial applications such as microelectromechanic systems ${ }^{39}$ (MEMS) and photovoltaic cells. As the silicon is a very ${ }^{40}$ brittle material at temperature below $600^{\circ} \mathrm{C}[1,2]-{ }^{41}$ which is above most of the service temperatures, brittle ${ }^{42}$ fracture is always a major concern from both manufac- ${ }^{43}$ tures and users point of view.

The fracture of single crystalline silicon (SCSi) has ${ }^{45}$ been widely investigated both experimentally and nu- ${ }^{46}$ merically. The anisotropic behavior in terms of fracture ${ }^{47}$ plane and direction has been reviewed by Cox et al. [3]. ${ }^{48}$ It has been shown that the fracture arises predominantly ${ }^{49}$ on cleavage plane either (111) or (110) in experimen- ${ }^{50}$ tal investigations [4, 5] and numerical works [6-8], be- ${ }^{51}$ cause of the low surface energy of these specific planes. ${ }^{52}$ Correspondingly, the fracture toughness has been largely assessed using different experimental methods, such as ${ }^{53}$ macroscopic tensile tests [9], microscopic tensile tests [5] ${ }^{54}$ as well as Vickers microhardness indentation [10]. The ${ }^{55}$ results indicated that the (111) plane is more favorable ${ }^{56}$ energetically for cleavage. Particularly, the anisotropy in ${ }^{57}$ cracking direction has been experimentally highlighted, ${ }^{58}$ especially, the fracture along the $\langle 100\rangle$ direction in the ${ }^{59}$ (110) plane can not be achieved. Experimental obser- ${ }^{60}$ vations have revealed a systematical deflection towards ${ }^{61}$ the (111) plane in this case $[10,11]$. This finding makes ${ }^{62}$ the general Griffith criterion invalid, since the latter only ${ }^{63}$

[^0] nomenon has been provided thanks to quantum mechanical calculations [12], which highlight that the bond breaking process is discontinuous and can cause a large lattice trapping [13] for crack propagation along the $\langle 100\rangle$ direction in the (110) plane. Interestingly, Sherman and Be'ery [11] have shown that a propagating crack in the (110) plane along the $\langle-110\rangle$ direction may also jump to the (111) one when the crack propagation velocity is high. This abnormal behavior seems to have no relation with lattice trapping and was interpreted as linked to a dynamic crack propagation phenomenon. Moreover, the works from this group [14] have reported special surface instabilities on the (111) fracture surface in bending loading. This phenomenon has been recently demonstrated to be initiated at dopants [15].

Regarding the aggregate of multiple silicon single crystals separated by grain boundaries, a distinction should be made between poly-crystalline silicon (PolySi) and multi-crystalline silicon (MCSi). Both have been much less studied for fracture behavior than mono-crystalline silicon. PolySi are essentially used in MEMS, with grain size in the order of micro- or nano-meters, whereas MCSi are employed in the photovoltaic (PV) domain. For the latter the solidification process is well controlled in order to get millimetric to centimetric length size grains, which is almost of the same order of magnitude than the dimension of the structure. The objective is to reduce the grain boundaries which are harmful to the electrical efficiency. Considered as crystal surface defects, the grain boundaries are very complicated structures that are usually described by a tilt and a twist angles [16]. The atomic ar-
rangements in these regions are highly disturbed by the ${ }_{59}$ presence of geometrically necessary dislocations (GNDs) 60 [17] and stacking faults. With these crystal defects, it 61 seems that the crack would take place more easily along 62 the grain boundaries than on the trans-granular cleavage 63 planes. However, it has been highlighted, both by experi- 64 ments and modeling, that an important interaction takes 65 place between a crack and dislocations which induces lo- ${ }_{66}$ cal instability (deflection) on the fracture path [14, 18]. 67 Thus, the propagating crack would be quite unstable if 68 it goes through a grain boundary. Indeed, some authors ${ }_{69}$ have supposed that the fracture of multi-crystalline sili- 70 con can be inter-granular. Paggi et al. [19] and Infuso ${ }_{71}$ et al. [20] have performed some numerical studies with 7_{72} cohesive zone model (CZM) to investigate fracture of sil- 73 icon. Coffman and James [21] have carried out molecular 7_{7} dynamic simulations to assess the surface energy of the 75 grain boundaries in function of the misorientation. How- 76 ever, the real fracture toughness by experimental mea- 77 surements is not available in the literature. It should ${ }_{78}$ be noted that inter-granular fracture of PolySi or MCSi 79 has not been experimentally observed, to the best of the 80 authors' knowledge. In the other hand, transgranular ${ }_{81}$ fracture for PolySi [22] has been reported both by exper- 82 iments and CZM simulations. In our former work [23], 83 based on the fracture of more than 100 silicon wafers, ${ }_{84}$ only transgranular cracks have been observed.

Assuming a transgranular crack in PolySi and MCSi, ${ }^{86}$ will it propagate on the same cleavage planes as for sili- ${ }^{87}$ con single crystal? This question has never been properly ${ }^{88}$ answered. Brodie and Bahr [24] have shown wild fracture ${ }^{89}$ surface roughness for PolySi at room temperature, while 90 the cleavage plane characteristic has not been addressed. ${ }^{91}$ Mulay et al. [22] have indicated that PolySi fracture ${ }^{92}$ surface follows approximately the (111) plane according to the grain orientation texture, yet further verification has not been conducted. It has also been experimentally ${ }_{93}$ observed that cracks are likely to initiate on the (111) ${ }^{94}$ plane for solar grade MCSi [23]. However, upon crossing the grain boundary, will the crack be perturbed by 95 the latter? Indeed, Gerberich et al. [25] has revealed the grain-boundary-affected-zone in which the crack-tip 96 stress field is distorted. Fractographies have shown that ${ }_{97}$ the crack crosses the grain boundary with discontinu- ${ }_{98}$ ous steps in uni-axial tensile configuration [26-28], which ${ }_{99}$ suggests that the grain boundary tends to increase lo^{-100} cally the fracture toughness and pin the crack front. The ${ }_{101}$ barrier effect induced by an important twist misorienta- ${ }_{102}$ tion at the grain boundary has also been highlighted in_{103} a recent work [29]. In such a situation the applied stress ${ }_{104}$ should increase in order to unpin the crack front.

As a summary of the literature review, (i) the grain ori-106 entation drives the fracture path within each grain due ${ }_{107}$ to the anisotropy of the crystal, (ii) the grain boundary 108 strongly affects the crack propagation when it jumps fromiog one grain to the next one, and (iii) the brittle behavior of f_{110} crystalline silicon results in a dynamic fracture process.111 However dynamics effects are still not clearly understood.112

For example the fact that cracks propagating at a very high speed may switch from the (110) plane to the (111) plane has not been confirmed. Then how does fracture of silicon multi-crystal proceed in grains and across the grain boundaries? Would the effect of the grain boundary relate strictly to the misorientation? Is the fracture process experimentally reproducible?

In order to address the above questions, a set of photovoltaic grade multi-crystalline silicon plates have been tested until fracture with a 4 -point bending apparatus. The specimens have been extracted from silicon ingot cast with wire sawing (to produce wafers of thickness around $170 \mu \mathrm{~m}$) and then laser cut to obtain square specimens of size $50 \times 50 \mathrm{~mm}$. The advantage of using this kind of technique is that we can get twin specimens, i.e. two different plates with very similar grain morphology since cut nearby in the same ingot. So it is interesting to compare the fracture behaviors of two almost identical specimens under the same loading. For each of them a pre-crack has been created at the same location, before to undergo 4-point bending until fracture. A high speed camera was set up to track the crack propagation. After cracking, the overall fractography was carried out to study the crack surface morphology. In order to correlate the crack paths with the crystallographic orientations of the grains, measurements by the Laue X-ray diffraction were carried out.

Lastly a numerical model has been built based on the extended finite element method (X-FEM). The initial plane where the crack starts to propagate is chosen among one of the lowest energy planes for cleavage. A cohesive zone energy release criterion is then choosen to control the fracture propagation. Numerical results will then be compared to experimental data.

II. MATERIALS AND EXPERIMENTAL METHODS

A. Multi-crystalline silicon plates

The specimens are laser cut from solar grade multicystalline silicon wafers into square plates with surface dimension of $50 \times 50 \mathrm{~mm}$. The thickness of the latter corresponds to that of the wafer and measures around $170 \mu \mathrm{~m}$. A remarkable characteristic for the solar grade silicon is that the grains are generally millimeter to centimeter large, with the grain boundaries visible with the naked eye. Inside the grains, one can observe frequently a couple of twin boundaries in the form of long strips. As a symmetric plane of a crystal lattice, the twin boundary is demonstrated to belong to the $\{111\}$ family in this study, as illustrated below in Fig. 1 presenting preliminary EBSD measurements on one randomly chosen specimen. The conclusion is consistent with that reported in the literature [30].

From the color code maps associated with the inverse pole figure, one can find clearly that the twin changes

FIG. 1: Twin boundary characteristic: color coded map (a) and corresponding pole figures (b). The red straight line denotes the twin boundary supposed perpendicular to the specimen's surface as presented in the color code map, the
blue curved line represents the the projection of the real twin boundary obtained with the symmetry of the poles.
locally the crystallographic orientation. In all the three ${ }_{28}$ corresponding pole figures, a symmetric crystalline struc- 29 ture can be easily revealed (a twin boundary is a symmet- зо ric plane within a crystal lattice). The red straight line 3_{3} denotes the approximate twin boundary that is supposed perpendicular to the specimen's surface, while the blue curved line represents the symmetric plane and therefore the real twin boundary. From Fig. 1b, it can be noticed in the [110] pole figure that the twin boundary contains three [110] directions. As complementary, in the [111] pole figure, one can observe that one [111] direction is almost perpendicular to the twin boundary. With the above analysis, it can be confirmed that the twin boundary belongs to the $\{111\}$ family.

Due to the small thickness of the silicon wafers compared to the grain size, we can obtain almost twin or triplet wafers when wafers are laser cut in a row in a silicon ingot. An example of two plates containing the same grain shapes and orientations is presented in Fig. 4. It is then possible to investigate the fracture behavior of twin specimens under the same or for different loading conditions.

In order to avoid multi-cracks or crack bifurcation as encountered in a former study [23], a pre-crack or local defect has been introduced with a Vickers indenter at the center of one of the specimen edges as presented in Fig. 2. The induced notch is about $130 \mu \mathrm{~m}$ long. The
dark stain on the left side of the notch is the positioning mark. Particularly, the twin wafers possess the same precrack spot. Note that the pre-crack dimension results in a fracture stress of approximately 35 MPa .

FIG. 2: Precrack carried out with a Vickers pointer. The position of the pre-crack is spotted by a dark stain (on the left of the notch) for consistency between twin plates.

B. Bending tests with high speed imaging technique

The studied silicon plates are thin (thickness around $170 \mu \mathrm{~m}$) and brittle. Classical uniaxial tensile tests are 5_{5} difficult to perform due to gripping and alignment issues. 52 However, the 4 -point bending test is a good alternative 5_{3} because of its simplicity and also because it produces ${ }_{54}$ a uniform tensile area at the lower surface in the area ${ }_{55}$ between the two inner support cylinders. Besides, the 56 fracture surface contains more useful information under ${ }_{57}$ bending compared to that under uniaxial tension, such 58 as the surface instabilities as mentioned in the introduc- 59 tion [31]. The parameters of our experimental set up 60 are given in Table I. The outer and inner spans corre- 61 late well with the recommendations in ASTM C 1161-02c 62 [32]. The punch and support rollers are in steel, and of ${ }_{63}$ low roughness to avoid local stress concentration at the ${ }_{64}$ contact interface. The tests were performed at constant ${ }_{65}$ punch velocity with a LLOYD-Ametek LFPLUS electro- 66 mechanical machine. The cross-head moving down rate ${ }_{67}$ was $0.2 \mathrm{~mm} / \mathrm{min}$, which implies a strain rate in the order ${ }_{68}$ of $10^{-6} \mathrm{~s}^{-1}$ and thus a quasi-static loading. An integrated ${ }_{69}$ displacement sensor provides in real time the punch dis- 70 placement, and an external force sensor with a capacity of ${ }_{71}$ 10 N is used to measure the reaction force on the punch. 7_{2}

TABLE I: Parameters of experimental set up (schematized in Fig. 3)

Inner span	Outer span	Punch roller radius
$a=21 \mathrm{~mm}$	$d=40 \mathrm{~mm}$	$r=3 \mathrm{~mm}$

The high speed imaging technique has been used to ${ }_{82}^{81}$ track the fracture process knowing that the crack propa- ${ }_{83}$ gation velocity is very high. The used high speed camera ${ }_{84}$ (Phantom V710) was set with a frequency of $49,000 \mathrm{~Hz}_{85}$ and a resolution of 256×512 pixels for all the tests. A_{86} manual trigger allowed to save the last 2 seconds of the ${ }_{87}$ high speed camera so that the fracture can be entirely ${ }_{88}$ captured. Since the specimen should be horizontally ${ }_{89}$ placed on the support rollers, a tilted mirror was set up 90 under the specimen which allowed the camera to image ${ }_{91}$ the tensile surface of the specimen. Figure 3 provides ${ }_{92}$ a comprehensive illustration for the depicted configura- ${ }_{93}$ tion. It should be noticed that the observation region 94 is reduced (50 mm to 25.6 mm) but the pure bending ${ }_{95}$ area is still fully covered, since the inner contact span is ${ }_{96}$ 21 mm .

Several pairs of twin plates have been investigated. 98 The test results and the analysis will be addressed in 99 detail mainly for one pair of twin plates (see Fig. 4) for ${ }_{100}$ which the reproducibility is revealed. Another 2 pairs ${ }_{101}$ turned out similar results, while the rest pairs resulted ${ }_{102}$ in deviated fracture paths due to either inconsistent pre-103 cracks or slightly different grain distributions.

III. FRACTURE PATH INVESTIGATION

A. Surface imaging analysis

The cracking results of two twin plates are displayed in Fig. 4. The first remarkable observation is that the fracture paths are highly similar from the begin to the end of the cracking (here from top to bottom). Other outputs of interest are:
i) Unlike isotropic brittle materials, the crack does not align with the maximal principal stress plane, which corresponds to the bending axis, here the vertical direction in Fig. 4.
ii) Intergranular propagation is not observed. The crack goes straightly in the grains and then changes its direction upon crossing grain boundaries.
iii) In the two mentioned images, one can notice that the crack aligns with the twin boundaries in the biggest grain at the plate center, which represents a (111) plane, as discussed in our EBSD analysis (see Fig. 1).

From these observations, it can be concluded that the fracture of the multi-crystalline silicon is reproducible and the crack propagates in trans-granular way probably on low energy planes like (111) or (110).

Regarding the high speed imaging, the subtraction between two consecutive images highlights the crack propagation. To properly detect the crack tip, the contrast is reinforced with a wavelet denoising. Even if this method presents some uncertainties, it gives a relevant estimation of the crack growth during the cracking process. The main drawback is linked to the acquisition frequency which is limited, leading to a laps time of about 20μ s between two images. That affects straightly the estimation of the crack propagation velocity which is an average during the laps between two consecutive images. However, in this study, this technique allows to correlate the crack velocity and the crack path, especially the step changes of the propagation velocity when the crack crosses the grain boundary. As presented in Fig. 5, the reference image is one on the completely cracked specimen which helps to figure out the entire propagation path on the sample surface. The next image, first of a series of 7 , corresponds to the subtraction between the first photo after cracking and the prior one just before cracking, revealing the starting crack. The following images are also done by subtracting the image at the current time step by the one just before cracking, until the crack covers the specimen.. The yellow marks spot the crack tip positions at each time step. After each subtraction, an instantaneous crack length can be measured at each time step. According to the sample frequency $(49,000 \mathrm{~Hz})$, i.e. 20 μ s between two successive images, the mean crack propagation velocity can be calculated as plotted Fig. 6.

The propagation in multicrystalline silicon is relatively slow ($400 \mathrm{~m} / \mathrm{s}$ in average) compared with the reported steady state velocity which is about $1,200 \mathrm{~m} / \mathrm{s}$, under similar loading and fracture stress [11]. Besides, it can be noticed that the velocity has never reached a steady state

FIG. 3: Schema of the experimental set up: a tilted mirror is put under the specimen to allow the camera to view the tensile surface.

FIG. 4: Crack path of twin plates. Twin plates denote different specimens with the same grain shapes and distributions as well as grain orientations. It demonstrates that the fracture path is reproducible under the same loading conditions.
value as the crack process in single crystal [7, 11]. The ${ }_{14}$ averaged velocity is continuously changing from grain to grain, even sometimes extremely low, which indicates that the crack has been slowed down or shortly stopped. ${ }^{15}$ This conclusion is in a good agreement with the find- ${ }^{16}$ ings of [26] and [33] on the fact that the grain boundary ${ }^{17}$ induces a barrier effect on the propagating crack. Ac- ${ }^{18}$ cording to the dynamic propagation criterion (i.e. the ${ }^{19}$ Freund condition [34]), the propagation velocity has an ${ }^{20}$ inverse relationship with the dynamic energy release rate ${ }^{21}$ (also the dynamic crack propagating force). Thus, in or- ${ }^{22}$ der to overcome the grain boundary obstacle, the crack ${ }^{23}$ slows down to increase its driving force.

B. Fractography analysis

The crack surface provides a lot of information about the fracture process. Particularly, in bending configuration, the crack front presents a quarter ellipse and a straight line, as illustrated in Fig. 7a. Such crack profile can be identified with the presence of Wallner lines [35], according to Fréchette [36]. These roughnessinduced marks permit to identify the crack propagation direction. Besides the Waller lines, it has been highlighted, specially for (111) single silicon, that a kind of instabilities initiate from dopant under bending condition $[11,14,15]$. This kind of instabilities can also be observed in multi-crystalline silicon as reported in [23],

FIG. 5: Cracking process. The first image presents the completely fractured plate, the yellow lines figure out the entire fracture path and the dashed blue lines indicate the location of the inner rollers (on the punch). The second image corresponds to the subtraction between the first photo after cracking and the last photo before cracking, thus reveals the starting crack. The following images are also done by subtracting the image at the current time step by the one just before cracking. The yellow marks spot the crack tip positions in sequential subtractions, i.e. at each time step.
see Fig. 7b. The presence of the instabilities allows us ${ }_{23}$ to determine quickly, without any prior knowledge of the 24 crystal orientation, that the crack surface belongs to the 25 \{111\} family.

The surface imaging analysis has already revealed at ${ }^{27}$ the macroscopic scale the very similar fracture path for ${ }^{28}$ the two twin plates. In order to compare the crack sur- 29 face morphology for reproducibility analysis, a confocal 30 microscope VHX-2000F was used. Both twin plates have ${ }^{31}$ been investigated at the grains that are crossed by the ${ }^{32}$ crack. The observations are presented in Figs. 8 and ${ }^{33}$ 9. The overall reconstitution shows the crack surface associated with the corresponding grains. The concerned grains are numbered in the order of the crossing sequences. Particularly, the grain 9 contains many twins. Thus it has been divided into 5 parts with respect to the crack directions (the contours are clearer in Fig. 19a).

From the overall fractography displays, two main ob- ${ }_{37}$ servations can be highlighted:
(i). Regarding the comparison between the two twin ${ }_{39}$ plates, one can notice that fracture surface morphologies 40 are highly identical for all the grains cut by the crack. 41

This consistency demonstrates a second time but more clearly the repeatability of the fracture behavior of multicrystalline silicon.
(ii). For both figures, some surface instabilities are clearly visible in grains $1,2,4,5,6,9_{3}, 9_{5}$, and 10 , which signifies that the crack advances on the (111) plane in the above grains. For the crack surfaces of the grains 3 and 7, the instabilities are present but not outstanding, while these can not be observed for the other grains. The perturbation free surfaces will require further identification based on the grain orientation measurements.

C. Pole figure analysis

In order to further identify the cleavage planes as well as to access the grain orientations and analyze the grain boundary properties, Laue X-ray diffraction has been performed on the twin plate 1 after the fracture. This technique allows to cover relatively large specimens with respect to Electron Back-Scatter Diffraction (EBSD) analysis. It needs as input the preliminary defi-

FIG. 6: Mean crack propagation velocity measured with high speed camera images, G denotes grain and GB the grain boundary. The correspondence between the grains and the numbers are reported in Fig. 8
nition of the grain contours. Thanks to the different light reflections due to different orientations of the grains, the grain boundaries are visible to the naked eye. Therefore, the grain contours have been drawn thanks to the software ImageJ with a photo and then fed for orientation measurements. For comprehensiveness, the grains crossed by the crack have been figured accurately while the grains elsewhere have been drawn approximately. An angular color map is presented in Fig. 10, from which one can observe an aleatory distribution of the grain orientations. The measurements initially resulted in three angles α, γ, β that denote the rotation angles around the x, y and z axes, respectively. These angles have been used to define the Euler angles which facilitates the angle treatment (see Appendix B), especially the determination of the misorientation of a grain boundary.

The pole figure can be very straightforward expres- ${ }^{37}$ sion of the cleavage plane when the latter's normal is ${ }^{38}$ known. Conventional pole figure takes the specimen's co- ${ }^{39}$ ordinate system as the stereo-projection basis, then one ${ }^{40}$ should draw at the same time crystallographic directions ${ }^{41}$ as well as the cleavage plane and then perform analysis ${ }^{42}$ to identify which directions are in this plan and which ${ }^{43}$ one is perpendicular to it (see section II A). However, if 44 the cleavage plane is just chosen as the stereo-projection ${ }^{45}$ plane, the identification becomes much easier, knowing ${ }^{46}$ that the in-plane directions will certainly run across the ${ }^{47}$ figure contour and the perpendicular direction will be ${ }^{48}$ right at the figure center. Except (111) planes that have 49 already been identified from surface instabilities, other 5^{50} possible planes for the mark free surfaces can be (110), ${ }^{51}$ (111) or (112). For the (110) plane, it contains one [110], 52 two [111] and two [112] directions. Regarding the (111) ${ }_{53}$ plane, we have three [110] and three [112] directions. The 54 (112) plane includes one [110] and two [111] directions. ${ }_{55}$

FIG. 7: Fracture surface morphology. Crack profile scheme under bending (a) and (111) surface morphology presenting Wallner lines and surface instabilities (b). The Wallner lines stem from the interaction between the crack front and the roughness induced elastic waves. The surface instabilities [15], particularly present on (111) plane, result from the crack tip deflection by the dopant atoms.

In order to determine the normal direction of a fracture surface in the specimen's coordinate system, the confocal microscope has been used the measure the tilt angle with respect to a plane that is normal to the specimen's surface and contains the intersection line between the fracture surface and the specimen's surface. Another tilt angle can be directly obtained from the fracture path on the surface.

The pole figures have been carried out for the grains whose cleavage planes can not be identified by the presence of surface instabilities (see section III B). The results are presented in Fig. 11 for grains $3,7,8,9_{1}, 9_{2}$, and 11. The pole figure for grain 9_{4} is highly identical to that for grain 9_{2} and thus is not displayed. Each pole figure contains the normals of all the $\{110\},\{111\}$ and $\{112\}$ planes which are denoted by blue circles, red squares and green triangles, respectively.
i) For the four pole sub-figures (a), (b), (c), (d), one can see that there is one [111] direction located nearby the center, while some [112] directions can also be identi-

FIG. 8: Fractographies on all the fracture involved grains for twin plate 1. The numbers represent the crossing order of the crack through the grains from the beginning to the end. Note that the grain 9 owns many twins.
fied in the central region, since the closest angle between ${ }_{16}$ [111] and [112] directions is 19°. However, the (112) plane ${ }_{17}$ should be eliminated from the identification, since one ${ }_{18}$ can find three [112] directions close to the figure contour line, knowing that a (112) plane does not contain such directions but a (111) does. Besides, the three [110] projections located near the figure contour line confirm that ${ }_{20}^{19}$ the four cleavage planes belong to the $\{111\}$ family.
ii) For the three other figures, they reveal in one hand one [110] direction that is close to the figure center, and ${ }_{22}^{21}$ in the other hand the two [111] as well as the two [112] ${ }_{23}^{22}$ directions that are very close to the figure contour line. ${ }^{23}$ One may conclude that the cleavage planes correspond ${ }_{25}^{24}$ to the $\{110\}$ family.

Based on the above analysis, it can be concluded that ${ }_{27}$
the fracture in grains $3,7,8$ and 9_{1} occurs along the (111) cleavage planes while in the grains $9_{2}, 9_{4}$, and 11 it happens in the (110) cleavage planes.

IV. GRAIN AND TWIN BOUNDARY CROSSING

The fracture path investigation deals with the fracture surfaces into the grains, but what happens when the crack runs through the grain boundary and nearby a twin boundary area? In section III A, it has been shown that its propagation velocity did not reach a steady state value, unlike the crack propagation in silicon single crystal. The crack velocity looks to be strongly affected by

FIG. 9: Fractographies on all the fracture involved grains for twin plate 2. The numbers represent the crossing order of the crack through the grains from the beginning to the end. Note that the grain 9 owns many twins.

1 grain boundaries.

A. Misorientation characterization

A grain boundary can be unambiguously described by ${ }_{19}$ five macroscopic circles of freedom [16]: a common crys- ${ }_{20}$ tallographic axis (see Appendix C for explanation) of ${ }_{21}$ the two separated grains l (two DOFs), the grain level misorientation (GLMIS) angle θ that allows to bring both grains in perfect matching (one DOF), and then the boundary plane normal direction \boldsymbol{n} (two DOFs), as schematized in Fig. 12. When \boldsymbol{l} is perpendicular to \boldsymbol{n}, the ${ }^{22}$ grain boundary can be described by a tilt angle. When ${ }_{23}$ the relationship between the two vectors becomes par- 24
allel, the misorientation can be characterized by a twist angle. Generally, the grain boundary concerns a mixed characteristic. In practice, the grain level misorientation can be calculated from a rotation matrix $\underline{\underline{H}}$ represented by Euler angle triplet in reference of one grain crystallographic coordinate system. \underline{H} can be computed with the Euler rotation matrix of both grains in the reference coordinate system of the specimen (the global system) as indicated in Eq. (1).

$$
\begin{equation*}
\underline{\underline{H}}=\underline{\underline{R}}_{g 2} \cdot \underline{\underline{R}}_{g 1}^{T} \tag{1}
\end{equation*}
$$

with $\underline{\underline{R}}_{g 1}$ and $\underline{\underline{R}}_{g 2}$ the rotation matrix from the global system to the local crystalline systems of the two involved grains.

FIG. 10: Angular color map of grain orientation distribution measured with Laue X-ray diffraction. The three angles α, β, and γ denote the rotations around the x, y and z axes, respectively

The misorientation is then obtained with the expression reported in [37] and presented in Eq. (2):

$$
\theta=\operatorname{Arcos}\left(\left(H_{11}+H_{22}+H_{33}-1\right) / 2\right)
$$

In fact, due to the symmetry of cubic structure, the ${ }_{35}$ rotation matrix has 24 equivalent rotations which ensure ${ }_{36}$ the same crystalline structure (See Appendix B). In prac- ${ }_{37}$ tice, one can find 24 misorientations, but only the small- ${ }_{38}$ est value makes sens.

With the orientations measured by the Laue X-ray 40 diffraction, the common axes, the GLMISs as well as the ${ }_{41}$ angles between the common axes and the grain bound- ${ }_{42}$ ary normal have been determined and presented in Ta- ${ }_{43}$ ble II. The latter have been addressed in order to assess ${ }_{44}$ the weight of the twist and tilt angles for each GLMIS. ${ }_{45}$ When ξ is between 0° and 45°, the twist part is more ${ }_{46}$ important. Otherwise, the tilt angle occupies a greater ${ }_{47}$ part when ξ is between 45° and 90°. The grain bound- ${ }_{48}$ ary's normal is determined thanks to fractography, and ${ }_{49}$ will be detailed next. It can be noticed that the twin is 5_{50} associated with one of the common axes of [111] family 5_{51} and a GLMIS of 60°. The grains 1 and 2 have a twin rela- ${ }_{52}$ tionship, their common plane is also the cleavage plane, ${ }_{53}$ this is why the crack does not change its propagating ${ }_{54}$ direction when crossing the grain boundary (see Figs. 9_{55} and 13).

B. Grain boundary crossing

Two cleavage planes separated by a grain boundary ${ }_{61}$ are basically discontinuous due to GLMIS, which results 62 in a cleavage plane level misorientation (CLMIS). Thus, ${ }_{63}$ when a crack arrives at a grain boundary, it should break- 64 through the barrier and then propagates on the chosen 65 cleavage plane in the grain ahead the grain boundary. ${ }_{6}$ Because of the discontinuity, the fracture path should be ${ }_{67}$

TABLE II: Grain boundary misorientations based on Laue X-ray diffraction measurements

Grain passage	Common axis	θ^{a} $\left({ }^{\circ}\right)$	ξ^{b} $\left({ }^{\circ}\right)$
$1-2$	$\langle 1,1,-1\rangle$	60	82
$2-3$	$\langle-1,1,0\rangle$	39	85
$3-4$	$\langle 1,0,-1\rangle$	39	67
$4-5$	$\langle 1,1,1\rangle$	59	3
$5-6$	$\langle 0,1,1\rangle$	38	61
$6-7$	$\langle 5,4,5\rangle$	58	64
$7-8$	$\langle 6,5,4\rangle$	59	21
$8-4^{*}$	$\langle 1,0,1\rangle$	38	33
$4^{*}-9_{1}$	$\langle 6,6,5\rangle$	30	2
$9_{1}-9_{2}$	$\langle 1,1,1\rangle$	60	2
$9_{2}-9_{3}$	$\langle 1,-1,1\rangle$	60	2
$9_{3}-9_{4}$	$\langle 1,1,1\rangle$	60	2
$9_{4}-9_{5}$	$\langle 1,-1,1\rangle$	60	1
$9_{5}-10$	$\langle-5,2,5\rangle$	22	62
$10-11$	$\langle 1,2,-2\rangle$	57	80

${ }^{\text {a }}$ Cleavage plane level misorientation
b Angle between the common axis and the grain boundary
affected more or less heavily according to the CLMIS. Here, the authors differentiate the GLMIS from CLMIS since they are different in most cases (see Section IV C for the twin boundary crossing). In fracture process, CLMIS should be taken into account in grain boundary resistance analysis rather than GLMIS, as done in [28].

Qiao and Chen [33] have investigated the resistance effect of the grain boundaries on the crack in tensile configuration. They have indicated that the crack front will go across the grain boundary at several breakthrough points and the persistent grain boundary islands between these points will release the crack front till a critical penetration. In the present loading configuration, 4 -point bending induces a very different cracking process compared to tensile tests. As depicted in [11], the crack front covers first completely the lower (tensile) part of the specimen section and then advances toward the compression area. The crack front is illustrated in Fig. 7a. It reveals that the first breakthrough points would be nearby the specimen lower surface and that next breakthrough points would germinate progressively toward the specimen top surface (which is initially in compression).

In order to study the fracture behavior at the grain boundaries, micrographies of the crack surface in the vicinity of the grain boundaries have been carefully analyzed for one of the twin plates. The results are displayed in Fig. 13. All the crossing spots have been considered. Except the crossing at the boundary 1-2 (i.e. between grains 1 and 2) for which the two separated crystals have twin properties, two kinds of passing behaviors can be distinguished. For the boundaries 3-4, 4-5, 5-6, 7-8, 9-10, 10-11, one can observe that the crack front deflects almost from the lowest point into a non-planar area before arriving at the grain boundary. Besides, this area covers the grain boundary and looks like a 'V' shape. For the

FIG. 11: Cleavage plane identification with pole figure (for $\{110\}$-blue circles, $\{111\}$-red squares and $\{112\}$-green triangles families) taking the corresponding cleavage plane as the projection plane. The pole sub-figures (a), (b), (c), (d), (e), and (f) are based on the cleavages planes of grains $3,7,8,9_{1}, 9_{2}, 11$ (see Fig. 9), respectively.

FIG. 12: Scheme of the grain boundary misorientation: the hatched plane denotes the grain boundary; \boldsymbol{l} and \boldsymbol{n} represent the common crystallographic axes of both grains and the normal vector to the boundary plane, respectively; θ represents the misorientation.
rest crossings, the transition region can be depicted as ${ }_{31}$ a 'X' shape, where the deflection begins from a middle 32 point that is about $1 / 3$ the thickness away from the lower ${ }_{33}$ surface. From the Scanning Electron Microscope (SEM) ${ }_{34}$ images presented in Fig. 14, one can observe the Wallner ${ }_{35}$ lines at the lower part ahead of the grain boundary for ${ }_{36}$ the two cases. The shape of Wallner lines means that ${ }_{37}$ the crack front is elliptical at this place thus the break ${ }_{38}$ points are always located at the lower surface (according 39 to the crack front advancing description in [11]), event 40
tioned that the tilt angles are very similar in these two considered crossings (see Fig. 9). Note that the grain boundary is expected to be more resistant to crack propagation when it implies a twist angle compared to a tilt angle [33]. Thus, for the second crossing behavior (X shape), one can imagine that the crack is stopped shortly at the lower front part so that the corresponding elliptical front is pinned at the straight grain boundary. As the crack velocity reduces significantly, the crack propa-

FIG. 13: Fractography on the grain boundary crossing (crack runs from the left to the right)

FIG. 14: SEM images for grain crossing details. Zoom ${ }_{16}$ on the crack pattern when crossing from grains 2 to 3 (a) and from grains 4 to 5 (b).
gation force raises and releases the crack front from the ${ }_{23}$ lower surface to the upper surface. However, for the first ${ }_{24}$ crossing behavior (V shape), as the resistant effect of ${ }_{25}$ the grain boundary is not very important, thus the crack ${ }_{26}$ front passes the grain boundary almost without sudden ${ }_{27}$ stop.

Both crossing processes have be schematized in Figs. $16{ }_{30}$ and 17 at a grain boundary with both a tilt and a twist ${ }_{31}$ angles, taking into account the crack front shape for a 32 bending test.

(a)

(b)

FIG. 15: Topography on the grain boundary passage: (a) Topography of the two cleavage planes across the grain boundary between the grains 2 and 3 , and (b) across the grain boundary between the grains 4 and 5 . With the estimation from other topographic views that
are not presented here, the twist angle in (a), approximately 30°, is more important than that in (b), approximately 12°.

C. Twin boundary crossing

The twin boundary corresponds to one of the $\{111\}$ planes within a grain. For this special boundary, it is easy to identify 4 dense common axes, i.e. three [110] axes associated with a same pure tilt angle and one [111] axis associated with a pure twist angle. Using Eq. (2), the tilt and twist angles are 70.5° (coherent with the measurement in [38]) and 60° (coherent with the X-ray diffraction measurements in section IV A), respectively. However, these two angles (GLMIS) are not relevant to discontinuous angle (CLMIS) of the fracture plane across a twin boundary. According to an angular analysis, the twin boundary crossing possibilities with the smallest CLMISs are highlighted in Fig. 18. When the cleavage plane behind the twin boundary is (111), the most favorable plane ahead the twin boundary is either a (111) plane or a (110) plane (Fig. 18a). If the (111) is chosen, the associated CLMIS is a pure tilt angle since the intersection direction [110] is in the twin boundary (Fig. 18b), while if the crack propagates on a (110) plane, the associated CLMIS is a mixed angle since the intersection direction is neither in the twin boundary nor perpendicular to the latter (Fig. 18c). When the cleavage plane behind

FIG. 16: Schematized process of the V crossing mechanism at a grain boundary. Grains A and B are adjacent. This crossing behavior correlates well with a relatively large twist angle between the two cleavage planes.

FIG. 17: Schematized process of the X crossing mechanism at a grain boundary. Grains A and B are adjacent. This crossing behavior correlates well with a relatively small twist angle between the two cleavage planes.
the twin boundary is a (110) plane (Fig. 18d), the cross- 21 ing can result in a direct connection to a (110) plane 22 (Fig. 18e) or a deflection onto a (111) plane (Fig. 18f) ${ }_{23}$ just like in opposite direction of Fig. 18c.

It has been indicated that in the grain $n .9$ there are sev- ${ }_{-26}^{25}$ eral twins. In sections III B and III C, the cleavage planes ${ }^{26}$ have already been identified as (111), (110), (111), (110), ${ }^{27}$ (111) for $9_{1}, 9_{2}, 9_{3}, 9_{4}$, and 9_{5}, respectively. The crossing morphology is illustrated in Fig. 19. From Fig. 19a, one can see that the crack in the (110) plane is almost perpendicular to the twin boundaries (we recall that each (111) plane is perpendicular to three (110) planes). The ${ }^{30}$ topography illustrated in Fig. 19b addresses the passage from one (110) plane to another one without remarkable ${ }_{31}$ deflection since the two planes are continuous. Regard- 3_{2} ing the connection from a (111) plane to a (110) plane, 33 the topography represented in Fig. 19c reveals a mixed ${ }_{34}$ angle misorientation across the twin boundary. Accord- ${ }_{35}$ ing to the measurement, we have a CLMIS of 33° around ${ }_{36}$ a direction tilted from the grain boundary of about $60^{\circ},{ }_{37}$
which is coherent with the prediction in Fig. 18a and 18c. The analysis above highlights the difference between GLMIS and CLMIS. CLMIS is smaller than GLMIS since the grain contains more cleavage planes (6 (110) and 4 (111)) than crystalline coordinate system directions (3 (100) plane normals). Besides, the twin boundary crossing can be assimilated to the "V" shape grain boundary crossing (see Fig. 15b) and it affects more slightly the crack velocity (see Fig. 6).

V. FRACTURE MODELING

For the study of the silicon fracture behavior, the literature relies mostly on experimental observations, sometimes in light of dynamic molecular or quantum mechanical simulations to explain some specific phenomena. It should be also noted that the fully anisotropic fracture characteristics can hardly be reproduced with linear elastic fracture mechanics. In continuous mechanics a cohe-

FIG. 18: Theoretical twin boundary crossing from top to bottom. The two short parallel lines in (a) and (d) indicate the intersection between the two cleavage planes with a color correspondence in (a)-(c) and another in (d)-(e).
(a) Two tetrahedrons with a common face on a (111) plane, the initial cleavage plane is another (111) plane.
(b) The crack propagates in the (111) plane ahead the twin boundary, with a pure tilt angle.
(c) The crack propagates in the (110) plane ahead the twin boundary, with a mixed tilt and twist angle since the intersection line is not in the twin boundary plane.
(d) Two tetrahedrons with a common face on a (111) plane, the initial cleavage plane is (110).
(e) The crack propagates in the same (110) plane ahead the twin boundary, with no misorientation.
(f) The crack propagates in the (111) plane ahead the twin boundary, with a mixed angle since the intersection line is not in the twin boundary plane.
sive zone model can be employed to reproduce the frac- 9 ture path, similarly to the atomic debonding process, however a very small scale should be considered with re- ${ }_{10}$ spect to the characteristic cohesive length [39]. In this ${ }_{11}$ study, we will use the Extended-Finite Element Method ${ }_{12}$ (X-FEM) together with the Cohesive Zone Model (CZM) ${ }_{13}$ to give insight to the overall macroscopic fracture, as pre- ${ }_{14}$ sented in the next section.

A. Cohesive X-FEM method

The conventional X-FEM method consists in enriching the shape functions with a Heaviside function and eventually some asymptotic functions to introduce a discontinuity in the displacement field and to faithfully represent the singular stress field around the crack tip, respectively. Concerning the X-FEM method implemented in the Abaqus software [40], the discontinuity is introduced in the way that a cohesive surface is inserted into the element when the damage initiation criterion is achieved at a given integration point [41]. Thus, the crack front can

FIG. 19: Twin boundary crossing. (a) Surface observation of the twins, (b) topographies on the twin
boundary crossing in 9_{2} and (c) from 9_{3} to 9_{4}, as spotted by the dashed circle and the dashed square in (a). The measured CLMISs are 2° and 33° for (b) and (c), respectively.
not stop in the element and the singular stress field is not
taken into account. The fracture takes the same damage ${ }^{53}$ behavior as the cohesive zone. This X-FEM method is ${ }^{54}$ more appropriate than a pure cohesive zone model, in ${ }_{56}^{55}$ which the fracture path is very dependent of the mesh, ${ }_{57}$ knowing that it can only take place along the element ${ }^{5 /}$ boundaries. In addition, Abaqus offers to the user the ${ }^{58}$ possibility to define the crack initiation criterion, which ${ }^{59}$ suits well the modeling of anisotropic fracture behavior. 60 It should be noted that the explicit integration scheme ${ }^{61}$ is not yet available for X-FEM [40] - at least till the 62 version 6.13-4 -, and also that no crack branching can 63 be reproduced. Therefore, in this study, only one crack 64 propagating from a pre-crack will be simulated, with an 65
implicit integration scheme i.e. without inertial or speed effect.

B. Damage initiation model

A damage initiation model was elaborated in Abaqus 6.13-4 User Subroutine UDMGINI in the framework of X-FEM. The initiation criterion is based on combination of the normal and tangential stresses to the potential cleavage planes $\sigma_{n}, \sigma_{t 2}$ and $\sigma_{t 3}$ in each grain. $\sigma_{t 2}$ and $\sigma_{t 3}$ correspond to the shear stresses that lead to the fracture modes II and III, respectively. The considered planes are the $4\{111\}$ planes and the $6\{110\}$ planes. The stress based criterion is defined in Eq. (3):

$$
\begin{equation*}
\delta_{1} \cdot \delta_{2} \cdot\left[<\sigma_{n}>^{2}+\left(\delta_{3} \cdot \sigma_{t 2}\right)^{2}+\left(\delta_{4} \cdot \sigma_{t 3}\right)^{2}\right]=\sigma_{c}^{2} \tag{3}
\end{equation*}
$$

<> denotes Macaulay brackets with the usual interpretation. They are used here to signify that a pure compressive stress state does not initiate damage. δ_{1}, δ_{2}, δ_{3}, δ_{4} will be justified in the discussion that follows.

It should be noted that the tangential components should be rigorously taken into account in the fracture behavior, with weight coefficients δ_{3} and δ_{4} greater than 1. As indicated by Kozhushko et al. [42] and Kozhushko and Hess [43], the shear stress can play a more important role than the tensile stress in the cleavage initiation of crystalline silicon. Quantitatively, ab initio calculations [44] have resulted in an ideal tensile stress of 22 GPa and an ideal shear strength of 6.8 GPa for cleveage in the (111) plane. Often in our experiments it has been observed that the crack path is sometimes far away from the maximal stress plane, implicating that the plate undergoes a mixed mode fracture, for instance where the in-plane shear stress is significant. Thus, δ_{3} and δ_{4} have been set to 3 in the elaborated criterion according to the ab initio calculations. In order to have a stress criterion assimilated to the energy one, the cleavage surface inclination is taken into account in the parameter δ_{1} which is equal to $\cos ($ ang $) \cdot \cos ($ ang 2$)$, with ang 1 and ang 2 denoting the two inclination angles in the specimen's coordinate system. δ_{2} is another penalty factor that is used across the grain boundary. It allows to consider the CLMIS and thus set as $\cos ($ ang 3$)$, with ang 3 denoting the misorientation. The (110) and (111) cleavage planes present different fracture toughness [8, 12]: $3.46 \mathrm{~J} / \mathrm{m}^{2}$ for the (110) planes and $2.88 \mathrm{~J} / \mathrm{m}^{2}$ for the (111) planes. This should be taken into account in the criterion by differentiating the two thresholds $\sigma_{c}^{(110)}$ and $\sigma_{c}^{(111)}$. Based on the relation between stress and energy release rate: $G \approx \sigma^{2} l / E^{\prime}$ (l standing for the crack length and E^{\prime} the rigidity), the thresholds ratio is derived as $\sigma_{c}^{(110)} / \sigma_{c}^{(111)} \approx 1.1$.

When the cleavage plane is determined, the surface normal direction should be feed back to Abaqus solver to deduce the propagation direction. Since the Crystal

Cordinate System (CCS) is different from the Global Coordinate System (GCS), to each grain a Local Coordinate System (LCS) was established according to the orientation measurements. Besides, identical orthotropic rigidity matrix can be attributed to all grains thanks to the cubic symmetry of crystalline structure. The elastic con- ${ }^{42}$ stants were reported in [45], as presented below in the CCS with $\langle 100\rangle,\langle 010\rangle$, and $\langle 001\rangle$ the axes of the refer- ${ }^{4}$ ence frame:
$\underline{\underline{C}}=\left(\begin{array}{llllll}165.7 & 63.9 & 63.9 & & & \\ 63.9 & 165.7 & 63.9 & & & \\ 63.9 & 63.94 & 165.7 & & & \\ & & & 79.6 & & \\ & & & & 79.6 & \\ & & & & & 79.6\end{array}\right)$
The stress tensor $\underline{\underline{\sigma}}$ in the crystal coordinate system ${ }_{55}^{54}$ can be easily calculated when the material orientation is known:

$$
\underline{\underline{\sigma}}=\underline{\underline{Q}}^{T} \cdot \underline{\underline{\sigma}} L C S \cdot \underline{\underline{Q}}
$$

where \underline{Q} is the transformation matrix from the CCS^{61} to a deviated crystal coordinate system with two axes in ${ }^{62}$ the potential cleavage plane (either (111) or (110)) and ${ }^{63}$ the third one perpendicular to this plane (i.e. the LCS). ${ }^{64}$ Then, the shear stresses in mode II and mode III are ${ }_{66}^{65}$ calculated such that $\sigma_{t 2}$ aligns with the intersection line ${ }_{67}^{66}$ between the cleavage plane and the specimen's surface and $\sigma_{t 3}$ in the direction perpendicular to the intersection line. However, the crack must be visualized in the GCS, so the normal direction of the crack plane in the CCS should be expressed in the GCS. To do this transformation, the following formula was applied to obtain the normal direction of the crack plane:

$$
\begin{equation*}
\underline{v}_{n}=(\underline{\underline{R}} \cdot \underline{\underline{Q}})^{T} \cdot \underline{v}_{n}^{(111) /(110)} \tag{5}
\end{equation*}
$$

where $\underline{\underline{\mathrm{R}}}$ represents the grain orientation with respect to the specimen's coordinate system, and $\underline{v}_{n}^{(111) /(110)}$ denotes the normal direction to the chosen (111) or (110) plane.

As mentioned above, the element that undergoes the damage possesses a cohesive surface. A damage evolution law is then necessary in order to obtain a real crack. In this study, the energy criterion was applied in the framework of a classic linear Traction-Separation law. The critical energy G_{c} corresponds to the intrinsic fracture energy of silicon measured by $[8,12]: 3.46 \mathrm{~J} / \mathrm{m}^{2}$ for the (110) plane and $2.88 \mathrm{~J} / \mathrm{m}^{2}$ for the (111) one. The lin- ${ }_{68}$ ear damage evolution is applied which accounts for the 69 mixed mode energy. So the real fracture (when the dam- 70 age parameter reaches 1) takes place when the following ${ }_{71}$ energy relationship is satisfied:

$$
\begin{equation*}
G_{n}+G_{s}+G_{t}=G_{c} \tag{6}
\end{equation*}
$$

C. Simulation

One can choose the Voronoi tessellation to generate aleatory grain shapes, as performed in [23]. In this study, the modeling of the real microstructure was carried out in order to compare numerical results with experimental data. The grain shape has been first reproduced thanks to a in-house Matlab code with the grain contours obtained in ImageJ, as presented in Fig. 10. The grain orientations have been obtained from Laue X-ray diffraction measurements as presented before in Section III C.

To simplify the simulation, tensile condition is considered, knowing that in bending the lower surface that undergoes pure tensile is the one where the crack initiates and propagates to the upper surface. The meshed plate as well as the boundary conditions are presented in Fig. 20. The mesh contains 31, 287 linear brick elements with reduced integration (i.e. C3D8R with 1 integration point). The crack crossed grains are meshed with elements of size 0.1 mm , whereas a global mesh size of 1 mm has been assigned elsewhere. Only one layer of elements is used for the thickness. The horizontal displacement is blocked on the left edge while a displacement is applied at the right edge. A pre-crack is introduced at the same location as for the real specimen. The simulation results are presented and compared with the experiments in Fig. 21 as well as in Table III.

FIG. 20: Boundary conditions and mesh of the specimen

A very good agrement is found for the crack path (see Fig. 21) except for two grains nearby the bottom edge. The only difference concerns the cleavage planes in grains $9_{2}, 9_{2}, 9_{4}$ and 11 , which are detailled in Table III. The lowest energy planes are also given in this Table, giving

TABLE III: Comparison of the cleavage planes between ${ }^{47}$ the experiment and the simulation, the differences are ${ }^{48}$ underlined in bold font

Grain	Experiment	Simulation	Lowest energy plane
1	(11-1)	(11-1)	(11-1)
2	(11-1)	(11-1)	(11-1)
3	(-111)	(-111)	(-111)
4	(11-1)	(11-1)	(11-1)
5	(11-1)	(11-1)	(11-1)
6	(11-1)	(11-1)	(11-1)
7	(11-1)	(11-1)	(1-11)
8	(111)	(111)	(111)
4*	(11-1)	(11-1)	(11-1)
91	(11-1)	(1-11)	(1-11)
9_{2}	(110)	(111)	(111)
93	(1-11)	(1-11)	(1-11)
94	(110)	(111)	(111)
95	(1-11)	(1-11)	(1-11)
10	(11-1)	(11-1)	(11-1)
11	(110)	(111)	(111)

VI. DISCUSSION

A. Reproducibility of the fracture

The reproducibility is always a very important issue 72
some insights on the expected cleavage planes from an ${ }_{32}$ energetical point of view. It should be noted that the ${ }_{3}$ simulation resulted in a consistent fracture path with the ${ }_{34}$ expectation - except for one grain (grain 7), while for the 35 real experiment which is performed under pure bending ${ }_{36}$ loading, led to a derived path in the grains $9_{2}, 9_{2}, 9_{4}{ }^{37}$ and 11. In fact, these grains are located in the region 3_{8} either under the punch roller or out of the inner span (see ${ }_{39}$ Fig. 5). Thus, the local inconsistency is likely related to 40 the disturbed stress field due to the contact stress and ${ }_{41}$ the stress gradient out of the inner span. Note also that ${ }_{42}$ the experimental and numerical cleavage planes are the 4_{3} same in grain 7, however it differs from the lowest energy 44 plane. This point will be addressed in the next section. ${ }_{45}$
,
 fracture in the future work.

B. Fracture path

The fracture of single crystal of silicon takes place preferentially on low energy crystallographic planes such as (111) and (110). For the case of multi-crystalline silicon, no crack along the grain boundary has been observed in this study. The authors presume that the dynamic crack front is sensitive to the perturbation or trapping effect induced by some material defects. The grain boundary is a complicated structure and concentrates dislocations, therefore the propagation in this region is highly unstable and it is why it is barely observed experimentally.

The cleavage planes have been identified thanks to the observation of the fracture surface instabilities and the pole figures. The instabilities-based identification approach is reliable, since the cleavage planes with instabilities have been validated with the pole figures and it has been found that these planes are indeed the (111) planes (the verification is not presented here).

In summary, the majority of these planes belong to the $\{111\}$ family. Conversely the (110) cleavage planes are found in twin regions. However, when these planes are compared with the lowest energy planes, some discrepancies have been observed in grains $7,9_{1}, 9_{2}, 9_{4}, 11$, as summarized in Table III. This inconsistency may rely on three mechanisms: the first is the crack propagation velocity, the second is the misorientation effect and the third is the applied stress field.
i) Effect of the crack propagation velocity: as reported in [46] and later in [11], the crack will choose a higher energy plane ($3.52 \mathrm{~J} / \mathrm{m}^{2}$) rather than a lower energy one ($3.46 \mathrm{~J} / \mathrm{m}^{2}$) when the propagation velocity exceeds $3000 \mathrm{~m} / \mathrm{s}$. However, in this work, the crack is relatively slow due to the important pre-crack used. The inconsistent cleavage planes are correlated with important differences on fracture energies for the experiment and the theoretical analysis, i.e. $3.95 \mathrm{~J} / m^{2}$ versus $3.15 \mathrm{~J} / m^{2}$ for the grain $7,4.40 \mathrm{~J} / m^{2}$ versus $3.12 \mathrm{~J} / m^{2}$ for the grain 9_{1},

FIG. 21: Comparison of the crack path between the experiment (a) and the simulation (b). The experiment was conducted in 4 point bending while the simulation was performed in uni-axial tensile.
and $3.50 \mathrm{~J} / \mathrm{m}^{2}$ versus $3.16 \mathrm{~J} / m^{2}$ for grains grain $9_{2}, 9_{4}{ }^{36}$ and 11, respectively. Thus, the velocity related cleavage ${ }_{37}$ plane choice can be disregarded.
ii) CLMIS effect: if the planes with theoretical lowest ${ }^{39}$ energies were chosen, the CLMISs would eventually be ${ }^{40}$ very important, in our case $55^{\circ}, 48^{\circ}, 39^{\circ}, 39^{\circ}, 17^{\circ}$ for 6-7, 41 $4^{*}-9_{1}, 9_{1}-9_{2}, 9_{3}-9_{4}, 10-11$ grain boundary crossings, re- ${ }^{42}$ spectively, while these angles are $36^{\circ}, 25^{\circ}, 35^{\circ}, 35^{\circ}, 21^{\circ}, 43$ with respect to the experimental cleavage planes. With ${ }^{44}$ the elaborated numerical model, the fracture can be well 45 reproduced for the grains in the inner span region with ${ }^{46}$ the tensile simulation. The consideration of the CLMIS ${ }_{47}$ in the damage criterion allows to the correctly predict the ${ }^{48}$ (experimental) cleavage plane in grain 7, where the ex- 49 perimental fracture path deviates from the expectation. ${ }^{50}$ Here not presented, but if CLMIS is not taken into ac- ${ }^{51}$ count, the simulation results in the lowest energy plane in grain 7. However, regarding other inconsistent cleavage planes, the simulation turns out the same fracture path ${ }^{52}$ as the expectation, which drives us to the third mechanism.
iii) Uniformity of the applied stress field: the expected ${ }_{54}$ cleavage planes and the simulation are performed in uni- 5_{5} form tensile configuration, while in experiment, the crack ${ }_{56}$ finally runs into a stress field disturbed region (grains $9_{1}, 57$ $9_{2}, 9_{4}, 11$), where the contact force and the stress gradi- 58 ent are involved. Since Abaqus provides X-FEM method ${ }_{59}$ only for first-order stress/displacement solid continuum 60 elements and second-order stress/displacement tetrahe- 61 dron elements [40], these two element types are not ap- 6_{2} propriate for bending simulation with a non structural ${ }_{63}$ mesh. Thus, only tensile loading has been considered in 64 our simulation and further work should be done in order 65 to verify the inconsistency root for grains in vicinity of 66 the punch rollers.

Thus, the discrepancy can be explained by the misorientation effect and the stress perturbation around the punch rollers.

Concerning the X-FEM modeling, even if inertial effects have not been taken into account in the simulation, the model reproduced fairly well the fracture path in the region stressed uniformly (between the two inner rollers). It should be noted that the consideration of the CLMIS is important to successfully predict the cleavage plane ahead the grain boundary. The authors suppose that in multi-crystalline silicon, the mean crack velocity is relatively low, the inertial effect (which mainly disturbs the stress field) thus plays a secondary role on the cleavage plane choice compared to the surface energy and the CLMIS. More work will be required to successfully reproduce the crack path in both space and time.

C. Crack velocity and grain boundary effect

As displayed in Fig. 6, the average crack velocity varies, while a steady state of crack propagation can be attained in silicon single crystal for the same loading type (quasistatic) $[9,11]$. This variation is due to the resistant effect of the grain boundaries, where the crack can be slowed down or shortly stopped in function of the misorientation.

From the grain boundary crossing fractography, a nonplanar deflection region has been revealed. This region is necessary to connect two cleavage planes around the discontinuity. Chen and Qiao [28] and Qiao and Chen [33] did not observe remarkable deflection region since in their experiments the CLMIS was relatively small, while higher misorientations have been measured for our specimens. In function of the deflection morphology, two crossing behaviors can be distinguished, which are likely related
to the twist angle between the two consecutive cleavage ${ }_{33}$ planes. When the twist angle is important, the deflec- ${ }_{34}$ tion tends to initiate from a middle thickness point (X_{35} shape), since the resistant effect is more important for a ${ }_{36}$ greater twist angle $[29,33]$ and the crack front could not ${ }_{37}$ penetrate the grain boundary region immediately thus is ${ }_{38}$ pinned on the grain boundary. Now return to Fig. 6, it ${ }_{39}$ can be noted that the mean velocity is small when the ${ }_{40}$ crack crosses particularly the grain boundaries 1-2 and ${ }_{41}^{40}$ $4^{*}-9_{1}$ where X shape deflection zones are remarkable (see Fig. 13).

Twin boundary is associated with a great GLMIS ${ }^{43}$ $\left(60^{\circ}\right)$. The switch of cleavage planes concerns mainly the ${ }^{44}$ $\{111\}$ and $\{110\}$ families across the boundary. However, ${ }^{45}$ the real GLMIS is much smaller than GLMIS, since the ${ }^{46}$ GLMIS addresses the three $\{100\}$ planes while CLMIS ${ }^{47}$ relates to the four $\{111\}$ and six $\{110\}$ planes. In this ${ }^{48}$ present work, we have mainly (111)-(110) connections ${ }^{49}$ across the twin boundaries, however, as discussed above ${ }^{50}$ in Section VIB, the more favorable connection should ${ }^{51}$ be established only between (111) planes.

VII. CONCLUSION

In this paper, the crack propagation of two solar ${ }_{58}$ grade multicristalline twin samples has been investi- ${ }_{59}$ gated thanks to image analysis, fractography and mi-60 croscopy. Since the grains' orientations were determined ${ }_{61}$ with Laue X-ray diffraction, the anisotropic fracture of 62 multicristalline is presented by taking into account the 63 specific orientation of each grain crossed by the crack 64 front. A physically based X-FEM modeling has been 65 proposed in order to successfully predict the crack path 66
produced during these experiments. The main conclusion of this work are:
(i) Under well controlled 4 points bending solicitation it is possible, for twin specimens, to reproduce exactly the same crack path since the grain shapes as well as their crystallographic orientations are well consistent in the two specimens. The reproducibility ensures that all the observations are results of natural process and not produced by experimental hazard.
(ii) The cleavage planes encountered by these multicristalline specimens are the (111) and (110) plane families. The crack front switches from one plan to another at the grain boundary by selecting the most favorable one (most of the time (111)) in terms of not only the surface energy but also the CLMIS across the grain boundary. These results can be then well reproduced by X-FEM simulations.
(iii) The grain boundaries have an important impact of fracture propagation since the various kinds of misorientations (twist and tilt angles) produce two differents crossing mechanism. These latter namely X or V shape grain boundary crossing affect the crack velocity and therefore inhibits the crack velocity close to an average value of $400 \mathrm{~m} / \mathrm{s}$, compared with $1200 \mathrm{~m} / \mathrm{s}$ of single crystal at a similar fracture stress.

Acknowledgment: The authors thank the french research agency ANR for partial funding through the DURASOL Equipex project. The authors also would like to thank Olivier Hubert from LMT Cachan for his kind help for the EBSD characterization, A. Saulot from LaMCoS INSA-Lyon for his support on confocal microscope equipment, and Amal Chabli, Paul Messaoudi and Franck Medlege from CEA/LITEN-INES for fruitful and stimulating discussions.
[1] J. Samuels and S. G. Roberts, Proc. R. Soc. Lond. A 88 421, 1 (1989).
[2] M. Brede, Acta Metall. Mater. 41, 211 (1993). 90
[3] B. N. Cox, H. Gao, D. Gross, and D. Rittel, J. Mech. 91 Phys. Solids 53, 565 (2005).

92
[4] A. George and G. Michot, Mater. Sci. Eng. A 164, 11893 (1993).

94
[5] X. Li, T. Kasai, S. Nakao, T. Ando, M. Shikida, K. Sato, 95 and H. Tanaka, Sensor. Actuat. A-Phys. 117, 143 (2005). 96
[6] M. Ohring, The materials science of thin films (Academic 97 Press, 1992).

98
[7] D. Holland and M. Marder, Phys. Rev. Lett. 80, 74699 (1998).

100
[8] R. Pérez and P. Gumbsch, Acta Mater. 48, 4517 (2000). 101
[9] J. Hauch, D. Holland, M. P. Marder, and H. L. Swinney, 102 Phys. Rev. Lett. 82, 3823 (1999).
[10] F. Ebrahimi and L. Kalwani, Mater. Sci. Eng. A 268,104 116 (1999).

105
[11] D. Sherman and I. Be'ery, J. Mech. Phys. Solids 52, 1743_{106} (2004).
[12] R. Pérez and P. Gumbsch, Phys. Rev. Lett. 84, 5347108
(2000).
[13] R. Thomson, C. Hsieh, and V. Rana, J. Appl. Phys. 42, 3154 (1971).
[14] D. Sherman and I. Be'ery, Phys. Rev. Lett. 93, 265501.1 (2004).
[15] L. B. Bergman and D. Sherman, Scri. Mater. 75, 14 (2014).
[16] P. Lejček, Grain boundary segregation in metals (Springer-Verlag Berlin Heidelberg, 2010).
[17] M. F. Ashby, Philos. Mag. 21, 399 (1970).
[18] D. Shilo, D. Sherman, I. Be'ery, and E. Zolotoyabko, Phys. Rev. Lett. 89, 235504.1 (2002).
[19] M. Paggi, M. Corrado, and M. A. Rodriguez, Compos. Struct. 95, 630 (2013).
[20] A. Infuso, M. Corrado, and M. Paggi, J. Eur. Cera. Soc. 34, 2713 (2014).
[21] V. R. Coffman and P. S. James, Phys. Rev. B 77, 144111 (2008).
[22] S. S. Mulay, G. Becker, R. Vayrette, J. P. Raskin, T. Pardoen, M. Galceran, S. Godet, and L. Noels, Comput. Mech. 55, 73 (2015).
[23] L. Zhao, A. Maynadier, and D. Nelias, Int. J. Solids Struct. In Press, (2016).
[24] R. C. Brodie and D. F. Bahr, Mater. Sci. Eng. A 351, 166 (2003).
[25] W. W. Gerberich, D. L. Davidson, and M. Kaczorowski, J. Mech. Phys. Solids 38, 87 (1990).
[26] Y. Qiao and X. Kong, Mech. Mater. 39, 746 (2007).
[27] J. Chen and Y. Qiao, Scri. Mater. 56, 1027 (2007).
[28] J. Chen and Y. Qiao, Scri. Mater. 57, 1069 (2007).
[29] A. Pineau, A. A. Benzerga, and T. Pardoen, Acta Mater. 107, 424 (2016).
[30] H. J. Queisser, J. Electrochem. Soc. 110, 52 (1963).
[31] D. Sherman, M. Markovitz, and O. Barkai, J. Mech. Phys. Solids 56, 376 (2008).
[32] "Astm c 1161-02c,".
[33] Y. Qiao and J. Chen, Scri. Mater. 59, 251 (2008).
[34] L. B. Freund, Dynamic fracture mechanics (Cambridge University Press, 1990) cambridge Books Online.
[35] H. Wallner, Z. Phys. 114, 368 (1939).
[36] V. D. Fréchette, Failure analysis of brittle materials: advances in ceramics (American Ceramic Society, 1990).
[37] D. Mainprice, G. E. Lloyd, and M. Casey, J. Struct. ${ }^{56}$ Geol. 15, 1169 (1993).
[38] A. Stoffers, O. Cojocaru-Mirédin, W. Seifert, S. Zaefferer, S. Riepe, and D. Raabe, Prog. Photovoltaics Res. Appl. ${ }^{57}$ 23, 0042 (2015).
[39] W. J. Drugan, J. Mech. Phys. Solids 49, 1181 (2001). ${ }_{58}$
[40] Abaqus analysis User's Guide.
[41] J. H. Song, P. M. A. Areias, and T. Belytschko, Int. J. ${ }^{59}$ Numer. Meth. Eng. 67, 868 (2006).
[42] V. V. Kozhushko, A. M. Lomonosov, and P. Hess, Phys. ${ }_{62}^{61}$ Rev. Lett. 98, 195505 (2007).
[43] V. V. Kozhushko and P. Hess, Eng. Fract. Mech. 77, $193{ }^{63}$ (2010).
[44] D. Roundy and M. L. Cohen, Phys. Rev. B 64, 212103 (2001).
[45] J. Hall, Phys. Rev. 161, 756 (1967).
[46] T. Cramer, A. Wanner, and P. Gumbsch, Phys. Rev. Lett. 85, 788 (2000).

APPENDIX A. EXPERIMENTAL CURVES

The corresponding force-deflection curves for the two twin plates are presented in the below figure. Here the force stands for the total force applied on the specimen, the deflection denotes the punch's moving down distance.

If we apply the beam theory to estimate the fracture stress as presented in the below equation, the assessed values for the two twin plates are of 35 MPa and of 38 MPa , respectively. Indeed, the fracture behavior ${ }^{64}$ is quite dependent on the pre-crack. Thus, in order to ${ }^{65}$ guarantee the same experimental conditions, both speci- ${ }^{66}$ mens were notched with the same indentation force. The quite similar fracture stress confirm that the dimension and shape of the notches are actually close.

$$
\sigma_{f}=\frac{3 P_{f}(a-d)}{2 b h^{2}}
$$

and inner contact spans, b and h represent the width and the thickness of the specimen.

APPENDIX B. EULER ROTATION MATRIX

The Euler angle triplet follows three rotations such that the first rotation is carried out around the axis z for an angle φ, the second rotation around the new axis x^{\prime} for χ and the third one around the updated axis z^{\prime} for ψ. The three corresponding rotation matrix are given below:

$$
\begin{aligned}
& \underline{\underline{R}}_{z}(\varphi)=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \underline{\underline{R}}_{x^{\prime}}(\chi)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \chi & -\sin \chi \\
0 & \sin \chi & \cos \chi
\end{array}\right) \\
& \underline{\underline{R}}_{z^{\prime}}(\psi)=\left(\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Thus, to express the parameters (vectors, tensors etc.) of the updated coordinate system in the original coordinate system, the equivalent rotation matrix is:

$$
\underline{\underline{R}}(\varphi, \chi, \psi)=\underline{\underline{R}}_{z}(\varphi) \cdot \underline{\underline{R}}_{x^{\prime}}(\chi) \cdot \underline{\underline{R}}_{z^{\prime}}(\psi)
$$

For a face-centered cubic crystalline structure, we have six equivalent orthogonal axis. For axis x or $<100>$, one can have six possibilities, while for axis y or $<010\rangle$, only 4 choices can be made in order to be orthogonal to the first axis. The axis z or $<001>$ is automatically
fixed by the two chosen axis. Thus, we have $6 \times 4={ }_{10}$ 24 equivalent structures. This notation results from the ${ }_{11}$ product of the transformation matrix $\underline{\underline{S}}_{i}$ with $\underline{\underline{H}}$:

$$
\underline{\underline{H}}_{i}=\underline{\underline{S}}_{i} \cdot \underline{\underline{H}}
$$

where $i=1,2,3,4, \ldots, 24$ for cubic structure, $\underline{\underline{S}}_{i}$ allows to ${ }_{16}$ the cover the 24 possibilities, $\underline{\underline{H}}$ denotes the measured rel- ${ }_{17}$ ative grain orientation which is defined in Section IV A. ${ }_{18}$

APPENDIX C. COMMON

 CRYSTALLOGRAPHIC AXIS OF BOTH GRAINS ${ }_{22}^{21}$ SEPARATED BY GRAIN BOUNDARYWe can define the Euler angles which allows to rotate ${ }^{24}$ the crystalline coordinate system of one grain (first grain) ${ }^{25}$ into the crystalline coordinate system of the other grain ${ }^{26}$ (second grain). $\underline{\underline{H}}$ is then the corresponding rotation ${ }^{27}$ matrix. For a crystallographic axis in the second grain, $[u v w]^{\prime}$, we can express it in the coordinate system of the ${ }^{28}$ first grain $\left[u^{*} v^{*} w^{*}\right]^{\prime}$:

$$
\left[u^{*} v^{*} w^{*}\right]^{\prime}=\underline{\underline{H}} \cdot[u v w]^{\prime}
$$

From a mathematical point of view, $[u v w]^{\prime}$ and λ are one of the eigenvectors and eigenvalues of the matrix $\underline{\underline{H}}$ when $[u v w]^{\prime}$ can be expressed in the coordinate system of the first grain as $\lambda .[u v w]^{\prime}$, with λ a constant.
Any 3×3 matrix has three eigenvalues and three eigenvectors, however for a direct rotation matrix (all the three Euler angles are not zero neither $k \pi / 2, k=1,2,3,4$ and its determinant is equal to unity), it exists only one real eigenvalue which is equal to 1 (see the equation below) and the corresponding eigenvector has only real components. This unique real eigenvector represents the common crystallographic axis. Thus, we can define the grain boundary misorientation which brings the two grains in perfect matching by a rotation around this common axis.

Taking the rotation matrix presented in Appendix B, the equation below is used to compute the eigenvalue λ of this matrix:

$$
\begin{gathered}
(\lambda-1)(\cos \varphi \cos \psi \cos \chi \lambda-\sin \varphi \cos \chi \sin \psi \lambda+\cos \varphi \cos \psi \lambda- \\
\left.\sin \varphi \sin \psi \lambda+\cos \chi \lambda-\lambda^{2}-\lambda-1\right)=0
\end{gathered}
$$

which shows that there is always an eigenvalue equals to 1.

[^0]: * daniel.nelias@insa-lyon.fr
 ${ }^{\dagger}$ Now at Femto-ST, F-25030 Besanon, France

