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We report an application of the tri-dimensional pseudo-spectral time domain algorithm, that solves
with accuracy the nonlinear Maxwell’s equations, to predict second harmonic generation in lithium
niobate ridge-type waveguides with high index contrast. Characteristics of the nonlinear process
such as conversion efficiency as well as impact of the multimode character of the waveguide are
investigated as a function of the waveguide geometry in uniformly and periodically poled medium.

I. INTRODUCTION

Optical nonlinear devices based on ferroelectric materials such as Lithium Niobate (LiNbO3) or Lithium Tantalate
(LiTaO3) have a great technological potential. These cristals indeed allow the generation of any wavelength from the
mid IR to the UV using quasi phase-matched nonlinear processes [1, 2]. This technology is usefull to realise optical
souces or can also play a key role inside wavelength multiplexing systems for optical telecommunications. Highly
nonlinear optical fibers are competing alternative thanks to their ability to convert wavelengths through four wave
mixing process via the Kerr effect. However, weak third order nonlinear coefficients give weak conversion efficiency
even over several hundred meters of propagation. To the contrary, efficient conversion efficiency are possible over
short distance (few centimeters) in periodically poled Lithium Niobate (PPLN) due to a large second order nonlinear
coefficient χ(2) allowing fast parametric conversions.

Particularly, ridge waveguides with high index contrast have a key role to play in the improvement of performances
[3]. In comparison with standard waveguide fabrication techniques, such as proton exchange [4] or titanium in-diffusion
[5], stronger confinement can be reached with ridge waveguides along with a good overlap between fundamental modes
of the nonlinear process thanks to a high index contrast. In addition, long term stability of the devices is improved
especially if the nonlinear material is doped with proper elements such as magnesium to limit the photorefractive
effect. At last, fabrication techniques based on micromachinig or etching keep the intrinsic properties of the material.
In particular, the strong nonlinear coefficients and low optical absorption coefficient remain unchanged. However,
high index contrasts implies very small waveguide cross sections (sub-micron square) in order to form singlemode
waveguides. Such a strong confinment is beneficial to envision high nonlinear conversion efficiency but it implies
tight tolerances on the fabrication process of the periodic poling for quasi-phasematching and waveguide geometrical
uniformity. Moreover, efficient light coupling in these tiny structures is very challenging. As a consequence, an
alternative solution is to realise waveguides with larger cross sections (from 5µm2 to 100µm2) which releases constrains
both on the fabrication process and on light coupling. In that case, influence of the multimode character of these
waveguides on the nonlinear process has to be studied.

To optimize the design and performances of these waveguides, numerical modeling of waves propagation in such
devices is essential. Many numerical methods are available for wave propagation modeling. The Finite-Difference
Time-Domain method[8] (FDTD), the Split-Step Method[7] (SSM) and the Finite Element Method[6] (FEM) belongs
to the time-domain methods while the Beam Propagation Method [9] (BPM), the Transfer Matrix Method (TMM)
and the Eigen Mode Expansion method (EME) work in the frequency-domain. Among these numerical techniques,
the FDTD (implemented in a large number of both free and commercially available sofware) is the most general
and rigorous time-domain method. It provides solutions for a large number of guided optics configurations such
as photonic crystal waveguides, surface plasmon waveguides, devices with high-index contrast waveguides, ring and
disk resonators, negative index material structures, dispersive, and nonlinear materials. However, when nonlinear
phenomena in long guiding structures are studied, the FDTD becomes prohibitively computationally intensive and
therefore impractical.

In order to overcome this later limitation we developed a numerical model, based on a Pseudo-Spectral Time Domain
algorithm[11] (PSTD). The nonlinear Maxwell’s equations is solved in three spatial dimensions to fully characterise
the electromagnetic fields of the wave injected in the ridge waveguide and the generated harmonic wave. This paper
is organised as follows. In section II, the principle of the PSTD algorithm is described. Then, the numerical results of
second harmonic generation (SHG) in uniformly poled and in periodically poled ridge waveguides are given in section
III. These results are compared to basic analytical calculations in order to validate the numerical model. Finally,
modal analysis of the guided waves is performed in order to study the influence of the multimode property of the
ridge waveguides on the SHG efficiency.
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II. NUMERICAL MODEL

FIG. 1: Schematic view of the modeled periodically poled lithium niobate ridge-type waveguide. The square section ridge is
bonded to a silicon substrate with a buffer layer. 2Λ is the period of the poled domains and z is the propagation axis of light.

In PSTD algorithm, Maxwell’s curl equations are calculated with discrete Fourier transforms in order to solve
the spatial derivatives on an unstaggered, collocated grid [10].This spatial differential process converges with infinite
order of accuracy for grid-sampling densities of two or more points per wavelength [11], provided that the medium
optical properties are sampled in accordance with the Nyquist theorem. Limitations of Fast Fourier Transform (FFT),
due to the periodic boundary conditions, are avoided by using absorbing boundary conditions formulated for Perfect
Matched Layer (PML) in nonconductive media [11–13]. As a consequence, this numerical method can be used to
study various problems on larger scales, more efficiently and with a better accuracy than Finite-Difference Time-
Domain (FDTD) methods [11, 14–18]. In particular, because accurate modelling of nonlinear optical processes with
the FDTD method requires extremely fine sampling to minimize numerical dispersion errors, PSTD schemes offer
significant improvements in computational efficiency and accuracy [19, 20]. In the present work, 3D-PSTD algorithm
models the SHG in periodically poled and uniformly poled Lithium Niobate (LN) ridge-type waveguides. The modeled
device is represented schematically in Fig. 1.

In our numerical problem, we consider the propagation along the z axis of two transverse, electromagnetic waves
inside the ridge-type waveguide. More specifically we consider the fundamental wave and its second harmonic (SH)
wave in CW regime. The (x, y, z) axis correspond respectively to theX,Z, Y axis of the LN crystal (Z axis corresponds
to the crystallographic c-axis of the LN crystal). The total volume is sampled with nx × ny × nz points giving a
grid-sampling density greater than two points per the shortest considered wavelength (inside the LN crystal). The
square section waveguide is bonded to a silicon substrate with a 3 µm thick transparent buffer layer. Λ is the length
of the poled domains (Fig. 1) which gives a periodic poling of period 2Λ.

Use of FFT in Maxwell’s curl equations yields time-stepping relations of the form given in reference [17]. For
example, the x component of the electric displacement Df and of the magnetic field Bf at the fundamental wavelength
is expressed as:
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where Dxy,f is incremented by the partial derivative of Bz,f with respect to y and Dxz,f is incremented by the
partial derivative of By,f with respect to z [17]. (j, k, l) are the indices of the cartesian coordinates at the considered
spatial point (j∆x, k∆y, l∆z) and n is the index of the temporal step n∆t. The maximum time step to fullfill the
stability criteria of the 3D-PSTD algorihm is ∆t = 2∆x

πc
√
3
[10], where c is the speed of light in vacuum. γvjkl is the

boundary absorbing layer function along the v (v ≡ x, y, z) dimension which is obtained by setting the term γvjkl to
zero inside the region of interest and to a pure imaginary part increasing linearly along the v dimension inside the
absorbing domains [11] with widths of nv

8 sampling periods at the boundaries of the sampled volume. Fv and F−1
v

correspond to the FFT and the inverse FFT along the dimension v. Other components of Df and Bf are obtained
by circular permutation of the x, y, z indices in Eq. 1. Similar equations give the fields components of the SH wave.
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The source terms that generate the fundamental wave is designed such as the transverse electromagnetic wave
emitted by the source propagates along the z direction. They are added at the intermediate time-step n+ 1

2 , to the
terms Dxz,f |

n
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jkl using the relations :
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Sx,f |
n
jkl and Sy,f |

n
jkl are the amplitude of the transverse components of the CW source term at the time step n∆t and

at the spatial sampling point (j∆x, k∆y, l∆z). These components are given by:

{

Sx,f |
n
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−i(ωfn∆t+ϕx,f )

Sy,f |
n
jkl = S0,f |jkl sinψfe
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(3)

ψf , ϕx,f and ϕy,f define the polarization state of the electromagnetic wave emitted by the source. S0,f |jkl gives a
gaussian beam in the (x, y) transverse plane and with the optimized three-cells normalized pattern [ 14 ,

1
2 ,

1
4 ] along the

z axis in order to suppress the aliasing errors [21]. Finally, the propagation of the fundamental wave in the increasing
z direction is ensured by also adding the source terms to the magnetic field [17].

In Eq. 1, the electric field components of the fundamental and the SH waves are updated, using the full coupled
wave equations describing the SHG process in the LN crystal, as follows:
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where d22, d31 and d33 are the quadratic nonlinear coefficients of the LN crystal. These coefficients are set to zero
outside the LN medium. The periodic poling is modelled by changing periodically the sign of the coefficient d33 (Fig.1)
with the period Λ = Lc, where Lc is the coherence length of the SHG process. εrv,w|jkl is the relative permittivity
of the sampled media along the v direction, at the spatial sampling point (j∆x, k∆y, l∆z) and at the wavelength λw
(w ≡ f, h). This parameter takes in account the birefringence of the LN crystal.

III. NUMERICAL RESULTS

A. SHG in uniformly poled LN ridge-type waveguides

First, we use the 3D-PSTD algorithm for modeling the SHG process in an uniformly poled waveguide with a square
section of 10 × 10µm2 . The source emits a 1mW continuous (CW) gaussian beam at the fundamental wavelength
λf which is linearly polarized along the c-axis of the LN crystal (ψf = π

2 , ϕx,f = 0 and ϕy,f = 0). The gaussian beam
profile is adjusted in order to optimize the coupling of the fundamental wave in the waveguide. The other parameters
of the simulation are listed in table I.

Figure 2 depicts the intensity distribution along the ridge waveguide and at the output for both the fundamental
and the SH waves. Dotted red lines give the position of the perfect phase matched layers (PML) at the boundaries
of the sampled volume and dotted white lines correspond to the interfaces between the different materials (air, LN,
buffer and silicon). Along the 30µm propagation length many features can be observed. First, over about 10µm
length the launched beam is reshaped to form the guided beam mainly constituted of the fundamental mode. The
oscillatory behavior of the SH beam intensity is also clearly seen with about two periods observed. At the output of
the waveguide a wider beam size is obtained for the fundamental beam compare to the SH beam as expected from
the wavelength difference. We would like to emphasize that the decay of the fundamental wave intensity at the end
of the waveguide is due to the absorbing layer. Numerical simulations have also been performed for waveguides with
5× 5 and 2.5× 2.5µm2 square sections.
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TABLE I: Numerical values of the simulation parameters.

Wavelengths (in µm) λf , λh 1.55, 0.775

LN refractive indices nof , nef , noh, neh 2.2128, 2.1371, 2.2606, 2.1780

LN nonlinear coefficients (in pm/V ) d22, d31, d33 2.1, -4.64, -41.7

Sampling points nx × ny × nz 128× 128× 256

Spatial sampling steps ∆x = ∆y = ∆z λh

2.2neh

Temporal sampling step ∆t ∆x
8c

Buffer layer refractive index nv 1.501

Silicon refractive indices nSif , nSih 3.50 , 3.72

Ridge length (in µm) L 30
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FIG. 2: Numerical results: (a) propagation of the fundamental wave inside a ridge-type waveguide with a square section of
10× 10µm2. (b) SH wave generated in the ridge. Dotted red lines show the position of the the perfectly phase matched layers
boundaries of the sampled volume. Dotted white lines denote the interfaces between the different materials.

From the variation of the total power of the SH wave as a function of the propagation distance (Fig. 3), the
coherence length of the SHG process can be estimated with a fairly good accuracy. Note that the oscillatory behavior
is less and less perfect as the section of the waveguide is deacresed. Indeed, intensity variation of the SH wave along the
propagation axis in the larger waveguide is almost sinusoidal in good agreement with the usual plane wave formalism
while this is not the case for smaller waveguides even when size of the input gaussian beam is optimized. These
discrepancies are due to the reshaping distance as well as the presence of weakly excited higher order modes. This
latter point is confirmed by numerical simulations that show stronger intensity fluctuations of fundamental guided
waves along the propagation axis in smaller waveguides. This suggests that injected light is coupled with higher order
guided modes which implies that different harmonic frequency waves with different coherence lengths are generated
simultaneously.

Coherence lengths estimated with the PSTD simulations can be compared with the coherence lengths calculated
with the usual definition:

Lc =
λf

4(nh,eff − nf,eff )
(6)

where nh,eff and nf,eff are the effective indices of the fundamental eigenmodes at the wavelengths λh and λf ,
respectively. For the modeled waveguides, table II gives the coherence lengths deduced from PSTD simulations
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FIG. 3: For the different modeled guides, total power of the SH generated in the non poled LN ridge-type waveguides as a
function of the propagation distance.

and the coherence lengths calculated with Eq. 6 where effective indices are calculated with a commercial software.
Coherence lengths obtained from both methods are in good agreement.

TABLE II: Comparison between the coherence lengths deduced from the PSTD simulations and calculated with Eq. 6.

Square section of Ridge (in µm2) 10× 10 5× 5 2.5× 2.5

Coherence length with PSTD (µm) 8.7 7.7 5.4

LN Effective index nf,eff 2.1340 2.1265 2.0975

LN Effective index nh,eff 2.1773 2.1753 2.1677

Coherence length with Eq. 6 (µm) 8.9 8.2 6.0

B. SHG in periodically poled LN ridge-type waveguides

Next, the coherence lengths deduced from the above PSTD simulations (table II) are used to design ridge-type
waveguides where domains are now periodically poled with a period twice the coherence length. A series of simulations
are then performed for the three considered structures. Figure 4 shows the intensity distribution, in the xz and xy
planes, of the fundamental and SH waves. For all square sections the transverse spatial sampling steps (∆x and
∆y) is adjusted such as the total number of sampling points in the transverse plane is a constant. We observe that
waveguides with smaller cross sections (Fig. 4c and 4e) show intensity fluctuations associated with shorter periods
along propagation. Such fluctuations denote the multimode character of the guided waves eventhough the size of the
launched gaussian beam is optimized to excite mainly the fundamental mode. As the waveguide section is reduced
the mode beating is associated with shorter period which is in agreement with effective indices of modes that are more
and more dissimilar. This trend is in accordance with modal properties of waveguides. As a consequence, SH waves
also suffer from noise due to both the multimode and the phase matching conditions. Fig. 5 shows the evolution of the
total power of the SH wave as a function of the propagation distance. Since the total power of the launched source is
a constant, the power density of the guided beam increases when square section of the guide decreases. Consequently,
the nonlinear phenomena is more efficient and the total power of the harmonic wave increases. According to the basic
theory, this gain in generated power should increases like the inverse of the section of the waveguide. This trend is
present in the depicted results but a slightly lower gain is obtained that can partialy be attributed to the presence of
the beam reshaping length.

In order to estimate the efficiency of the non linear process we plot the normalized efficiencies (in %W−1cm−2) of
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FIG. 4: Numerical results: (a,c,e) propagation of the fundamental wave through the periodically polled ridge-type waveguides
with different square section. (b,d,f) SH wave generated in the waveguides. Dotted white lines denote the interfaces between
the different materials.
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the SHG process (Fig. 6) as a function of the propagation length which is defined as:

η =
Ph

P 2
f z

2
, (7)

where Ph and Pf are the total power of the SH and fundamental waves inside the waveguides, respectively and z is
the propagation distance. To compare with, the dotted curves correspond to the theoretical efficiencies defined for
the first domain as :

ηth(z) =
Σh

Σ2
f

2w2
fd
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2
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3ǫ0
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where Σh, Σf are the cross section areas of the guided beam and ∆k = 4π
λf

(nh,eff − nf,eff ) is the phase mismatch

between the fundamental and the SH waves and ηmax is the efficiency for perfect phase matching. Because of the
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periodic poling of the waveguide, efficiency along the pth domain (with p > 1) is calculated by incrementing the
efficiency at the end of the domain p− 1 as follows:

ηth (z) = ηth ((p− 1)Lc) + ηmax

(

sin
(

∆kz
2 − (p− 1)π2

)

∆kz
2

)2

, (9)

where an additional phase shift of −π
2 is applied to the sinus function from one domain to the next. These curves show

that the normalised efficiency, deduced both from the PSTD simulations and from Eq. 9, is high at the beginning of
the waveguide and decreases along propagation in the first domain. Then, it rapidly stabilises to an almost constant
value. This behavior is inherent to the quasi-phase matching configuration. The reached level is well approximated
the efficiency ηmax reduced by a factor of 2

π
as shown in [22]. This level is represented in Fig. 6 for each ridge by the

black dotted lines. Note that the conversion efficiency calculated from Eq. 9 is slightly higher than the one deduced
from the PSTD results since the latter method takes into account the multimode character of the waveguide. More
importantly, these curves show that very strong conversion efficiency can be obtained when the size of the waveguide
decreases.

C. Modal analysis of the guided waves

In this last section we study the influence of the multimode property of the ridge waveguides on the SHG process. We
first exploit the numerical results given by the PSTD algorithm in periodically poled waveguides in order to evaluate
the dominant excited eigenmode. To this purpose, a commercial software is first used to calculate the components
of the transverse eigenmodes for each ridge waveguide at both fundamental and harmonic wavelengths. Then, for a
given eigenmode m at the wavelength λw the overlap integral with the output beam obtained with the PSTD method
is calculated using :

Γw(m) =
|
∫∫ (

EPSTD
x,w H∗y,wm − EPSTD

y,w H∗x,wm

)

dxdy|2
∫∫

|EPSTD
w |2dxdy

∫∫

|Hwm|2dxdy
, (10)

where (EPSTD
x,w , EPSTD

y,w ) are the electric field components given by the PSTD algorithm and (Hx,wm, Hy,wm) are the
magnetic field components of the eigenmode m calculated with the commercial software. As an example, Fig. 7 shows
the transverse components of the electric fields for the fundamental and the harmonic waves at the output of the
5×5µm2 waveguide along with and the magnetic fields components of the TM00 eigenmodes. The obtained values of
the overlap integral between the guided beam and the first mode (TM00) at the fundamental wavelength are superior
to 98% whatever the geometry of the waveguides. It thus shows that the guided mode is mainly composed of the first
mode which is a favorable situation to reach high conversion efficiency. The residue of higher order modes still gives
some intensity fluctuation due to mode beating which is noticeable for small section waveguides for which beating
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FIG. 7: Field components of the fundamental and harmonic waves for the 5 × 5µm2 ridge waveguide : (a-d) electric fields of
the output guided waves from the PSTD algorithm and (e-h) magnetic fields of the TM fundamental eigenmodes given by the
commercial software. Dotted white squares show the ridge contours.

length is shorter ( see Fig. 4). Additional overlap integral calculations between the fundamental mode of the SH waves
and the guided beam at the fundamental wavelength obtained from PSTD show that the overlap decay as the section
of the waveguide is getting larger. For instance, the overlap for the 10× 10µm2 ridge is 90% while it reaches 99% for
the 2.5 × 2.5µm2 one. Such an almost perfect matching comes from the strong similarity between the fundamental
modes at both wavelengths as observed in Fig. 7. This feature is an advantage of high index contrast ridge type
waveguides. We can assert that the strong second harmonic generation efficiency reachable in narrow waveguides is
not only due to a tight confinement but it also benefits due to a better mode matching between fundamental modes
at both wavelengths.

In order to complement these results, we also calculate the overlap integrals along the propagation axis. Figure 8
shows the variation of the overlap integrals, between the guided waves and the TM00 eigenmodes of the waveguides,
along the propagation axis. We note that the launched Gaussian beam shape is optimised as witnessed by an overlap
close to 100% with the fundamental wave starting from the entrance of the waveguides. To the contrary, coupling
with the TM00 modes of the SH waves exhibits strong fluctuations at the early stage of the propagation and increases
quickly up to the optimal values. This effcet is especially visible in small section waveguides. We attribute the initial
stage to the distance necessary to the reshaping and redistribution of the generated SH light among the different
eigenmodes.

IV. CONCLUSION

For the first time to our knowledge, a 3D-PSTD algorithm has been implemented to solve the second harmonic
generation process in lithium niobate ridge-type waveguides. The model has first been validated with uniformly
poled waveguides and further used to characterise and better comprehend the physics in periodically poled ridges.
The model is able to determine most characteristics of the SHG process such as optimum poling period, conversion
efficiency along with accurate guided beams profile evolution. More specifically, it shows that very high conversion
efficiency can be reached in high-index contrast ridge type waveguide even though they are not single mode. These
performances are obtained with injection of a gaussian beam that is shaped to favour excitation of the fundamental
mode of the guiding structure. For instance, conversion efficiency as high as 2000 %W−1 is expected in a 1cm long
ridge waveguide of 2.5× 2.5µm2 square section.
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FIG. 8: Variation of the normalised overlap integrals along the propagation axis. Overlap integrals are calculated between the
guided light from PSTD and the first eigenmodes at the fundamental (solid curves) and harmonic (dotted curves) wavelengths
for the 10× 10, 5× 5 and 2.5× 2.5µm2 waveguides.

[1] K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, ”Efficient second-harmonic generation of 340-nm light in a 1.4µm
periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys.42, L90-L91 (2003).

[2] S. V. Tovstonog, S. Kurimura, and K. Kitamura, ”High power continuous-wave green light generation by quasiphase
matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90, 051115 (2007).

[3] S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, ”Quasi-phase-matched adhered ridge waveguide in
LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).

[4] M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, ”1.5µm-band wavelength conversion based on
cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653-655 (1999).

[5] Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, ”Wavelength- and time-selective all-
optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15, 978-980
(2003).

[6] M. Koshiba, ”Optical Waveguide Theory by the Finite Element Method,” KTK Scientific Publishers (1992).
[7] G. P. Agrawal, ”Nonlinear Fiber Optics,” 4 ed., Elsevier Science & Technology Books (2006).
[8] A. Taflove and S. C. Hagness, ”Computational Electrodynamics, The finite-difference time-domain method,” 3rd ed.,

Artech House (2005).
[9] K. Kawano and T. Kitoh, ”Introduction to optical waveguide analysis, Solving Maxwell’s equations and the Schrödinger

Equation,” Wiley (2001)
[10] Q. H. liu and G. Zhao, ”Review of PSTD methods for transient electromagnetics,” Int. J. Numer. Model. 17, 299–323

(2004).
[11] Q. H. Liu, ”The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol.

Lett. 15, 158–165 (1997).
[12] J. -P. Berenger,”A perfect matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200

(1994).



10

[13] W. C. Chew and W. H. Weedon, ”A 3D perfectly matched medium from modified Maxwell’s equations,” Microw. Opt.
Technol. Lett. 7, 599–604 (1994).

[14] Z. Tang and Q. H. Liu, ”The 2.5D FDTD and Fourier PSTD methods and applications,” Microw. Opt. Technol. Lett., 6,
430-436 (2003).

[15] S. H. Tseng and C. Yang, ”2-D PSTD simulation of optical phase conjugation for turbidity suppression,” Opt. Express
15, 1605–1616 (2007).

[16] S. H. Tseng, ”PSTD simulation of optical phase conjugation of light propagating long optical paths,” Opt. Express 17,

5490–5495 (2009).
[17] F. Devaux and E. Lantz, ”3D-PSTD simulation and polarization analysis of a light pulse transmitted through a scattering

medium”, Opt. Express 21, 24969–24984 (2013).
[18] N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henriot, A. Ndao and M.-P. Bernal, ”Low-loss LiNbO3 tapered-ridge

waveguides made by optical-grade dicing,” Opt. Express 23, 13983–13990 (2015).
[19] T. W. Lee and S. C. Hagness, ”Pseudospectral time-domain methods for modeling optical wave propagation in second-order

nonlinear materials,” JOSA B 21, 330–342 (2004).
[20] F. Devaux and E. Lantz, ”3D-PSTD applied to the resolution in time and space of the time reversal of an image transmitted

through a scattering medium,” Proc. SPIE 9131, Optical Modelling and Design III, 91310R (1 May 2014).
[21] Z. Li, ”The optimal spatially-smoothed source patterns for the pseudospectral time-domain method,” IEEE Transactions

on Antennas and Propagation 58, 227–229 (2010).
[22] K. C. Rustagi, C. Mehendale and S. Meenakshi, ”Optical Frequency Conversion in Quasi-Phase-Matched Stacks of Non-

linear Crystals,” IEEE Journal of Quantum electronics QE18, 1029-1041 (1982).

View publication statsView publication stats


