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Abstract: The general purpose of the paper is to explore the way of performing renewable energy 
balance predictions prognostics so that energy market actors can act consequently. Different aspects of 
forecasting are discussed to point out pragmatic challenges of this approach. An illustration, with real 
monitored data, based on a neuro-fuzzy predictor is given. The architecture of the artificial intelligence 
technique used for forecasting is modified in order to obtain accurate estimations for medium term. 
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1. INTRODUCTION 

Nowadays there are huge ranges of energy market 
participants, bidding strategies are more and more complex, 
and a number of financial derivatives have been developed. 
Commercial success depends on the ability to submit 
competitive predictions relative to energy balance trends 
(difference between the electricity produced and consumed - 
DPcg) (Dragomir F. et al., 2009). Thus, it seems convenient 
to "anticipate" a phenomenon in order to act consequently 
and resort to protective actions.  

In particular, the different time horizons required by the 
electricity markets (e.g., day-ahead, hour-ahead) can be 
respectively associated to short term (STLF) (Hippert et al., 
2001), medium term (MTLF) or with long term forecasting 
(LTLF) (Desons et al., 1997). For short term forecasting the 
information is sampled on an hourly (or half hourly) basis, or 
even a daily basis (for load peak prediction) so is defined as 
varying from a few minutes up to a few weeks ahead. This 
type of prediction is important because the national grid 
requires DPcg values at any moment in the day. 
Traditionally, hourly forecasts with a lead time between one 
hour and seven days are required for the scheduling and 
control of power systems. The medium term forecasting in 
energy field covers the horizon from one month up to a few 
years ahead and finally, the long term horizon considers load 
peaks and consumed energy, on a yearly basis, for several 
years ahead. For example, long-term forecasting is relevant 
for the planning of new electricity utilities, and inaccurate 
predictions have important financial costs. For this particular 
forecasting case is a need for accurate prediction.  

From the perspective of the system operators and regulatory 
agencies, the medium term forecasting is a source of primary 
information for the safe and reliable operation of the system. 
For producers also, these ones are a basic tool for 
determining the optimal utilization of generators and power 
stations, as some facilities are more efficient than others.  

Despite the many publications and models of load forecasting 
that have been developed in the last few decades, few 
amongst those have dealt with the medium term forecasting.  

This paper deals with this type of forecasting. Precisely, it is 
based on neuro - fuzzy networks in order to estimate the 
DPcg evolution for a medium time horizon. This artificial 
intelligence tool is applied is illustrated on a data based 
obtain from an experimental photovoltaic amphitheatre of 
minimum dimension (0.4kV/10kW), located in the east-
centre region of Romania, more precisely in the city of 
Targoviste (ICOP DEMO, 1998).  

In this context, the paper is organized in two parts. First of 
all, the forecasting framework is delimited, starting with the 
definition, metrics, approaches and tools. In the second 
section the chose of a neuro - fuzzy tool is argued using the 
existed approaches and the results obtained by different 
authors. A new ANFIS (Adaptive Neuro Fuzzy Inference 
System) architecture is proposed, illustrated and discussed. 

Efforts improving the photovoltaic (PV) module performance 
in different climates have been increasing over the years. 
With new materials entering the market place, this task is 
gaining further in importance. Using standard test condition 
efficiency in the design stage is not enough appropriate. It is 
therefore imperative a true understanding of the reasons for 
varying performance before the design stage. Additionally, 
the accurate separation and quantification of different effects 
influencing the performance would be valuable asset to the 
PV community.  

2. ENERRGY FORECASTING   

2.1 Forecasting concepts 

Considering the benefits that forecasting may bring to the 
security, economics and resource management fields, the 
scientific community is now beginning to take some interest 

ha
l-0

05
44

70
3,

 v
er

si
on

 1
 - 

8 
D

ec
 2

01
0

Author manuscript, published in "Conference "Large Scale Systems, Theory and Applications", LSS'10., Villeneuve d'Ascq :
France (2010)"

http://hal.archives-ouvertes.fr/hal-00544703/fr/
http://hal.archives-ouvertes.fr


 
 

     

 

in this area. The control of the performance prediction 
represents the premise of a good global performance.  

In literature, the forecasting is called also prediction or 
prognosis and this reveals that there is no consensual 
acceptation of term: (Rytter, 1993), (Lin et al., 2003), (ISO, 
2004), (Dragomir O. et al., 2007). Due to these facts, in this 
article the forecasting will be associated with the notion of 
prediction and will determine the future state of the analyzed 
system the closest possible to the future real state of the 
system. 

2.2  Forecasting measures 

There is no general agreement as to an appropriate and 
acceptable set of metrics that can be employed effectively to 
assess the performance of the prediction. The performance 
measures will evolve with time as more data are available, 
and the measures are expected to improve over time [9]. 
Beyond this aspect, very important is the error value 
determination (where the error is defined as the difference 
between real   and estimated value of the analysed system 
parameter) (Vachtsevanos et al., 2006). Therefore, given the 
same error size corresponding to a certain magnitude of 
deviation, it is in most situations preferable to have a positive 
bias (early prediction), rather than a negative one.  Of  
course,  one  needs  to  define two  different  boundaries  for  
the  maximum acceptable  late  prediction  and  the  
maximum  acceptable early  one. Any  prediction  outside  of 
it will  be  considered  either  a  false  positive  or  a false 
negative (Goebel et al., 2005). 

Measurement of forecasting performance quality is highly 
dependent on how rigidly the criteria are specified, and are is 
largely dependent on user-specifications (Bonissone et al., 
2007). So a critical point at this level is what criterion can be 
used to measure the accuracy of the predicted results. 

Accuracy measures the closeness of the predicted value to the 
actual value. It is highest when the predicted value is the 
same as the actual value and decreases when the predicted 
value deviates from the actual value so the sensitivity will be 
very low when the predicted value deviates too much.  

Another metric, often use in a prediction performance 
measure is the precision. The precision implies how close the 
predictions are bunched or clustered together and is a 
measure of the narrowness of un interval in which the system 
falls. Precision is defined on the basis of the variance of the 
predicted results for many experiments It is high if the 
predicted values are clustered together around the actual 
value and it is low if the predicted values are scattered over 
the output range.  

Confidence level of the forecasting indicates in percentage 
value, the degree of certitude of the future predicted value 
modes or of the estimation made. An average of the width of 
the confidence intervals of the prediction algorithm in the 
precision definition is often use because a narrower 
confidence interval gives higher precision. 

Applying different methods for forecasting DPcg, in our 
studied case, the final objective is the assurance of a certain 
level of error for a given prediction horizon (Fig. 1). 
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Fig. 1.  Forecasting error measurements 

2.3  Forecasting approaches 

The literature has presented a great variety of methodologies 
for electricity forecasting. Contributions can be distinguished 
between statistical approaches and exponential smoothing 
approaches, between unvaried methods and methods with 
explanatory variables, between linear models and nonlinear 
models.  

Earlier papers have developed both single-equation models 
and multiple-equation models with different equations for 
different hours of the day. The time dependence of hourly 
loads has been captured observation-driven models and 
parameter-driven models with unobserved components. 
Articles that deal with model based load forecasting include: 
(Cancelo et al., 2008), (Liu et al., 2006), (Soares et al., 2008), 
(Tyler et al., 2003) and (Tyler et al., 2006). 

However, deregulated energy markets have presented new 
challenges to decision making, requiring more information 
which is dependent forecasting.  Therefore, the corresponding 
development and maintenance efforts for dealing with 
hundreds of irregular data series, which need to be 
simultaneously forecasted for security and economical 
analyses, means that the parametric models are beyond 
practical consideration. The relationship between the 
electricity load and its exogenous factors is complex and 
nonlinear, making it quite difficult to represent using linear 
models, or even parametric nonlinear ones.  

In recent years, papers have shown the potential of data 
driven forecasting approaches (Dragomir O. et al., 2009). 
Data-driven approaches derive directly from routinely 
monitored system operating data. So, in many applications, 
measured input/output data is the major source for a deeper 
understanding of the system degradation behavior. These rely 
on the assumption that the statistical characteristics of data 
are relatively unchanged unless a malfunctioning even 
occurs.  

The strength of data-driven techniques is their ability to 
transform high-dimensional noisy data into lower 
dimensional information for diagnostic/prognostic decisions. 
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Artificial intelligence (AI) techniques have been increasingly 
applied to systems forecasting and have shown improved 
performances over conventional approaches. 

In practice however, it isn't easy to apply AI techniques due 
to the lack of efficient procedures to obtain training data and 
specific knowledge. So far, most of the applications in the 
literature just use experimental data for model training. Thus, 
data-driven approaches are highly-dependent on the quantity 
and quality of system operational data. 

2.4 Forecasting tools 

Actually the systems are very complexes and the 
conditioning parameters that influence system functioning are 
significant. Often their actions induce nonlinearities in 
system modelling process because can not be always 
precisely described. In these cases it is very difficult to 
determine any sort of model for prediction purposes.  

Artificial Neural Networks (ANNs) are techniques use often 
for load forecasting. For short term forecasting horizons in 
particular, the neural networks have a good flexibility in 
capturing nonlinear interdependencies between the load and 
exogenous variables. However, the ANN models are complex 
and difficult to understand, and are often over-fitted. Indeed, 
their structure is sufficiently opaque that it is not clear why 
they should forecast as well as they do. As a result, the 
literature is still undecided as to their practical utility for 
electricity load forecasting. Articles that deal with ANN 
models, in particular for short term load forecasting horizon 
are (Alves da Silva  et al., 2000), (Khotanzad  et al., 1998), 
(Darbellay et al., 2000), (Metaxiotis et al., 2003), (Reis et al., 
2005), and (Hippert et al., 2005). 

Despite all publicized successes, neural network based load 
forecasting models have been designed relying on time-
consuming, empirical, and suboptimal procedures (Ferreira  
et al., 2007). The potential for applying neural networks to 
short term load forecasting depends strongly on the extraction 
of appropriate input variables. This requirement has often 
been neglected, and many proposals for building the neural 
network input space still use (linear) correlation analysis. 
Input selection procedures with the capacity to extract high 
order statistical information from the input-output data must 
be employed to fully exploit the ANN mapping capability. 

The advantages and the drawbacks of AI forecasting 
techniques, precisely of ANN, leaded us to the choosing of 
nonlinear network (neuro-fuzzy systems - NFs) approximates 
as reference tool for our approach of medium term energy 
balance forecasting.  

Neuro- fuzzy systems are a combination of ANNs and fuzzy 
sets and represent a powerful tool to model systems 
behaviour. The ANN is used to define the clustering in the 
solution space, which results in creation of fuzzy sets (Jang et 
al., 1997).  

A particular architecture of neuro-fuzzy systems is 
represented by the adaptive neuro-fuzzy inference system 
(ANFIS) (Jang, 1993). ANFIS is a Sugeno-type fuzzy 

inference system in which the parameters associated with 
specific membership functions are computed using either a 
backpropagation gradient descent algorithm alone or in 
combination with a least squares method. It has been widely 
applied to random data sequences with highly irregular 
dynamics (Wang, 2003) e.g. forecasting non-periodic short-
term stock prices (Chiang et al., 2001). 

The success of ANFIS is given by aspects like: the 
designated distributive inferences stored in the rule base, the 
effective learning algorithm for adapting the system’s 
parameters or by the own learning ability to fit irregular or 
non-periodic time series. On the other hand, used in 
application alone to non-periodic short-term forecasting, 
ANFIS predictions make large residual errors due to high 
residual variance, consequently degrading prediction 
accuracy (Gourierou , 1997). It is very difficult to interpret 
for a non expert the fuzzy rules generated by ANFIS because 
of the form of consequents (linear combination of inputs). 

3. NEURO FUZZY ENERGY BALANCES 
FORECASTING 

The actual challenges consist in controlling the performance 
of the future state of the system for medium term. The 
proposed framework consider forecasting process as a 
aggregate function of past, present and future states. The third 
variable who appears in prediction function definition is the 
results of the necessity of taken into account of “known 
future” actions dues of precise moments in the week or in the 
year For example, it is expected a modification of the 
consumers behaviours due summer, winter holydays or week-
end time. (Fig. 2) 
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time 
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Fig. 2.  Future states that influence prediction process 

Most of the papers that use ANFIS for prediction consider the 
inputs as they exist in the benchmarks. In this paper   ANFIS 
use a data base with 290 data points {y(t), u(t)}, from t=1 to 
t=296. From the monitored plant, the Solar Amphitheatre [4], 
the DPcg is considered as output of the model - y(t) and the 
exterior temperature as input - u(t).  

The choice of error measures to help comparing forecasting 
methods has been much discussed. A major part of them have 
been summarized by (Gooijer  et al., 2006). Most authors 
consider that MAPE would be an adequate error measure if 
the loss function were linear (and linear in percentage, not in 
absolute error); however, recent studies and the experience of 
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system operators indicates that the loss function in the load 
forecasting problem is clearly nonlinear, and that large errors 
may have disastrous consequences for a utility (Hobbs  et al., 
1999). Because of manner of the penalization of large errors 
this, measures based on root mean squared error was 
suggested in (Armstrong  et al., 1995). Also, it is generally 
recognized that error measures should be easy to understand 
and closely related to the needs of the decision-makers. Some 
papers reported that the utilities would rather evaluate 
forecasting systems by the absolute errors produced, and this 
suggests that mean absolute errors could be useful 
(Mohammed  et al., 1995).  

In any case, error measures are only intended as summaries 
for the error distribution. This distribution is usually expected 
to be normal white noise in a forecasting problem, but it will 
probably not be so in a complex problem like load 
forecasting. No single error measure could possibly be 
enough to summarize it. The shape of the distribution should 
be suggested. Keeping the total error low, therefore, means 
keeping the model simple. 

It is well known that goodness-of-fit statistics are not enough 
to predict the actual performance of a method. The 
implications and consequences of the choices made in design, 
implementation and validation of neuro-fuzzy architecture 
are very important. Often appears problems of overfitting or 
overparametrization (Steinherz  et al., 2001).  

Considering the metrics described above, we have observed 
that the ANFIS architecture, for two and three selected 
inputs, has satisfactory results for a short term prediction 
(Fig. 3) 
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For medium and long term, the obtained errors became 
bigger and bigger and this affects the forecasting in terms of 
accuracy and confidence (Fig. 4). 

The prediction results from Fig. 4 are obtained for an ANFIS 
with two selected inputs, for a time horizon equal with 1, 10 
and 20.  

 

 

 

 

 

 

 

In order to obtain a good performances as result of 
implementing neuro-fuzzy tools in forecasting approaches, 
this article propose a novel architecture for ANFIS as an 
alternative for medium time error stabilization. This one link 
the ANFIS modules in series to penalize the growth tendency 
of error in time. The performance measured in terms of error 
became satisfactory a medium term (Fig. 5). 
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Fig. 3. a) Prediction error for two inputs ANFIS for twenty steps 
ahead forecasting; b) Prediction error fortwo ANFIS linkt in series for 
twenty steps ahead forecasting 

-5 0 5 10
0

0.05

0.1

0.15

0.2

pro
ba

bili
ty 

de
ns

ity
 fu

nc
tio

n

-5 0 5 10
0

0.05

0.1

0.15

0.2

% prediction error
-5 0 5 10

0

0.05

0.1

0.15

0.2

 
Fig. 4.  Error prediction distributions for two inputs ANFIS 
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Fig. 5.  Error prediction distributions for two ANFIS linkt in series  
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The effect of taking into account the “future” for prediction, 
in other words the modification of the mission profile due to 
some extern intervention has also influence over error. (Fig. 
6). 

 

6. CONCLUSIONS AND WORK IN PROGRESS 

Controls of the performance prediction represent the premise 
of a good global forecasting performance. The existing 
approaches, methods, metrics and tools for load forecasting 
are discussed from different points of view. The identified 
problems and advantages create the context for proposing a 
new ANFIS architecture capable to ensure for the prediction 
stability in terms of errors magnitude for a medium term 
horizon. Also, the preplanned actions require the availability 
of assets under consideration for a specified time. The 
obtained confidence level at this point of time is a 
satisfactory one from the industrials point of view.  

The work is still in progress and the developments are at 
present extended in three principal ways. First, the definition 
of new loss functions capable to penalize the errors above an 
acceptable tolerance level. Secondly, the application of other 
tools as technics for a global forecasting to be investigated. 
Finally, an amelioration of obtained predictive system in 
terms of interpretability. 
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