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Abstract

In a post-prognostics decision context, this paper addresses the prob-
lem of maximizing the useful life of a platform composed of several paral-
lel machines under service constraint. Application on multi-stack fuel cell
systems is considered. In order to propose a solution to the insufficient
durability of fuel cells, the purpose is to define a commitment strategy
by determining at each time the contribution of each fuel cell stack to
the global output so as to reach the demand as long as possible. Two
algorithms making use of convex optimization are proposed to cope with
the assignment problem. First one is based on the Mirror-prox for Saddle
Points method and second one uses the Lasso (Least Absolute Shrinkage
and Selection Operator) principle. Results based on computational exper-
iments assess the efficiency of these two approaches in comparison with
an intuitive resolution performing successive basic convex projections onto
the sets of constraints associated to the optimization problem.

Keywords: Decision making, Post-prognostics decision, PHM, Fuel cell,
Convex optimization

1 Introduction and related work

In the context of the decline of fossil fuel resources, the use of fuel cells appears
to be of growing interest as a potential alternative to conventional power sys-
tems Jouin et al. (2013). Fuel cells can be used in many applications, such as
stationary ones for domestic use, but also in transportation and portable power
applications Borup et al. (2007). Fuel cells suffer however from insufficient
durability. In fact, their lifetime reaches between 1500 and 3000 hours, whereas
5000 hours are required for transportation applications and up to 100000 hours
for stationary ones. Improvement of their performance, reliability and lifetime
is then an important challenge Borup et al. (2007), for which techniques of
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Prognostics and Health Management (PHM ) can help. It has been pointed
out by Jouin et al. (2013) that researches in PHM dealing with fuel cells have
been mainly focused on data acquisition and data processing. Less attention
has been paid to condition assessment and diagnostics and very few works ad-
dress prognostics and decision making. Papers taking into account the decision
part propose furthermore only corrective actions (see Bosco and Fronk (2000)
and Wells and Parr (2004)), for which physical parameters (such as inlet and
outlet gas flows, pressures and temperatures, single cell and stacks voltages
or current) are controlled to master each fuel cell operating conditions as ac-
curately as possible. These corrective actions correspond to real-time control
(from nanoseconds to seconds), necessary to compensate the natural fluctua-
tion of fuel cells parameters and to avoid too early irreversible degradations.
At each time it allows also to set the operating current to meet the needs in
power for each fuel cell. Decision making addressed in this paper differs from
the studies proposed so far. Larger scale of time (hours to weeks) is indeed
considered and decision comes within the scope of Prognostic Decision Making
(PDM), which aims at choosing an appropriate system configuration Balaban
and Alonso (2012). The system considered here is composed of several fuel cells,
used in parallel to provide a global power output. The problem is to provide
the power output value for each fuel cell as a function of time, on the basis of a
global power demand. Target application considered here is based on stationary
power generation for domestic usage, also known as micro combined heat and
power (micro-CHP).

In order to deliver suitable power outputs, fuel cells are used in the form of
stacks, composed of many individual connected cells. Each stack is supposed
to be independent, but the multi-stack fuel cell system has to deliver a given
global power output based on a need of energy. At each time, the total provided
power output is the sum of each output of the stacks that are currently running.
Each fuel cell stack is able to deliver an output that can vary continuously and
take any value within a given interval. The optimization problem consists in
determining the appropriate output for each fuel cell stack during the whole
production horizon. All the stacks are not supposed to be running at each
time if the target output can be reached by using only a subset of them. All the
stacks may moreover not be always available if their end of life has been reached.
Considering a global needed power output, the multi-stack system useful life
depends not only on each stack useful life, but also on both the schedule and
the operating condition settings that define the contribution of each stack over
time. The same statement applies to batteries in a health management context.
Saha et al. Saha et al. (2012) have for instance addressed the maximization of
the battery charge used while constraining the probability of a battery shut off
in flight for electric unmanned aerial vehicles. Predictions on remaining battery
life are used to optimize mission plans without exceeding the available battery
charge. In a same way, we propose to use prognostics results in the form of RUL
to maximize the global useful life of a multi-stack fuel cell system under service
constraint.

A similar problem has been addressed in Herr et al. (2014a) and Herr et al.
(2014b), where the purpose was to define a schedule of machines that maximizes
the production horizon, based on the knowledge of each machine remaining use-
ful life (RUL) in a PHM framework. In these studies, machine throughputs
have been considered to be in a discrete domain. It has been shown in Herr
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et al. (2014b) that optimal solutions can be found in limited time only for small
size instances considering a very limited number of machines, very few through-
put values and short production horizons. An other study considering this time
machines whose performances can vary continuously between two bounds has
been proposed in Herr et al. (2015). The considered model has been built to fit
the fuel cells behavior, but the proposed resolution approach gives suboptimal
solutions and is limited to systems of reasonable size. In order to overcome
these two limitations, we propose in this paper to change totally the paradigm
of the resolution and to build the solutions globally on the whole production
horizon. Contribution of each machine during its lifetime is considered as a
whole and optimized on the whole horizon. Each machine contribution is de-
termined through convex optimization, whose interest is to allow the solving of
big optimization problems in limited time.

The considered scheduling problem is proposed to be addressed via optimiz-
ing a composite function subject to several constraints due to fuel cell intrinsic
characteristics. Two different algorithms are developed and used to define the
contribution of each fuel cell stack to the global output over the whole produc-
tion horizon. First one is based on the Mirror Prox method proposed by Ne-
mirovski (2004) as a variant of the Mirror Descent developed by Nemirovsky
and Yudin (1983) to minimize a smooth convex function subject to convex con-
straints. Estimation of the variable is efficient in that it depends very little on
its dimension. This is why these methods can be used to solve big optimization
problems Beck and Teboulle (2003). Second resolution method is based on a
penalization through an `1 norm, which has been extensively studied in many
domains such as artificial intelligence for machine learning, statistics, image
processing or data analysis Donoho and Elad (2003); Candès et al. (2008). We
propose to use a variant of the Lasso (Least Absolute Shrinkage Operator) al-
gorithm, proposed by Tibshirani (1996) as a method for sparse model selection
in statistics.

The organization of the paper is as follows: the tackled problem is first de-
scribed in Section 2, with a brief presentation of the application framework and
the optimization problem. After a mathematical formulation of the problem,
resolution methods are then described in Section 3. Efficiency of these methods
is assessed through simulation results in Section 4. Conclusion and future work
are finally given in Section 5.

2 Problem statement

The application addressed in this paper is based on a multi-stack fuel cell system
which is supposed to meet energy requirements for domestic usage in a station-
ary power generation framework. This system is supposed to be composed of
m fuel cell stacks Mj (1 6 j 6 m). All the stacks are supposed to be always
supplied with raw material required for the energy conversion. They can be
used simultaneously and independently from each other.

This corresponds to a parallel machines system, in which each machine is
supposed to be able to deliver power outputs Pj that can vary continuously
within a given power output range [Pminj ;Pmaxj ]. For each machine Mj (1 6
j 6 m), the minimal power output Pminj is supposed to be strictly greater
than zero and constant over time. The maximal power output Pmaxj decreases
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with time when the machine Mj is used. The range of available power outputs
depends then on the time t: for each machine Mj , 0 < Pminj < Pj(t) <
Pmaxj(t) . Useful life of each power output Pj , RULj(Pj), is moreover limited
by the decrease of Pmaxj of equation Pmaxj(t) = aj ·t+Pmaxj(0), with aj < 0.

At each time, the global outcome P tot is the sum of each stack power contri-
bution. During the whole production horizon, denoted H, this global outcome
has to reach a given load demand σ(t). In the stationary power generation
framework considered here, this demand is supposed to be constant over time.
Storage being not considered in this study, overproduction is lost. Stop-and-
start of fuel cell stacks have moreover to be avoided as far as possible. Stopping
and restarting a fuel cell can indeed induce considerable damage and lead to
premature aging Borup et al. (2007). Change of power output during the use
of fuel cell stacks is however still authorized.

Considering these assumptions, the point is to manage the system by defining
the commitment of fuel cell stacks so as to reach the demand as long as possible.
During the whole production horizon, the purpose is then to define at each time
each stack contribution to the global power output.

3 Resolution

A mathematical formulation of the problem making use of convex elements is
first defined. Two different convex resolution methods are then proposed to cope
with the assignment problem. First one is based on the Mirror Prox method
and second one makes use of the Lasso technique to optimize the commitment
of machines.

3.1 Mathematical formulation

Let fj(t) (1 6 j 6 m, 0 6 t 6 T ) be the vector defining the evolution over
time of the power output delivered by the machine Mj , with T the length of the
decision horizon. Link between this decision horizon and the solution production
horizon is clarified in Section 4.3. Contributions of all the machines are gathered
together in a vector F ∈ Rm(T+1) such that:

F = [f1(0), . . . , f1(T ), . . . , fj(t), . . . fm(0), . . . , fm(T )] .

The general idea is to minimize a convex function subject to a set of con-
straints. The objective function aims at ensuring that the power demand is
reached. At each time t (0 6 t 6 T ), it is about minimizing the difference be-
tween the global power output delivered by the set of machines and the demand
σ(t). This is expressed by Equation (1).

min σ(t)−
m∑
j=1

fj(t) ∀ 0 6 t 6 T (1)

Constraints on each function fj relate to the definition domain of each contri-
bution and to the limited availability of machines. At each time t, each machine
contribution is either equal to zero or constrained between two bounds (see
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Equation (2)), in accordance with the hypotheses detailed in the application
framework. fj(t) = 0 means that the machine Mj is not used at time t.

fj(t) = 0 or fminj(t) 6 fj(t) 6 fmaxj(t) (2)

∀ 1 6 j 6 m, ∀ 0 6 t 6 T

Each contribution fj is constrained by the maximal power output decrease of the
associated machine Mj , which expresses its limited availability. Evolution over
time of this maximal power output, fmaxj(t), is a function of the use of machine
Mj , fj(t). Indeed, fmaxj(t) evolves only if Mj is used, that is, if fj(t) > 0. A
first formulation is proposed in Equation (3), with aj the speed associated to
the maximal power output decrease.

fmaxj(t) =

{
fmaxj(t− 1) + aj if fj(t) > 0 ;
fmaxj(t− 1) if fj(t) = 0

(3)

∀ 1 6 j 6 m, ∀ 1 6 t 6 T

Equations (2) and (3) being not convex, they can not be used as is within
the proposed convex programming paradigm. A second formulation of the con-
straints is proposed in set of equations (4), which details the mathematical pro-
gram associated to the optimization problem. This program does not respect
the real evolution over time of the maximal power output that can be deliv-
ered by machines (see Equations (2) and (3)), but presents the advantages of
being convex and thus consistent with the convex resolution methods proposed
in next section. In the following, the machines behavior follows the simplified
model depicted in Figure 1.

min σ(t)−
m∑
j=1

fj(t) ∀ 0 6 t 6 T (4a)

s.t. fmaxj(t) 6 fmaxj(t− 1) + µ · aj · (fj(t− 1))υ (4b)

(with µ and υ ∈ R∗+)

∀ 1 6 j 6 m, ∀ 1 6 t 6 T

with 0 6 fj(t) 6 fmaxj(t) (4c)

∀ 1 6 j 6 m, ∀ 0 6 t 6 T

3.2 A Mirror-Prox-based algorithm

The first resolution method is based on the Mirror Prox algorithm proposed
by Nemirovski (2004) as a variant of the Mirror Descent. Both are based on
the resolution of a primal-dual saddle point problem, which allows to take con-
straints into account. The purpose is to minimize a smooth convex function
under constraints. The Mirror Descent algorithm makes use of a gradient de-
scent to find the minimum of the considered function. A mirror function allows
to transition from the primal space, where all the constraints of the problem are
defined, to the dual space. The Mirror Prox method applies at each iteration
two consecutive steps of Mirror Descent. A very instructive description of the
Mirror Prox algorithm has been proposed by Bubeck (2014).
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Figure 1: Simplified evolution of fuel cells characteristics

The objective function taken into account is detailed in equation (5). This
proposed formulation includes directly the different constraints of the applica-
tion. First part of the function, detailed in Equation (6), is aimed at satisfying
the demand σ(t) at each time t. Second one is used to control the evolution of
each fmaxj as a function of each associated contribution fj (see equation (7)).
The mirror function considered in the Mirror Prox formula is defined on Rm(T+1)

by Equation (8).

φ(F, fmax, σ) = λdemhdem(F, σ) + λslopehslope(F, fmax)

with λdem, λslope > 0 (5)

hdem(F, σ) =

T∑
t=0

1

T + 1
exp

(
− γ
( m∑
j=1

fj(t)− σ(t)

))
with γ > 0 (6)

hslope(F, fmax) =

T∑
t=1

m∑
j=1

exp

(
δ
(

fmaxj(t)− fmaxj(t− 1)

− µ′aj(fj(t− 1))υ
′
))

with δ > 0, µ′ > 0, υ′ > 1 (7)

θ(F ) =

T∑
t=0

m∑
j=1

F ln(F ) (8)

3.3 An algorithm based on the Lasso

The second resolution method makes use of a `1 penalization. The idea is the
following : in order to maximize the production horizon, it would be better to
use at each time only the machines strictly necessary to reach the demand. This
means minimizing both the overproduction and the number of machines used at
the same time, which allows to keep some potential for the end of the schedule

6



and eventually to reach the demand for a longer time. This can be done by
controlling the sparsity of the solution vector F . This vector has then the same
structure as if the number of its nonzero component were constrained. The
Lasso (Least Absolute Shrinkage and Selection Operator) algorithm proposed
by Tibshirani (1996) allows to tackle such problems. It is a regularization tech-
nique performing simultaneously an estimation and a variable selection Tibshi-
rani (1996). We propose to use the Adaptive Lasso, which associates the Lasso
regularization technique with an adaptive weighted `1 penalty. This weighted
penalization is used to adapt the penalization to the initial value of the vector F
to optimize, allowing to accelerate the convergence of the method. This variant
of the Lasso has been shown by Zou (2006) to give good results in comparison
with other sparse modeling techniques.

For the considered optimization problem and following the notations intro-
duced previously, the Lasso estimate is defined in Equation (9), with the weight
w defined in Equation (10). Optimization of the solution F is done following this
objective function under constraints. These constraints set the range of available
power outputs and its evolution over time (see Equations (4b) and (4c)).

F̂ = argminF

1

2

T∑
t=0

(
σ(t)−

m∑
j=1

fj(t)

)2

+λ

T∑
t=0

m∑
j=1

wj(t)fj(t)

 with λ ∈ R+ (9)

wj(t)←

 min

(
1

f
(l)
j (t)

, 10

)
if fj(t) > 0;

1 if fj(t) = 0
(10)

∀ 1 6 j 6 m, ∀ 0 6 t 6 T

4 Simulation results

4.1 Problem generation

Random problem configurations have been generated using a simulator and con-
figured with many parameters including the number of stacks in the considered
multi-stack fuel cell system, m, and intrinsic fuel cell characteristics. The latter
have been defined on the basis of fuel cell manufacturer specifications and con-
sidering a maximal lifetime RULmaxj = 1500 hours ±20% for each machine Mj

(1 6 j 6 m). Each RULmaxj value is drawn following a uniform distribution
between 1200 and 1800 hours. Power output values are determined in the same
way, with Pmaxj(0) = 500W ± 5% and Pminj = 0.15 · Pmaxj(0) for each
machine Mj .

For the results presented hereafter, the power demand has been assumed to
be constant during the whole scheduling horizon: σ(t) = σ. Without any loss
of generality, only one demand value has then been associated to each problem
configuration, but many demands corresponding to different configurations have
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been tested. Many loads α have been defined such that σ = α · Pnomtot, with
Pnomtot the nominal total power output reachable with the considered multi-
stack system and 30% 6 α 6 90%. Pnomtot =

∑m
j=1 Pnomj , with Pnomj =

0.75 · Pmaxj(0) the power output recommended by fuel cell manufacturers for
a nominal use of fuel cells. In the following figures, results are represented as a
function of the load α.

4.2 Resolution methods configuration

Initial values of each solution vector F has first been set to zero: fj(t) = 0
∀ 1 6 j 6 m, ∀ 0 6 t 6 T . Quality of solutions from the point of view of
the reached production horizon globally increases with the number of iterations
and stabilizes starting from a certain value. For each resolution method pro-
posed earlier, several iterations of the associated process are then performed to
optimize this solution. The global process is stopped when the variation of the
solution vector is not significant anymore.

Tuning of the different parameters involved in the two resolution methods
allows to comply with the constraints and to adapt the shape of each fmaxj .
Values for the parameters used in the Mirror-Prox algorithm are the following:
λdem = λslope = 100, γ = 100, δ = 100, µ′ = 1, υ′ = 1. The parameter λ
involved in the Adaptive Lasso has been defined as a function of the number
of machines: λ = 10 · m. This allows to adapt the control of the sparsity to
the size of the optimization problem. For the evolution of the maximal power
output fmax, values have been defined as follows: µ = 0.2, υ = 0.3.

4.3 Post-processing

The main constraint of the optimization problem is the reaching of the power
output demand σ(t). This constraint being tackled through the minimization
of an objective function, solutions may contain time periods during which this
demand is not reached. But, with the two resolution methods proposed in pre-
vious section, solutions are built so that the time periods for which the power
demand σ(t) is reached are gathered at the beginning of the schedules. This
is consistent with the objective to maximize the production horizon of the set
of machines. This behavior is linked with the shape of the functions fmaxj(t)
representing for each machine Mj the evolution over time of the maximal power
output reachable, which limits the contribution of each machine. These func-
tions being strictly decreasing with the use of machines, it is in fact more likely
to reach the demand at the beginning of the scheduling process than after some
time. As already mentioned, resolution algorithms detailed previously can then
be applied on overestimated horizons T , named decision horizons. The pro-
duction horizon of each solution, H, is simply the maximal time during which
all the constraints are strictly satisfied. In practice, the production horizon
corresponds to the time during which the demand σ(t) is reached.

4.4 Results

Efficiency of the proposed commitment strategies defined in Section 3 is as-
sessed through a comparison with a basic strategy which performs successive
convex projections onto each set of constraints defined previously. The idea is
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to generate a sequence of points that is supposed to converge to a solution of
the optimization problem Bauschke and Borwein (1996).

Results do not vary significantly with the number of stacks considered. For
the results proposed hereafter, the parameter m has been set to 25, which is
consistent with stationary applications. For readability reasons, points associ-
ated to the different strategies have been scattered around the corresponding
load value on the abscissa in Figure 2, which shows the distance of production
horizons obtained with the considered strategies to a theoretical upper bound.
Considering a constant demand σ and a set of fuel cell stacks, this upper bound,
denoted UB and defined in Equation (11), corresponds to the theoretical max-
imal time during which the demand can be reached. This upper bound being
never reachable, results are actually better than showed in the following figure.

UB =


m∑
j=1

0.6 · Pmaxj(0) · RUL(Pminj)

σ

 (11)

One can see in Figure 2 that the strategy performing successive convex pro-
jections allows to reach a mean relative horizon of around 39%. Resolution
methods based on the Mirror Prox and on the Adaptive Lasso give better re-
sults. They allow to reach respectively 64.3% and 65.7% of the upper bound
UB. These two latter algorithms allow to reach similar performances when con-
sidering the production horizon reached. However, they differentiate themselves
by the shape of the solutions and by their computation time. Figures 3 and 4
show schedules of three machines obtained respectively with the algorithm based
on the Mirror Prox and with the Adaptive Lasso. Evolution of each machine
contribution and of the associated maximal power output reachable, fmaxj , is
also shown in these figures. One can see in Figure 3 that the algorithm based
on the Mirror Prox defines a smooth use of machines, which complies with a
continuous use. In fact, once a machine has been started, it is used until its
end of life. The postponed start-up of some machines allows to reach better
production horizons than with the method based on successive projections.

The method using the Adaptive Lasso algorithm performs a better postpone-
ment of machines start-up by minimizing at each time the number of machines
used in parallel to reach the demand (see Figure 4). This allows to reach better
production horizons in most of the cases, but solutions does not always comply
with a continuous use of machines once they have been started up. This draw-
back apart, this resolution method gives globally the better solutions in terms of
production horizons reached and of computation time. It is indeed faster than
the Mirror Prox and gives solutions in less than 40 seconds1 for all the tested
scenarios.

5 Conclusion

A management of fuel cell systems has been proposed in a PHM framework.
Decision coming within the scope of Prognostic Decision Making has been ad-

1Simulations have been made using Matlab (Parameters: Processeur Intelr CoreTM i5-
3550 CPU@3.30GHz×4, 15.6 Gio, 64 bits)
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Figure 2: Distance to the upper bound UB of production horizons reached
with each convex resolution method – m = 25 machines

dressed considering longer timeframes than those proposed so far in the lit-
erature on fuel cells. The use of convex programming has been proposed to
cope with the scheduling problem of multi-stack fuel cell systems under ser-
vice constraint. A mathematical formulation of the problem has been proposed
as well as two different convex resolution methods performing a minimization
of the objective function under constraints. First one is based on the Mirror
Prox algorithm and second one on the Adaptive Lasso algorithm. All the fuel
cell properties are not observed by the solutions obtained with the proposed
approaches, but this first study is promising. It shows indeed that a global res-
olution on the scale of the whole production horizon can be used to define the
commitment of machines over time with the horizon maximization as objective.

As future work, enhancement of the considered mathematical formulation
will be addressed to suit the associated model to a realistic evolution over time
of fuel cell characteristics. The respect of a continuous use of fuel cells will also
be improved using a minimization of the `1 norm of the successive differences of
the components of the solution vector F . Consideration of such a norm could
allow to control the speed of the variation of each machine contribution and then
to obtain smoother contribution profiles. This will require a new determination
of parameters involved in the resolution methods depending on the importance
attached to the solution characteristics. Respect of a strict continuous use of
machines can indeed be contradictory with the objective of maximization of the
production horizon.
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