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Abstract
In the field of production scheduling, this paper adresses the problem of maximizing the production horizon of
fuel cell systems under service constraint. Convex optimization is used to define at each time the contribution
of each fuel cell to the global output so as to satisfy a power demand as long as possible. An algorithm based
on the Mirror-prox for Saddle Points method is proposed to cope with the assignment problem. Results based
on computational experiments assess the efficiency of this approach in comparison with an intuitive resolution
performing successive basic convex projections onto the sets of constraints associated to the optimization problem.
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1 Introduction and related work

Due to the decline of fossil fuel resources, the use of fuel cells appears to be of growing interest as a potential
alternative to conventional power systems. Fuel cells are expected to be used in stationary applications and in
transportation and portable power applications. Their durability are however not consistent with such application.
In fact, their lifetime reaches between 1500 and 3000 hours, whereas 5000 hours are required for transportation
applications and up to 100000 hours for stationary ones. An important challenge highlighted by Borup et al.
(2007) consists then in improving the performance, reliability and lifetime of fuel cells.

In the fuel cells systems considered in this paper, each fuel cell is supposed to be independent but the whole
system has to globally deliver a given power output based on a need of energy. This global output is determined
by the sum of each output of the fuel cells that are currently running. The scheduling of such systems is addressed,
with the objective to satisfy the power demand as long as possible. All the machines are not supposed to be in
use at any time because the target power output can be reached by using only a subset of the machines within
the platform or because some machines are not available. Machines are indeed assumed to suffer from wear and
tear. Their lifetime is then limited and maintenance is required. Many reasons justify to postpone maintenance
operations as late as possible and to maintain all the machines at the same time. Maintenance can for instance be
challenging and costly (Kovacs et al., 2011). Isolated or embedded equipment can also require to wait for the end
of a global task before performing maintenance (Balaban et al., 2011), for example in the aerospace, the railway
or the automobile domain. One challenging objective is then to maximize the production horizon of the set of
machines between two maintenance periods. This production horizon corresponds to the lifetime of the whole set
of machines. This global lifetime depends on each machine lifetime, but also on the schedule of the machines. A
fuel cell lifetime is indeed variable and dependent on its use (Borup et al., 2007).

Basically, the problem is to provide the power output value for each fuel cell as a function of time, on the basis
of a global power demand. This corresponds to the scheduling of heterogeneous parallel machines performing
independent and identical tasks, with the maximization of the production horizon as objective. A similar problem
has been addressed by Herr et al. (2014) considering machines able to provide a discrete number of power outputs.
Considered approach can not be applied to fuel cell systems. Power output provided by fuel cells can indeed vary
continuously and take any value within a given interval. Furthermore, due to the aging, each maximal power
output is supposed to be decreasing with time. A scheduling process taking into account these fuel cells specific
features has been proposed by Herr et al. (2015). The proposed resolution method makes use of many successive
sub-problem resolutions based on a mixed integer linear program. Solutions provided by each linear program are
optimal but global schedules obtained with the succession of many linear programs are not necessarily optimal.
This approach is moreover limited to systems of reasonable size. In order to overcome these two limitations,
we propose in this paper to change totally the paradigm of the resolution and to build the solutions globally on
the whole production horizon. Contribution of each fuel cell during its lifetime is considered as a whole and
determined through convex optimization, whose interest is to allow the solving of big optimization problems in
limited time.
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2 Problem statement and mathematical model

The application addressed in this paper is based on a parallel fuel cells system, in which each fuel cell is sup-
posed to be able to deliver power outputs Pj that can vary continuously within a given power output range
[Pminj ;Pmaxj ]. For each machine Mj (1 6 j 6 m), the minimal power output Pminj is supposed to be
strictly greater than zero and constant over time. The maximal power output Pmaxj decreases with time when
the machine Mj is used. The range of available power outputs depends then on the time t: for each machine.

Let fj(t) (1 6 j 6 m, 0 6 t 6 T ) be the vector defining the evolution over time of the power output delivered
by the machine Mj , with T the length of the decision horizon. Contributions of all the machines are gathered
together in a vector F ∈ Rm(T+1) such that: F = [f1(0), . . . , f1(T ), . . . , fj(t), . . . fm(0), . . . , fm(T )].

The general idea is to minimize a convex function subject to a set of constraints. The objective function aims
at ensuring that the power demand is reached. At each time t (0 6 t 6 T ), it is about minimizing the difference
between the global power output delivered by the set of machines and the demand σ(t). This is expressed by
Equation (1).

min σ(t)−
m∑
j=1

fj(t) ∀ 0 6 t 6 T (1)

Constraints on each function fj relate to the definition domain of each contribution and to the limited avail-
ability of machines. At each time t, each machine contribution is either equal to zero or constrained between two
bounds (see Equation (2)). fj(t) = 0 means that the machine Mj is not used at time t.

fj(t) = 0 or fminj(t) 6 fj(t) 6 fmaxj(t) ∀ 1 6 j 6 m, ∀ 0 6 t 6 T (2)

Each contribution fj is constrained by the maximal power output decrease of the associated machine Mj ,
which expresses its limited availability. Evolution over time of this maximal power output, fmaxj(t), is a function
of the use of machine Mj , fj(t). Indeed, fmaxj(t) evolves only if Mj is used, that is, if fj(t) > 0. A first
formulation is proposed in Equation (3), with aj the speed associated to the maximal power output decrease.
Evolution of the available power outputs range following these equations is depicted in Figure 1.

fmaxj(t) =
{

fmaxj(t− 1) + aj if fj(t) > 0 ;
fmaxj(t− 1) if fj(t) = 0

∀ 1 6 j 6 m, ∀ 1 6 t 6 T (3)
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Figure 1: Simplified evolution of fuel cells characteristics

Equations (2) and (3) being not convex, they can not be used as is within the proposed convex programming
paradigm. A second formulation of the constraints is proposed in set of equations (4), which details the mathe-
matical program associated to the optimization problem. This program does not respect the real evolution over
time of the maximal power output that can be delivered by machines (see Equations (2) and (3)), but presents the
advantages of being convex and thus consistent with the convex resolution methods proposed in next section.

min σ(t)−
m∑
j=1

fj(t) ∀ 0 6 t 6 T (4a)

s.t. fmaxj(t) 6 fmaxj(t− 1) + µ · aj · (fj(t− 1))υ ∀ 1 6 j 6 m, ∀ 1 6 t 6 T (4b)
(with µ and υ ∈ R∗+)

with 0 6 fj(t) 6 fmaxj(t) ∀ 1 6 j 6 m, ∀ 0 6 t 6 T (4c)



3 Resolution: a Mirror-Prox-based algorithm

The convex resolution method is based on the Mirror Prox algorithm proposed by Nemirovski (2004) as a variant
of the Mirror Descent. Both are based on the resolution of a primal-dual saddle point problem, which allows to
take constraints into account. The purpose is to minimize a smooth convex function under constraints. The Mirror
Descent algorithm makes use of a gradient descent to find the minimum of the considered function. A mirror
function allows to transition from the primal space, where all the constraints of the problem are defined, to the
dual space. The Mirror Prox method applies at each iteration two consecutive steps of Mirror Descent. A very
instructive description of the Mirror Prox algorithm has been proposed by Bubeck (2014).

The objective function taken into account is detailed in equation (5). This proposed formulation includes
directly the different constraints of the application. First part of the function, detailed in Equation (6), is aimed at
satisfying the demand σ(t) at each time t. Second one is used to control the evolution of each fmaxj as a function
of each associated contribution fj (see equation (7)). The mirror function considered in the Mirror Prox formula
is defined on Rm(T+1) by Equation (8).

φ(F, fmax, σ) = λdemhdem(F, σ) + λslopehslope(F, fmax) with λdem, λslope > 0 (5)

hdem(F, σ) =

T∑
t=0

1

T + 1
exp

(
− γ
( m∑
j=1

fj(t)− σ(t)
))

with γ > 0 (6)

hslope(F, fmax) =
T∑
t=1

m∑
j=1

exp

(
δ
(

fmaxj(t)− fmaxj(t− 1)− µ′aj(fj(t− 1))υ
′
))

(7)

with δ > 0, µ′ > 0, υ′ > 1

θ(F ) =

T∑
t=0

m∑
j=1

F ln(F ) (8)

4 Simulation results

Random problem configurations have been generated using a simulator and configured with many parameters
including the number of machines in the considered system, m, and intrinsic machines characteristics. The
power demand has been assumed to be constant during the whole scheduling horizon: σ(t) = σ. Without any
loss of generality, only one demand value has then been associated to each problem configuration, but many
demands corresponding to different configurations have been tested. Many loads α have been defined such that
σ = α·Pnomtot, with Pnomtot the nominal total power output reachable with the considered fuel cells system and
30% 6 α 6 90%. Pnomtot =

∑m
j=1 Pnomj , with Pnomj = 0.75 · Pmaxj(0) the power output recommended

by fuel cell manufacturers for a nominal use of fuel cells. In the following figure, results are represented as a
function of the load α.

Initial values of each solution vector F has first been set to zero: fj(t) = 0 ∀ 1 6 j 6 m, ∀ 0 6 t 6 T .
Quality of solutions from the point of view of the reached production horizon globally increases with the number
of iterations and stabilizes starting from a certain value. Several iterations of the associated process are then
performed to optimize each solution. The global process is stopped when the variation of the solution vector is
not significant anymore. Tuning of the different parameters involved in the resolution method allows to comply
with the considered model and to adapt the shape of each fmaxj . The resolution algorithm based on the Mirror
Prox formulation detailed previously is applied on overestimated horizons T , named decision horizons. The
production horizon of each solution, H , is simply the maximal time during which all the constraints are strictly
satisfied. In practice, the production horizon corresponds to the time during which the demand σ(t) is reached.

Efficiency of the proposed commitment strategy is assessed through a comparison with a very basic strategy
which performs successive convex projections onto each set of constraints defined previously. The idea is to
generate a sequence of points that is supposed to converge to a solution of the optimization problem (Bauschke
and Borwein, 1996).

Results do not vary significantly with the number of fuel cells considered. For the results proposed hereafter,
the parameterm has been set to 25, which is consistent with stationary applications. Figure 2 shows the distance of
production horizons obtained with the considered strategies to a theoretical upper bound. Considering a constant
demand σ and a set of fuel cells, this upper bound, denoted UB and defined in Equation (9), corresponds to the
theoretical maximal time during which the demand can be reached. RUL(Pminj) corresponds to the remaining
useful life of fuel cell Mj when it is used with its minimal power output Pminj . This upper bound being never
reachable, results are actually better than shown in the following figure. One can see in Figure 2 that the strategy



performing successive convex projections allows to reach a mean relative horizon of around 39%. Resolution
method based on the Mirror Prox gives better results. It allows to reach on average 64.3% of the upper bound UB.

UB =


m∑
j=1

0.6 · Pmaxj(0) · RUL(Pminj)

σ

 (9)
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Figure 2: Distance to the upper bound UB of production horizons reached with each convex resolution method
for different load demand values – m = 25 machines

5 Conclusion

A management of a set of fuel cells able to provide different power outputs has been proposed when the objective
is to maximize the production horizon, that is, the time during which a global power demand is reached. The
use of convex programming has been proposed to cope with the scheduling problem under service constraint.
A mathematical formulation of the problem has been defined as well as a convex resolution method performing
a minimization of the objective function under constraints, based on the Mirror Prox algorithm. All the fuel
cell properties are not observed by the solutions obtained with the proposed approaches, but this first study is
promising. It shows indeed that a global resolution on the scale of the whole production horizon can be used to
define the commitment of machines over time with the horizon maximization as objective.

As future work, enhancement of the considered mathematical formulation will be addressed to suit the asso-
ciated model to a realistic evolution over time of fuel cell characteristics.
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