Two-letter words and a fundamental homomorphism ruling geometric contextuality

Michel Planat

Institut FEMTO-ST, CNRS, 15 B Avenue des Montboucons, F-25044 Besançon, France
(michel.planat@femto-st.fr)

Symmetry Festival 2016, Vienna, 18-22 July

- The Bell-Kochen-Specker proof demonstrates the impossibility of Einstein's assumption, made in the famous Einstein-Podolsky-Rosen paper ${ }^{1}$, that quantum mechanical observables represent 'elements of physical reality'. More specifically, the theorem excludes hidden variable theories that require elements of physical reality to be non-contextual (i.e. independent of the measurement arrangement) ${ }^{2}$
- Essence of the BKS proof: even for compatible observables A and B with values $v(A)$ and $v(B)$, the equations $v(a A+b B)=a v(A)+b v(B)(a, b \in \mathbb{R})$ or $v(A B)=v(A) v(B)$ may be violated.

[^0]We denote by X, Z and Y the Pauli spin matrices in x, y and z directions, and the tensor product is not explicit, i. e. for two qubits one denotes $Z_{1}=Z \otimes I, Z_{2}=I \otimes Z$ and $Z Z=Z \otimes Z$, for three qubits one denotes $Z_{1}=Z \otimes I \otimes I$ and so on.

There is no way of assigning multiplicative properties to the eigenvalues ± 1 of the nine operators while still keeping the same multiplicative properties for the operators.
${ }^{3}$ Mermin N. D. 1993 Hidden variables and the two theorems of John Bell Rev. Mod. Phys. 65 803-815.

Avant goût and introduction

There is no quantum world. There is only an abstract quantum physical description. It is wrong to think that the task of physics is to find out how nature is.
Physics concerns what we can say about nature.
Niels Bohr
1885-1962

God does not play dice with the universe.
Abert Einstein

To sum up, I predict that the long-awaited renewal (if it is still coming...) will come from a born mathematician wellinformed about the big questions of physics rather than from a physicist. But above all, we will need a man with the kind of 'philosophical openness' necessary to take hold of the heart of the problem. This problem is by no means a technical one, but is rather a fundamental question of 'natural philosophy'.

Harvests and Seeds.
Alexandre GROTHENDIECK 1928-2014

- $G=\langle x, y \mid r e / s\rangle$: the free group on two letters modulo 'rels'. The structure of cosets $g H$ of a subgroup $H \subset_{\text {index }}{ }_{n} G$ is equivalent to the homomorphism $G \xrightarrow{f} P=\langle\alpha, \beta\rangle$ induced by $x \rightarrow \alpha$ and and $y \rightarrow \beta$: permutations on $\{1 . . n\}$, also called a dessin d'enfant (or child's drawing) \mathcal{D}.
- Then one defines a map $\mathcal{D}_{\text {edges }} \xrightarrow{\text { stab. }} \mathcal{G}_{\text {vertices }}$ from the edges of the dessin \mathcal{D} to the vertices of a geometry \mathcal{G}.

Axiom 1. About the stabilizer subgroups of P^{4} : the rank r of P, alias the number of orbits of the one-point stabilizer subgroup of P and the number s of two-point stabilizer subgroups of P (up to isomorphism) should be both at least 3 (non-trivial geometries). Axiom 2. About the normal closure N of the subgroup H in G (that is, the smallest normal subgroup of G containing H): one requires that $N=G$ (critical dessins).
Definition 1. First obey Axioms 1 and 2, then a candidate 'contextual' structure satisfies $f=f_{0}$ (that is, homomorphisms f and f_{0} are the same) while $f \neq f_{0}$ means non-contextuality. In addition, the elected 'contextual geometry' \mathcal{G} should have the same two-point stabilizer subgroup on a line (representative dessins).

[^1]

- (i) The contextual map/dessin (top) stabilizing the Mermin square (bottom) with the corresponding coset labelling.(j) The contextual map/dessin (top) stabilizing Mermin pentagram (bottom).

index	all	non-trivial	contextual	types
6	56	7	0	-
8	482	37	0	-
9	1551	53	$12(4)$	Mermin sq., $K(3,3)$, Pappus
10	5916	351	$2(1)$	Mermin penta.
12	90033	3982	many	$K(4,4,4),\left[12_{6}, 24_{3}\right]_{4}$

Table: In column 2, all is the number of conjugacy classes of subgroups of the corresponding index. In column 3, the non-trivial structures with r and $s>2$ are given, as defined in Axiom 1. In column 3, one finds the number of candidate contextual structures (as defined in Definition 1). Inside the parentheses (one elects) such geometries \mathcal{G} whose maximum cliques of the collinearity graph have their vertices corresponding to the same stabilizer subgroup of P.

(j)

- Three dessins (i), (j) and (k) of index 6 stabilizing the bipartite graph $K(3,3)$. Since Axiom 2 of Sec. 1. is not satisfied, dessins (i)-(k) are considered to be non contextual.

- Both dessins (a) and (b) have the same homomorphism $G^{f} \xrightarrow{\text { mod } P} P$ pictured in (c). All stabilize Mermin's pentagram.

(i)

(j)
- The contextual map (i) stabilizing Pappus configuration in (j). The configuration embeds the Mermin configuration (plain lines): dotted lines do not belong to the Mermin square.

(i)

Congruence group
Gamma_0(6)
(j)

(k)

- The contextual dessin d'enfant (i) with permutation group of order 72. It corresponds to the congruence subgroup $\Gamma_{0}(6)$ of modular group Γ as shown in (j). The stabilized configuration is in (k). Triangles with a star inside have non-commuting cosets.

- The contextual dessin d'enfant (i), with $P \cong S_{6}$, stabilizing $G Q(2,2)$, a model of a two-qubit system. The list of cosets from 1 to 15 is $\left[e, a, a^{-1}, a b, a^{-1} b, a b a, a b a^{-1}, b^{a}, a^{-1} b a^{-1}, a b a^{-1} b, a^{-1} b a b, a b a^{-1} b a\right.$, $\left.a b a^{-1} b a^{-1}, a^{-1} b a b a^{-1}, a b a^{-1} b a^{2}\right]$.

Let $\Gamma=P S L(2, \mathbb{Z}) \cong\left\langle x, y \mid y^{2}=x^{3}=e\right\rangle$. The permutation group
$P=\langle\alpha, \beta\rangle$ arises from a subgroup Γ^{\prime} of the modular group Γ.
How to pass from the topological structure of a modular dessin \mathcal{D} to that of a hyperbolic polygon \mathcal{P} ? There are ν_{2} elliptic points of order two (resp. ν_{3} elliptic points of order three) of \mathcal{P}, these points are white points (resp. black points) of valency one of \mathcal{D}.
The genus of \mathcal{P} equals that of \mathcal{D}, a cusp of \mathcal{P} follows from a face of \mathcal{D}, the number B of black (resp. the number W of white) points of \mathcal{D} is given by the relation $B=f+\nu_{2}-1$ (resp. $W=n+2-2 g-B-c$), where f is the number of fractions and c the number of cusps in \mathcal{P}. The set of cusps for Γ^{\prime} consists of the Γ^{\prime}-orbits of $\{\mathbb{Q}\} \cup\{\infty\} . \Gamma^{\prime}$ is of some type in Cummins-Pauli classification ${ }^{6}$. We use the software Sage to draw the fundamental domain of Γ^{\prime} thanks to the Farey symbol methodology.

[^2]

- The dessin (i) for the Shrikhande graph (k) and the corresponding modular polygon (j).

Congruence subgroup of type 9F_0
(j)

- The dessin (i) and the corresponding modular polygon (j), of type $9 F_{0}$, stabilizing the smallest slim dense near hexagon (alias the $3 \times 3 \times 3$ grid) $[273]_{(5)}$ shown in (k).

Congruence group of type 10D_0
(j)

- The dessin (i) and the corresponding modular polygon (j) stabilizing a 6 -regular graph on 20 vertices and 60 edges shown in (k).

group	index	configuration	names	κ
$S_{4}^{\prime}(2)$	15	$\left[15_{3}\right]_{(3)}$	$G Q(2,2): 2 \mathrm{QB}$	0.800
	30	$\left[30_{16}, 160_{3}\right]_{(7)}$		0.900
$S_{4}(3)$	27	$\left[27_{5}, 45_{3}\right]_{(3)}$	$G Q(2,4)$	0.867
	40	$\left[40_{4}\right]_{(3)}$	$G Q(3,3): 2 \mathrm{QT}$	0.900
$S_{6}(2)$	63	$\left[63_{15}, 135_{7}\right]_{(3)}$	$W_{5}(2): 3 \mathrm{QB}$	$*$
	120	$\left[120_{28}, 1120_{3}\right]_{(3)}$		0.975
	126	$\left[126_{64}, 2688_{3}\right]_{(5)}$		0.972
	135	$\left[135_{7}, 315_{3}\right]_{(4)}$	$\mathrm{DQ}(6,2)$	0.978
	315	$\left[315_{3}, 135_{7}\right]_{(5)}$		$*$
	336	$\left[336_{10}, 1120_{3}\right]_{(5)}$		0.991
$U_{3}(3)$	63	$\left[63_{3}\right]_{(5)}$	$G H(2,2) ; 3 Q B$	0.952
	63	$\left[63_{3}\right]_{(4)}$	$G H(2,2)$ dual	0.936
$U_{3}(4)$	208	$\left[208_{6}, 416_{3}\right]_{(5)}$	config. over \mathbb{F}_{16}	0.971
$0_{8}^{+}(2): 2$	120	$\left[120_{28}, 1120_{3}\right]_{(3)}$	$N 0^{+}(8,2)$	0.952

${ }^{7}$ Planat, M. (2016) Zoology of Atlas-groups: dessins d'enfants, finite geometries and quantum commutation, Preprint 1601.04865 [quant-ph]

- Both dessins have $P=S_{5}, \mathcal{G}=K_{5}, s=(B, W, F, g)=(3,2,2,0)$. Belyi function: $f(x)=\frac{k(x-1)^{4}\left(x-x_{0}\right)}{x^{3}}$ with $x_{0}=-10 \pm 4 \sqrt{6}$ and $x_{1}=-3 \pm \sqrt{6}$.
- Both curves are over $\overline{\mathbb{Q}}=\mathbb{Q} \sqrt{6}$ in the same class.
- $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and contextuality?
${ }^{8}$ Galois actions on regular dessins of small genera, M. D.E. Conder, Rev.
Mat. Iberoam. 29, 163-181 (2013).
- A striking comparison between the commutativity of quantum observables and that of cosets of subgroups of the two-generator free group. This parallel allowed us to propose a new definition of contextuality based on the coset structure of Grothendieck's dessins d'enfants, in good correspondance with the standard quantum one.
- Since a complex algebraic curve defined over the field $\overline{\mathbb{Q}}$ of algebraic numbers [that is a Belyi function $f(x)$] is attached to any dessin d'enfant \mathcal{D}, it is expected that the contextuality criterion features specific curves through the action of the group of automorphisms $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ of the field $\overline{\mathbb{Q}}$ (the absolute Galois group) on dessins that would be helpful to recognize.

[^0]: ${ }^{1}$ A. Einstein, B. Podolsky and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 47, 777?80 (1935).
 ${ }^{2}$ Kochen S. and Specker E. P. 1967 The problem of hidden variables in quantum mechanics J. Math. Mech. 17 59-87.

[^1]: ${ }^{4}$ The stabilizer subgroup of G at point x is the set $G_{x}=\{g \in G \mid g \cdot x=x\}$.
 ${ }^{5}$ Planat M. (2016) Two-letter words and a fundamental homomorphism ruling geometric contextuality, to appear in Symmetry, Culture and Science.

[^2]: ${ }^{6}$ C. Cummins and S. Pauli, http://www.uncg.edu/mat/faculty/pauli/congruence/congruence.html. इ

