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1Univ. Bourgogne Franche-Comté FEMTO-ST Institute CNRS/UFC/ENSMM/UTBM,
Department of Applied Mechanics, 24 chemin de l’Epitaphe, 25000 Besançon-FR
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Abstract

We describe in this work a composite metamaterial with a hierarchical topol-

ogy made by tessellating perforations that exhibit an auxetic (negative Pois-

son’s ratio) behaviour. We perform an analysis of the hierarchical struc-

ture by evaluating the fractal order of the topologies associated to the per-

forared composites.The periodic hierarchical lattice configuration shows neg-

ative Poisson’s ratio characteristics at higher levels of hierarchy, even when

the baseline configuration has a topology not exhibiting an auxetic behaviour.

We investigate the wave propagation characteristics of these particular hier-

archical lattices by using a Bloch Wave approach applied to detailed Finite

Element geometries of the unit cell configurations. We show that the level of
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hierarchy creates new band gaps with large relative widths, and it also shifts

the same bandgaps towards lower frequencies. We correlate the mechanical

properties, fractal order and the dispersion characteristics of the multiscale

auxetic perforated metamaterial with the parameters defining the geometry

of the lattice and the hierarchy levels, and discuss the results in a nondimen-

sional form to provide a performance map of the mechanical and dynamic

properties.

Keywords: periodic structures, metamaterial, auxetic, vibroacoustic

1. Introduction

Mechanical metamaterials have been recently hailed as a new class of

structural concepts able to bring novel multifunctionalities [1] by changes of

compliance,shapes, or by embedding oscillators or smart materials inserts.

Some examples (to name a few) are multiscale architecturally structured

topologies [2], zig-zag folded sheets [3], pentamodal lattices [4], systems with

distributed resonators [5, 6], smart/magnetic materials [7], tunable connec-

tivity [8], phononic stubbed plates [9] and nonlinear dampers [10], the latter

example being referred to a structure having a negative Poisson’s ratio.

Negative Poisson’s ratio [11] is a mechanical feature of auxetic [12] or

dilational [13] materials, and indicates an unusual large volumetric deforma-

tion that corresponds to a transverse dilatation with a uniaxial tensile load-

ing. Auxetic structures and solids have been extensively evaluated for their

mechanical wave propagation behaviour, because of their strong acoustic

signature and potential phononic applications [14, 15, 16]. By applying pat-

terns of perforations it is possible to generate negative Poisson’s ratio effects
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in continuum planar structures. The presence of perforations with specific

geometry and spacing in a planar continuum structure creates an in-plane

negative Poisson’s ratio behaviour, whether one can use an elliptical [17] or

rhomboidal architecture [18, 19]. The use of perforations is quite instru-

mental to create hierarchical configurations by tessellating in a self-similar

way the perforated pattern and obtain auxetic configurations in planar and

cylindrical domains [20]. A similar approach has also been taken with the en-

gineering of patterns of slits in fractal order [21], or following Kagome-types

and various centresymmetric tessellations [22, 23]. The introduction of hier-

archy in porous solids has been long recognised as a way to design enhanced

specific buckling and stiffness performance [24, 25, 26, 27], as well as the

transport properties of cellular and porous materials [28]. Recent work has

also examined the use of cut hinges topologies in a hierarchical tessellation

both from the static mechanical and in-plane wave propagation behaviour

[29]. Waves in self-similar domains have several appealing features, like lo-

calization phenomena in fluid-filled periodic fractal inclusion acoustic band

gap crystals or filters [30], Sierpinsky or quasi-fractal arrangements [31], and

the creation of large bandgaps at lower dimensionless frequencies in beam lat-

tices [32]. Reference [29] suggests that the general use of perforations could

constitute a quite interesting strategy to design extremely tailorable bandgap

materials especially at lower frequencies, due to the ease of producing these

2D metamaterials by simple automatic cutting/CNC machining.

In this work we describe a configuration of hierarchical 2D metamate-

rial that is produced by a self-similar generation of a rectangular perforated

topology with in-plane negative Poisson’s ratio ratio behaviour. The topology
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is derived by configurations identified by Sigmund when developing through

Topological Optimization cellular configurations with in-plane weak shear

stiffness [33]. The in-plane stiffness, negative Poisson’s ratios and shear of

this perforated rectangular configuration has been evaluated by Slann and

co-workers both from the experimental and numerical point of view [34].

The original rectangular perforated topology maintains an in-plane auxetic

behaviour, although for some specific types of pores, aspect ratios and thick-

ness of the cut vertical side the cellular structure switches to a positive in-

plane Poisson’s ratio behaviour. We will show that by using a hierarchical

structure of this perforation we obtain a cellular 2D composite material that

is always auxetic, even when the baseline self-similar cell is not. Quite signif-

icantly, the use of different hierarchical levels with fractal dimensions leads

to tailoring and enlarging full and partial bandgaps in a way that could be

used to design 2D metamaterials with multiple filtering capabilities.

2. Geometry of the hierarchical perforated auxetic lattice

The fundamental unit cell of the perforated lattice is shown in Figure 2.

The rectangular perforation is described by the parameters S, a and b, which

represent the width of the vertical rib, and the length and vertical thickness of

the perforation respectively. The overall width of the cell is r = a+b+2S and

the aspect ratio AR is defined as a/b. The unit cell has a double symmetry

around the central horizontal and vertical axis. The different hierarchical

levels of the perforated structure are produced by repeating the fundamental

unit cell on each quarter unit as shown in Figure 2. For a given aspect ratio

of the perforation the equivalent volume fraction (φ) of the cellular structure
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(defined as the ratio between the region on the unit filled with material and

the total surface of the unit cell 2) varies significantly with the vertical rib S

parameter. At low S levels the volume fraction tends to increase even more

between the first and second hierarchical levels, with an increase for example

of 1.48 times between levels 1 and levels 2 of the unit at AR = a/b = 4. The

increment of the S parameter for a given hierarchical level is also significant,

with a 140% decrease of the volume fraction between S = 0.2 and S = 0.8.

It is worth of notice that for the purpose of this work the volume fraction

is directly proportional to the relative density ρ/ρc, in which ρ and ρc are

the densities of the cellular structure and the solid material constituting the

structure itself, respectively.

a S

b

r

(a)

COMSOL 4.4.0.150

(b)

Figure 1: a) Geometry parameters of the base unit cell. b) Hierarchical, auxetic rectan-

gular perforations at Level 1, 2 and 3 with AR = 4 and from S = 0.2 to S = 0.8.
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The hierarchical tessellation repeats itself only in the central quarters

of the cell belonging to the previous level (Figure 2). As it will be evident

from the analysis of the in-plane mechanical properties, for a constant aspect

ratio the variation of the spacing parameter S may lead to a topology with

discontinuous tessellation because of the particular strategy chosen for the

construction of the hierarchy. We have therefore analysed the fractal order

of the topologies at different hierarchical levels to assess the degree of self-

similarity in the hierarchical perforated lattice. One of the most commonly

accepted fractal dimension estimate is the Hausdorff-Besicovitch dimension

D, which is defined as the logarithmic ratio between the number N of the

internal homotheties of an object and the reciprocal of the common ratio R

of this homothety [35]:

D =
logN

log r
, (1)

where r = 1/R. We have used in this analysis one of the most popular

techniques to estimate the fractal dimension, the box-counting approach [35,

36]. In this case the common homotheteis consists in boxes of size R. Our

algorithmic analysis was initially performed with the images converted into

a binary format, via thresholding, where pixels with value 0 correspond to

the background and with value 1 to the object of interest, in order to be

successfully implemented for the box-counting algorithm [35, 37]. The box

counting algorithm applied on the binary images [38] initially ensured that

the images had an even number of pixels via adding background (0s) pixels.

Boxes of various size R were overlaid on each image and the boxes that

included object pixels (1s) were counted, so the number N of such boxes, at
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each size R, was determined. The slope obtained from the linear regression

of the resulting plot of logN versus log (1/R) corresponded to the fractal

dimension value for each structure. The analysis of the fractal dimension of

the lattices has been carried out for the three different levels and varying

aspect ratios between 3 and 6. The S spacing has been varied between 0.2

and 0.8.

Figure 3 shows the results of this parametric analysis. At Level 1 the

fractal order varies between 1.72 and 1.65, with the lowest values at the

lower end of the parametric scale for AR and S. When the order of the

hierarchy is increased to 2 the fractal dimension tends to decrease on average

by 5%, with the lowest values corresponding again to the lowest combinations

of AR and S. The difference of the fractal dimension between levels 2 and

3 is however small, on average less than 1 %. It is worth noticing that

for high aspect ratios and spacing values the three hierarchical levels tend

to provide quite similar fractal dimensions (between 1.73 and 1.70). The

closeness of the fractal orders associated to the second and third hierarchy

levels suggests a potential similarity in their in-plane mechanical properties,

and a difference with the ones belonging to Level 1. As it will be evident in

the next paragraph, hierarchy levels higher than 1 do actually exhibit a set

of in-plane stiffness and Poisson’s ratios values that difference them from the

original baseline rectangular perforation.

3. in-plane mechanics

The in-plane mechanical properties have been computed using a Finite

Element approach applied to a quarter unit cell. The FE models have been
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Figure 2: Volume fraction for various sizes of the intercell spacing S at Levels 1, 2 and 3.
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Figure 3: Distribution of the fractal order of the hierarchical tessellations at different levels
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developed using the commerical code ANSYS Rel. 14.0. The elements used

were 8-nodes serendipidity PLANE82 with two translational degrees of free-

dom in plane stress. After a convergence test the mesh density was set at

four elements per linear length of the parameter S (S/4). The same discreti-

sation was also maintained for the hierarchical levels. The in-plane Young’s

moduli E1 and E2 have been predicted by applying sliding conditions on the

external side of the quarter unit cell, an imposed uniform displacement along

the direction of the mechanical loading, while nodes of the elements belong-

ing to the non-loaded side were coupled along the transverse direction [39].

The uniaxial Young’s moduli were calculated by averaging the reaction forces

along the line subjected to the uniform distribution, calculating the result-

ing stress and dividing it by the corresponding imposed strain. The in-plane

Poisson’s ratio ν12 and ν21 were computed first by calculating the transverse

strain from the coupled transversal deformation under the uniaxial loading,

and then using the classical definition of Poisson’s ratio νij = −εj/εi, in which

εi is the imposed uniaxial strain along the i−direction and εj is the resulting

homogenised transverse one. The in-plane shear modulus G12 was calcu-

lated starting from a quarter unit cell with support boundary conditions,

but this time being subjected on the external sides to combined tensile and

compressive uniaxial strains representing a simple shear loading [40] (figure

4).

The results have been initially benchmarked against experimental data

on the in-plane rectangular perforations described in [34], and we obtained

discrepancies between 1% and 2 % with the in-plane Young’s moduli and

Poisson’s ratios of perforated plates. All the numerical results have been
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nondimensionalised against the Young’s modulus Ec of the solid material

and the relative density ρ/ρc (i.e., the volume fraction described above).

Figures 5a, 5b, 5c and 5d show the behaviour of the normalised engi-

neering constants for a constant aspect ratio AR = 4 and varying parameter

S. The perforated structure at the first hierarchical level (1) is isotropic,

but the introduction of different levels of hierarchy induces the presence of a

special orthotropic configuration (E1ν21 = E2ν12) due to the particular shape

at level 1 repeated with the scale ratio. The Poisson’s ratio of the level 1

configuration is not always auxetic, and for large values of S tends to have a

zero or marginally positive Poisson’s ratio (Figure 5d). At higher hierarchical

levels the cellular configuration becomes however auxetic for all the config-

urations considered. The introduction of nested perforated cells increases

significantly the coupling between the uniaxial loading and the rotation, and

therefore creates the in-plane negative Poisson’s ratio effect typical of struc-

tural chiral materials, and more in general of micropolar solids [41, 42]. The

normalised in-plane stiffness (E1/Ec) / (ρ/ρc) decreases by almost 2 orders of

magnitude at low S values between levels 1 and 3. That decrease is lower

for S → 0.8, albeit still at more than one order of magnitude (Figure 5a). A

similar trend can also be observed in the case of (E2/Ec) / (ρ/ρc), although

this normalised stiffness does not appear to show the same sensitivity ver-

sus the rib width; at higher values of S the in-plane stiffness between the

different levels shows a very little difference (Figure 5b).

Jumps in the mechanical properties are observed at Levels 2 and 3 due

to transition of parts of the subunits from contact to noncontact between

the voids. For a constant aspect ratio the variation of the spacing parameter
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S may lead to a topology with discontinuous tessellation because of the

particular strategy chosen for the construction of the hierarchy (Figures 5).

Figures 6a, 6b, 6c and 6d show the behaviour of the normalised engineer-

ing constants for a constant aspect ratio S = 0.2 and varying parameter AR.

At level 1 and higher hierarchical levels the cellular configuration are always

auxetic for all the configurations considered (Figure 6d). The normalised

in-plane stiffness (E1/Ec) / (ρ/ρc) decreases by almost 2 orders of magnitude

from AR = 3 to AR = 5.5 values between levels 1 and 3, and that decrease is

higher for AR→ 6 (Figure 6a). A similar trend can also be observed in the

case of (E2/Ec) / (ρ/ρc), although this normalised stiffness does not appear

to show the same sensitivity versus the rib width, and at higher values of AR

the in-plane stiffness between the different levels stays constant (Figure 6b).

4. Wave propagation

Understanding the behavior of the perforated composite metamaterial in

an extended frequency range requires a finer description of the geometry,

and this is particularly important for the particular hierarchical metama-

terial configuration evaluated in this work. The wave propagation analysis

related to a fully detailed geometry model has been carried out by applying

the Floquet-Bloch method [43]. To this end a plain stress Finite Element

mesh has been created using the COMSOL platform. The models for all

levels were composed by triangular elements (quadratic interpolation), with

varying mesh size based on the level of the topology. As an example, for a

configuration of AR = 4 and S = 0.2 a Level 1 model has 506 elements that

were increasing to 1770 and 7944 when passing to Levels 2 and 3 respectively.
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According to Floquet-Bloch theorem, the boundary conditions applied along

the 1 and 2 directions at the cell edges can be represented as uR = e−jkxruL

and vR = e−jk2rvL, where uR (resp. vR) is the displacement on the right edge

and uL (resp. vL) is the displacement on the left edge in x (resp. y) direc-

tions, kx and ky are respectively the wavenumbers in the x and y directions.

The equations of motion of the system assuming an harmonic solution can

be described as:

ρω2u+∇σ = 0, σ = C : ε, uR = e−jkxruL, vR = e−jk2rvL (2)

where u∃R2 and σ, C and ε are the stress, second order elastic and

strain tensors respectively. The associated undamped eigenvalue problem of

Equation (2) with the Floquet-Bloch wave transformation has been solved

with the Pardiso solver. The eigenvalue problem is parametrised against the

wavenumbers k1 and k2 ∈ [0, π/r]. The dispersion curves are plotted on the

contour of the first Brillouin zone (k-space). The frequencies identifying the

bandgaps can be found by considering the contour of the irreducible Brillouin

zone for regular systems [44]. However, although this approach is extensively

used in open literature, no formal proof of its validity is given, and therefore

the results obtained need to be treated with care [45]. To compare the re-

sults of the eigenvalue analysis at different levels we have computed for each

geometry configuration of the perforated composite plate the equivalent vol-

ume fraction (φ) and computed by Finite Element the natural frequency of a

rectangular plate (plane strain) with the same overall dimension of the lattice

with Poisson’s ratio equal to the one of the core material (νc), scaled den-

sity ρ = φρc and equivalent Young’s modulus Ē = Ecφ
2 [46]. The resulting
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fundamental frequency is denominated as ωp.

The dispersion curves in the k-space of the lattices at Level 1 for the

case of AR = 4, S = 0.3 are shown in Figure 7a. One can observe the

presence of partial bandgaps in several sections of the irreducible Brillouin

zone and nondimensional frequencies, however a sizable bandgap across the

whole k space exists around ω/ωp = 3. At the next level the number of

complete bandgaps increases, the bandgap that exists at Level 1 appears

to narrow and decreases to ω/ωp ≈ 2.2 and - quite significantly - narrower

complete bandgaps appear at lower frequencies (Figure 7b). Level 3 witnesses

a significant increase of the number of bandgaps at even lower normalised

frequencies (down to ω/ωp ≈ 0.3), and the presence of a very large bandgap

centered around ω/ωp = 3.8 (Figure 7c).

It is interesting to observe the total width of the bandgaps existing at

the different levels as a percentage of the nondimensional frequency space up

to ω/ωp = 5 for an aspect ratio of 4 (Figure 8). The total width tends to

decrease for increasing values of the spacing S, and this feature is common

to all the lattice levels considered. At S = 0.2 the total band gap size

increases from 13% to 16% when moving from Level 1 to Level 2, and to a

quite significant 42 % when passing at Level 3. From increasing values of the

parameter S the total size of the bandgaps at level 1 decreases significantly,

and from S = 0.4 onwards no bandgaps are present in the lattice at that

level. The decrease of the total bandgap width versus the spacing of the

lattice is also present in the perforations at Levels 2 and 3, although the

latter still show almost the same percentage of bandgap size at S = 0.8 that

Level 1 exhibits for S = 0.4.
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For the same aspect ratio of perforations the distribution of the bandgaps

and their width according to the S-parameter varies in a significant manner.

A single bandgap is present for S = 0.2, S = 0.3 and S = 0.4 at Level 1, but in

the latter case the bandgap becomes narrower and centered at a higher ω/ωp

value (Figure 9a). At Level 2 between S = 0.2 and S = 0.5 there is an evident

shift of the central frequencies of the bandgaps at higher nondimensional

frequencies, however the number of bandgaps decreases thereafter (Figure

9b). The sudden drop in number and size of the bandgaps is due to the

change of morphology and connectivity that the perforated lattice exhibits

(see Figure 5a). A similar trend can also be observed at level 3 moreover the

density of bandgaps increases significantly (Figure 9c).

The Bloch wave simulations are related to periodic unit cells with the

detailed geometry associated to the hierarchy of the microstructure. It is

interesting at this point to investigate the correlation between the disper-

sion properties calculated from asymptotic homogenized mechanical proper-

ties and the high-fidelity predictions provided by the Bloch wave approach

[47]. A plate with the same overall dimensions of the high-fidelity using

cell (triangular elements with a mesh density of 100 elements per side cell)

has been modelled with the homogenised mechanical properties described

in Paragraph III and the analogous eigenvalue problem (2) with Bloch wave

conditions has been solved by parametrising against the wavenumbers k1 and

k2. Examples of these simulations are shown in Figure ??, in which the com-

parison with the high-fidelity full-scale Bloch wave model is performed for

AR = 4 and S = 0.2. Also in this case, the results have been nondimen-

sionalised against the natural frequency ωp. At Level 1 (??a) its is possible
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to observe that the homogenization approach provides a close comparison

with the full-scale high-fidelity Bloch wave model. The first dispersive curve

shows an a very good agreement with the analogous high-fidelity geometry

over the whole k-s space. The second dispersive curve shows a general overes-

timation of the nondimensional frequency with the full-geometry simulation

within the Γ− X and M− Γ zones. In the central k-space sector X−M

the second homogenized dispersive curve tends to follow and overestimate

the analogous third curve. A similar trend, this time with a more conserva-

tive behaviour compared to the real geometry case is the one observed for

Level 2 (Figure ??b). In this case the two homogenized dispersive curves

have higher values of ω/ωp over the whole k-s space. It also appears that

the dispersion curves from the homogenized models tend to converge to the

full-scale geometric detailed one towards the end of the M− Γ sector. It is

remarkable to notice how similar is the trend of the homogenized dispersion

curves in Level 3 compared to the ones of Level 2 (Figure ??c), with both

overestimating the nondimensional frequencies provided by the high-fidelity

Bloch wave model, and following the trends of the first two dispersive curves

of the detailed geometric model within the ends of the Γ− X and M− Γ

sectors of the k-s space. The rich wave modal density of the hierarchical per-

forated configurations cannot be however fully captured by the homogenized

dispersions relations calculated with the Christoffel’s equations. Even at low

nondimensional frequency values and for the lowest hierarchical level one can

observe the presence of dispersive branches and local band gaps created by

the fractal-type topology that the asymptotic homogenization is not able to

reproduce.

15



Δ2

Δ1

1

2

Figure 4: Boundary conditions for virtual biaxial shear-test at Level 2.
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Figure 7: Dispersions in the k space for the lattice with AR = 4, S = 0.3 for a) Level 1,

b) Level 2 and c) Level 3.
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Figure 9: Band gap distribution versus different S-parameter configurations for a) level 1,

b) level 2 and c) level 3.
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hierarchical lattices for AR = 4 Aand S = 0.2 a) level 1, b) level 2, c) level 3
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5. Conclusion

We have presented a hierarchical configuration of a rectangular perfo-

ration pattern that allows to create auxetic deformation behaviors in a 2D

material composite planar structure. The use of the hierarchical configura-

tion proposed allows to generate a negative Poisson’s ratio and controlled

orthotropy from a baseline perforated unit that not necessarily is auxetic,

but it is always isotropic. The hierarchical construction leads to fractal di-

mensions of the lattices that tend to vary noticeably between the first and

the second level, and with lower differences between the second and third

self-similar constructions. The hierarchical rectangular perforated topology

proposed is able to create a very significant broad range of full bandgaps

and tailored centre frequencies based on the levels of hierarchy and geome-

try parameters of the self-similar cells. Moreover, it offers the opportunity

to engineer band gaps by applying simple perforations and cuts topologies

in planar composite structures that could be made with arbitraty material

substrates.
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