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Abstract

In the �eld of production scheduling, this paper adresses the problem

of maximizing the production horizon of a set of independent parallel ma-

chines. Each machine is considered to be able to provide several through-

puts corresponding to di�erent operating conditions and associated to

di�erent lifetimes. Convex optimization is used to de�ne the contribution

of each machine to a global needed throughput. A Mirror Descent for

Saddle Points method is proposed to cope with the assignment problem.

The considered model and the resolution method are �rst detailed. Re-

sults based on computational experiments are then provided.

Keywords: Convex optimization l1 trend �ltering Production scheduling

Parallel machines

1 Introduction

The problem tackled in this paper concerns the scheduling of M heterogeneous
parallel machines Mm (1 ≤ m ≤ M), performing independent and identical
tasks. All the machines are supposed to be of similar type and independent.
A subset of machines has to be used in parallel to reach a given needed global
throughput σ(t). The total provided throughput corresponds to the sum of the
contributions of machines that are currently running. All the machines are not
supposed to be in use at any time because the target throughput can be reached
by using only a subset of the machines within the platform or because some
machines are not available. Machines are indeed assumed to su�er from wear and
tear. Their lifetime is then limited and maintenance is required. Many reasons
justify to postpone maintenance operations as late as possible and to maintain
all the machines at the same time. Maintenance can for instance be challenging
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and costly [10]. Isolated or embedded equipments can also require to wait for
the end of a global task before performing maintenance [1], for example in the
aerospace, the railway or the automobile domain. One challenging objective is
then to maximize the production horizon of the set of machines between two
maintenance periods. This production horizon corresponds to the lifetime of the
whole set of machines. This global lifetime depends itself on machines lifetimes,
but also on the decisions performed during the scheduling process. Each machine
lifetime is indeed assumed to be variable and dependent on its use. A machine
lifetime can be extended when the machine is used in less stressful operating
conditions than nominal ones. The provided throughput fm is then decreased,
but is available for a longer time (see Figure 1). Available throughputs and
their associated lifetime can be determined at each time in a Prognostics and
Health Management (PHM) context, in which, based on a machine monitoring,
a prognostics phase allows to estimate the Remaining Useful Life (RUL) of
machines [11], depending on their past and future usage.

f0,m

f1,m

f2,m 1
0
0
%

use

time
RUL0,m RUL1,m RUL2,m

reliability

End Of Life

Figure 1: Throughputs and associated Remaining Useful Lives (RUL) for a
machine with three di�erent operating conditions

It has been shown in [13], [6] and [7] that a platform useful life can be
extended by managing the usage of machines thanks to the knowledge of each
machine remaining useful life. In these studies, machines throughputs have
been considered to be in a discrete domain. Some complexity results have
been proposed in [7] for di�erent classes of the decision problem. The problem
can be solved in polynomial time under some restrictive assumptions, while
it turns out to be NP-complete in the general case. An optimal formulation
through an Integer Linear Program has been detailed in [13]. As the decision
problem has been proven to be NP-complete, optimal solutions can be found in
limited time only for small size instances considering a very limited number of
machines, very few throughput values and short production horizons. For larger
problems, many polynomial heuristics have been provided in [6] and [7] to cope
with the problem of maximizing a platform useful life under service constraint.
E�ciency of these heuristics have been assessed through exhaustive simulations,
but results remain suboptimal.

The study proposed here makes use of convex programming to obtain opti-
mal solutions for large instances of a similar decision problem. The objective
remains the same, but the model considered for machines is more complex. Each
machine Mm is supposed to be able to provide a throughput fm that can vary
continuously and take any value within a given interval [fmin,m; fmax,m] (see
Figure 2). The maximal throughput is more e�cient in terms of output, but is
associated to a minimal lifetime. This maximal throughput is furthermore sup-
posed to be decreasing with time. A lower throughput is less e�cient, but allows
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to reach a longer operational time. Considering discretized time, the problem
consists then in selecting, for each period of time t, a subset of machines to be
used and an associated throughput fm for each of them, with the maximization
of the production horizon as objective. Such a model can be applied to fuel
cells, which use appears to be of growing interest for power generation [8]. This
technology o�ers indeed a potential alternative to conventional power systems.
Several applications can be found in the literature, as the supply of energy to
telecommunication stations [15] or to electric vehicles [14, 16]. Regarding this
application, a continuous use of machine will be observed during the schedule.
Change of throughput will still be authorized, but the number of scheduled
shutdowns will be minimized for each machine. Starting and stopping a fuel
cell can indeed induce considerable damage [2].

fm

time

fmax,m(0)

100%

fnom,m 70%

RUL(fnom,m)

20%

fmax,m(t) = amt+ fmax,m(0)

fmax,m(0)

fmin,m 10%

RUL(fmin,m)

Figure 2: Model considered for the machine throughputs and their associated
Remaining Useful Lives (RUL)

In the proposed approach, we look for solutions with small variations satis-
fying a set of natural constraints on the individual throughput of each machine.
For a machine Mm, m = 1, . . . ,M , the throughput is decomposed into two
components, a �rst one being assumed to be piecewise constant with rare jumps
and a second one assumed to be piecewise a�ne with small slope and rare
slope changes inside the makespan. In order to solve this type of problems in
the framework of convex optimization, we introduce a penalized optimization
problem which incoporates `1 and `∞ norms of the various quantities described
above, leading to solutions with sparse �rst derivative for the �rst component
and sparse second derivative for the second, while uniformly controlling the
slopes. This nonsmooth penalized approach is the subject of extensive research
in the machine learning, computational statistics and signal processing commu-
nities. The `1 penalization approach was recently advertized for the solution of
the sparsest solution of an under-dertermined system of linear equations [5] and
for the piecewise a�ne approximation [9]. These ideas have lead to very impor-
tant discoveries in the �elds of mathematics and computer science in relation
to the frontier between P and NP (see [4] and references therein). We exploit
this set of tools for our relaxation of the scheduling problem.

The organization of the paper is as follows: a �rst approach for a similar
scheduling problem is �rst proposed in Section 2. The problem tackled in this
article is then formulated as the solution of a convex program in Section 3.
The resolution method is detailed in Section 4 and results based on computa-
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tional experiments are provided in Section 4.5. The work is �nally concluded in
Section 5.

2 An integer programming model

In this section, we propose a �rst approach for the scheduling problem with
an exact resolution method, based on an Integer Linear Program (ILP). This
formulation was proposed in [13] for machines which can be used with n running
pro�les de�ned in a discrete throughput domain (see Figure 1).

2.1 Decision problem

The considered decision problem can be described as follows: does exist a
schedule to achieve the given service σ during a given number of time peri-
ods T , considering the current health state of all the machines, i.e., the value of
{RULi,m s.t. 0 ≤ i ≤ n− 1 and 1 ≤ m ≤ M}? For this �rst problem, denoted
DPT , Nicod et al. [13] have proposed an Integer Linear Program (ILP (DPT ))
which we describe below.

2.1.1 Variables

Let M be the number of machines and T the horizon. We assume that at time
t ∈ {1, . . . , T}, each machine Mm may be running with n di�erent running
pro�les associated to throughput levels, denoted by ρi,m. Let ai,m,t, 0 ≤ i ≤
n− 1, 1 ≤ m ≤M and 0 ≤ t ≤ T , be the variables of the decision problem. For
each (i,m, t), ai,m,t is de�ned as a binary variable:

ai,m,t =


1 if equipment m is used with the pro�le i during the period t

0 otherwise.

Using these variables involves that machines are supposed to be able to jump
from any throughput value to any other at each period. Some smoothing can
be desirable and will be taken into account in our new proposal described in the
next section.

2.1.2 Constraints

The constraints of the decision problem DPT should expressed �rst the pro-
duction throughput required, the limitation of the useful life and the possible
control pro�le for machines.

• The �rst set of constraints concerns the production throughput. At least
the required service σ should be reached for each time period. This can
be expressed by the following inequalities:

∀t ∈ {0, . . . , T}
M∑

m=1

n−1∑
i=0

ai,m,t · ρi,m ≥ σ (1)
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• The second set of constraints requires that if a machine is used for a given
period, then it runs with only one pro�le ρi,m:

n−1∑
i=0

ai,m,t ≤ 1, m = 1, . . . ,M and t = 0, . . . , T. (2)

• Finally, the last set of constraints is due to the remaining useful life for
each machine. We can consider that during a given period t, if a ma-
chine with index m is used with the running pro�le ρi,m, then it cuts the
remaining useful life by δT /RULi,m, where δT is the time length of one
period. Consequently, due to the value of the remaining useful life for ma-
chine Mm, the following inequalities expressed that each machine could
not be used more than its remaining useful life:

n−1∑
i=0

∑T
t=1 ai,m,t × δT
RULi,m

≤ 1, m = 1, . . . ,M. (3)

2.2 Associated optimization problem

The previous described Integer Linear Program, denoted ILP (ρ,M, T ) allows
without any objective function to answer the question: does exist a con�guration
of all the machines such that the required throughput σ could be reached during
at least T periods?

As presented earlier, we propose to solve the problem where the set of ma-
chines is able to produce the throughput demand σ as long as possible. Besides
the previous model can compute a solution to reach a demand σ, it is not su�-
cient since it is designed for a given number of periods T . Nevertheless it can be
useful to determine the greatest number of periods during which a given set of
machines is able to produce the given throughput σ. First, one can determine
two bounds of this number. The �rst one is an upper bound Tmax:

Tmax =

⌊∑M
m=1 maxi=0,...,n−1 (ρi,m × RULi,m)

σ

⌋
(4)

This equation means that if all the machines are used with their better yield
(the running pro�le that provides the greatest production during the whole
remaining useful life) and the global production demand σ is constant in time,
then Tmax is the longest duration for which the throughput σ can be reached.
A lower bound Tmin can also be computed using a heuristics algorithm. Then,
the worst lower bound will be 0. If a heuristics can provide a solution, the latter
could be considered as a better lower bound. Since one can compute these
two bounds, Tmax and Tmin, �nding the maximum number of periods that
can be reached for a given throughput demand σ and a given set of machines
can be done using a dichotomy search approach. This approach is detailed in
algorithm 1.

2.3 Drawbacks of this combinatorial approach

The combinatorial optimization approach described in this section can be solved
for small instances with e.g. standard software for integer linear programs. How-
ever, in many applications, one is interested in dealing with problems where the
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Algorithm 1: Dichotomy search procedure for �nding the maximum num-
ber of periods

Remark: for this algorithm, we call ILP (ρ,M, T ) the integer linear program
described in section 2 and LP (ρ,M, T ) the rational relaxation of ILP (ρ,M, T )
Tmin ← lower bound

Tmax ← upper bound

while Tmax − Tmin > 0 do

T ← (Tmin + Tmax)/2
if LP (ρ,M, T ) has a solution then

if ILP (ρ,M, T ) has at least one solution then

Tmin ← T
else

Tmax ← T

else

Tmax ← T

return T

horizon and/or the number of machines may be quite large. In such instances,
the Integer Linear Programming approach may be intractable and one may have
to resort to heuristics or relaxations. In the next section, we present a convex
programming approach based on sparsity promoting penalization functionals for
a related scheduling problem. The main advantage of the convex programming
approach is that it can be solved in polynomial computational time and thus,
can be added various constraints that could have been yet less tractable via the
ILP formulation.

3 Formulating the problem as the solution of a

convex program

In this section, we introduce a new formulation of the scheduling problem leading
to a convex programming problem. The new formulation may not be considered
as a relaxation of the approach described in the last section, but is an example of
how one may address practical but usually intractable problems more e�ciently
by completely changing our paradigm.

The scheduling problem and the considered objective remain the same, but
the model taken into account for machines is di�erent. While running pro-
�les were de�ned in a discrete throughput domain in the previous detailed ap-
proach (see Section 2), machines are now supposed to be able to provide a
throughput fm that can vary continuously and take any value within a given
interval [fmin,m; fmax,m] (see Figure 2).

3.1 Model

We consider the problem of scheduling a set of M machines to produce enough
energy to satisfy a given demand σ(t) which evolves over time. For the machine
with index m, we de�ne a function fm(t), t = 0, . . . , T , which is the throughput
that the mth machine contributes. The relationship with the combinatorial
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approach of the previous section is straightforward: fm(t) =
∑n−1

i=0 ai,m,tρi,m.
Our main constraint is that

M∑
m=1

fm(t) ≥ σ(t) for all t over the time span {0, . . . , T} (5)

Let us assume that each fm(t), m = 1, . . . ,M , can be decomposed as follows:

fm(t) = f1,m(t) + f2,m(t) (6)

where f1,m(t) is piecewise constant and f2,m(t) is piecewise linear. Each time
where f2,m(t) changes its slope will be called a breackpoint. Each function fc,m
satis�es

fc,m(t) ≥ 0 for c ∈ {1, 2} and for all t ∈ {0, . . . , T} (7)

For each machine Mm, we will also impose the following upper bound:

fm(t) ≤ fmax,m(t) for all m = 1, . . . ,M and for all t = 0, . . . , T . (8)

This upper bound corresponds to a maximal throughput, which typically de-
clines gradually during the use of a machine Mm.

A certain consumption rate constraint is set for each machine Mm m =
1, . . . ,M and may be written as:

T∑
t=0

Φ(fm(t)) ≤ 1 (9)

with Φ a convex function. These consumption constraints express the limited
lifetime of each machine.

3.2 Main idea

Our goal is to �nd the functions fc,m, c = 1, 2 and m = 1, . . . ,M using convex
optimization, so that the solution can be found in polynomial time. The main
idea is to use an approach which was recently promoted in signal processing
and computational statistics. In [9], Kim, Koh, Boyd and Gorinevsky showed
the practical interest of minimizing the `1-norm for obtaining sparsity in the
context of function modeling over time. More precisely, they showed through
multiple experiments that minimizing the `1-norm of the �nite di�erences of a
vector leads, under very mild conditions, to a vector which is piecewise constant.
The same idea can be used to obtain polynomially shaped (of any order) vectors
which can be interpreted as the discretized version of a polynomial function of
time.

The main ingredient in our proposal is to model the functions fm by a
sum f1,m + f2,m of a piecewise constant function and a function which has
uniformly controlled slopes. We will impose that the number of jumps be small
and the slope of f1,m(t) be small too as well as the number of breakpoints. Let
∆ : RT+1 7→ RT denote the operator which takes the successive di�erences, i.e.

f =

 f(0)
...

f(T )

 ∆f =

 f(1)− f(0)
...

f(T )− f(T − 1)

 (10)
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Under the constraints, many throughputs may be feasible for a given horizon
T . Optimizing the horizon may provide solutions which have unreasonable
shapes with respect to the physical properties of the machines.

In particular,

• All the machines may not be involved at any time. Thus, we expect to
see working windows occuring in the solution. This is modelled by the
sparsity of fm and the �rst derivative of f1,m ;

• The solution may be very oscillatory. In order to overcome such bad fea-
ture, one may allow small variations of the individual throughputs which
can be modelled by imposing that f2,m is piecewise polynomial with em
sparse slope changes and small absolute slope.

These problems could be addressed by imposing the sparsity of the various
components to be less than prescribed by certain physical constraints. A bad
news is that sparsity is not convex and leads to NP-hard feasibility problems.

A simple solution can be incorporated into the approach. The idea is to re-
place sparsity by a convex surrogate. There is a �eld where such surrogates have
proved very e�cient: signal processing [5], [9]. In most cases, the corresponding
relaxation sums up to minimize the `1-norm of the quantity whose sparsity is
to be controlled.

Using the `1 penalization approach, one obtains that our problem can be
addressed via optimizing the composite function:

φ(F ) =

M∑
m=1

λ1,m‖∆f1,m‖1 + λ2,m‖∆f2,m‖∞ + λ2′,m‖∆2f2,m‖1 (11)

subject to the constraints (5), (6), (7), (8) and (9). Each term in this objective
function is a penalty for imposing a certain sparsity on ∆fc,m or ∆2fc,m, c ∈
{1, 2}, m = 1, . . . ,M . ‖∆f1,m‖1 is used to minimize the discontinuity of the
�nal solution, ‖∆f2,m‖∞ minimizes the slopes of the linear parts of fm and
‖∆2f2,m‖1 minimizes the number of slope changes.

The main interest in using such penalties is that they are well structured
convex and are thus amenable to e�cient methods of convex optimization.

In order to enforce that the fc,m equal zero more often than would lead the
previous objective, one can propose the following objective function

F(F ) = ‖F‖1 +

M∑
m=1

λ1,m‖∆f1,m‖1 + λ2,m‖∆f2,m‖∞ + λ2′,m‖∆2f2,m‖1.(12)
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4 Resolution method: a saddle point mirror de-

scent algorithm

4.1 Intermediate de�nitions

Consider �rst the entropy function h(x) =
d∑

i=1

xi ln(xi). We have then:

∇h(x) =

ln(x1) + 1
...

ln(xd) + 1

 (13)

Let us then introduce the following functions which adequately describe our
constraints:

ψ0 : R2M(T+1) 7→ RT+1 : ψ0(F ) =

M∑
m=1

fm − σ

ψc,m : R2M(T+1) 7→ RT+1 : ψc,m(F ) = fc,m, c ∈ {1, 2}, m = 1, . . . ,M

ψ3,m : R2M(T+1) 7→ RT+1 : ψ3,m(F ) = fmax,m − fm

ψ4,m : R2M(T+1) 7→ RM : ψ4,m(F ) = 1−
T∑

t=0

Φ(fm(t)), m = 1, . . . ,M

with

F t =
[
f1,1(0), f2,1(0), f1,2(0), f2,2(0), . . . , f1,M (0), f2,M (0), . . . , f1,1(T ), f2,1(T ), . . . , f1,M (T ), f2,M (T )

]
.

4.2 Mirror Descent for Saddle Points

A mirror descent method is proposed to cope with the problem of minimizing
the objective function proposed in Equation (12).

The mirror descent algorithm is a method �rst proposed by Nemirovskii and
Yudin [12] for convex programming. It has been extensively studied recently and
several relationships have been discovered between the mirror descent scheme
and Bregman-proximal methods. We refer the interested reader to [3] for a
detailed and very pedagogical description of mirror descent algorithms.

4.2.1 Main ideas

Assume for a moment that F is di�erentiable. The idea behind mirror descent
algorithms is very simple.

The problem can be described as follows:

argmin
F∈R2M(T+1)

(‖F‖1 + φ(F )) (14)

such that ψ0(F ) ≥ 0 and ψK,m(F ) ≥ 0, ∀K = 1, . . . , 4 and ∀m = 1, . . . ,M . Let
us denote the constraint set by C. The standard projected gradient algorithm
is of the form

F (l+1) = PC

(
F (l) − λ(l) ∇F(F (l))

)
(15)
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where PC is the projection operator onto the set C.
A mirror function is a convex function whose gradient is one-to-one and has

a de�ning set which may conveniently incorporate simple constraints. Let θ be
such a function. Then, the mirror descent iteration is given by

∇θ(G(l+1)) = ∇θ(F (l))− λ(l) ∇F(F (l)),

F (l+1) = PC(G
(l+1)).

As a very useful example, one might consider θ, a mirror map on R2M(T+1),
de�ned by:

θ(F ) =

T∑
t=0

M∑
m=1

2∑
c=1

F (c,m, t) ln(F (c,m, t)). (16)

In accordance with the gradient of the entropy function de�ned in Equa-
tion (13), we have then:

∇θ(F ) = ln(F ) + 1 (17)

4.2.2 The saddle point mirror descent algorithm

The main di�culty in the mirror descent scheme is that projecting onto the
constraint set C might not be so easy. In order to overcome this problem,
one possibility is to consider an algorithm which solves the primal-dual saddle
point problem for the Lagrange function. For this purpose, de�ne the Lagrange
function as

L(F, u) = ‖F‖1 + φ(F ) + 〈u0, ψ0(F )〉+

M∑
m=1

(〈u3,m, ψ3,m(F )〉+ 〈u4,m, ψ4,m(F )〉)(18)

and �nd a saddle point of this function under the constraint that u ≤ 0. One
can propose the following mirror descent scheme :

∇θa,b(F (l+1), u(l+1)) = ∇θa,b(F (l), u(l))− η
([

∇FL(F (l), u(l))
−∇uL(F (l), u(l))

])
(19)

where

θa,b(F, u) = a

T∑
t=0

M∑
m=1

2∑
c=1

F (c,m, t) ln(F (c,m, t))

+b

(
M∑

m=1

T∑
t=0

u0,m,t ln(u0,t) + (u3,m,t) ln(u3,m,t) +

M∑
m=1

u4,m ln(u4,m)

)
(20)

4.3 Theoretical garantees

The saddle point mirror descent method has been analyzed by various authors.
One interesting result is presented in [3, Theorem 5.1].
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Theorem 1. Assume that L is Lipschitz in both variables with constant LF

in the �rst variable and constant Lu in the second variable. Assume that there
exist some positive constants RF and Ru such that θa,b satis�es√

sup
u

sup
F
θa,b(F, u)− inf

F
θa,b(F, u) ≤ RF (21)√

sup
F

sup
u
θa,b(F, u)− inf

u
θa,b(F, u) ≤ Ru. (22)

Take a = LF /RF and b = Lu/Ru and η =
√

2/t. Then

inf
F
L

(
F,

1

t

t∑
l=1

u(l)

)
− sup

u
L

(
1

t

t∑
l=1

F (l), u

)
≤ (RFLF +RuLu)

√
2

t
.

4.4 Maximizing the horizon

The proposed algorithm allows to search for a solution F with a �xed horizon.
Since the main objective is to maximize the production horizon, a dichotomic
search approach is used to determine the maximal horizon for which a solution
exists.

4.5 Some preliminary simulation results

We ran the algorithm on simple toy instances with M = 5 and T = 100. An
example is plotted in Figure 3 below. In accordance with the model for the
machines taken into account in this contribution and illustrated in Figure 2, the
function Φ used in the consumption rate constrains (see Equation 9) has been
de�ned as follows:

Φ(fm(t)) =
am

f1,m(t) + f2,m(t)− fmax,m
for all m = 1, . . . ,M and for all t = 0, . . . , T

(23)
with am the slope of the decreasing function associated to the maximal through-
put for machine with index m.

One may easily notice the shapes obtained for the solution achieve the desired
goal since the �rst component has a sparse gradient and the second component
has a sparse second order discrete derivative. As such, the �rst component is
piecewise constant with rare jumps and the second component is piecewise a�ne
with rare slope changes. Tuning the relaxation parameters λ1,m, λ2,m and λ2′ ,
m = 1, . . . ,M can be easily done by simply choosing them independent of m
and trying several values until an appropriate shape to the taste of the user is
obtained. One might also address this issue using automatic selection methods.

5 Conclusion and future work

In this paper, we proposed a convex optimization method to solve the problem
of scheduling M heterogeneous parallel machines Mm (1 ≤ m ≤ M), perform-
ing independent and identical tasks. We introduced a simple mirror descent
algorithm to �nd the optimal solution.
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Figure 3: Solutions on a toy example with M = 5 and T = 100.

Future further work is needed to accelerate the optimization method. One
simple approach is to use the variational representation of the various norms
involved in the objective function to perform a smarter descent scheme. A
relevant approach could be to use a saddle point mirror prox scheme such as
introduced by Nemirovskii [3, Section 5.2.3]. Such a method allows to obtain
a convergence speed of the order of 1/t instead of 1/

√
t for the simpler mirror

descent proposed here. Using such an algorithm, we will be able to perform
large scale simulations and provide extensive Monte Carlo simulations which
will prove the model to be useful far beyond the framework previously handled
using combinatorial optimization.

6 Appendix: computational details

The gradient of F (l+1) will be considered to optimize the function de�ned in
Equation 12. Each term will then be considered successively.

In what follow, the subdi�erential of a convex function φ at F will be denoted
by ∂φ(F ). We will also denote by ∇φ(F ) any subgradient of φ at F . Of course,
when φ is di�erentiable, ∇φ(F ) is the usual gradient of φ at F .
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First, notice that the sub-gradients of θa,b are given by the following formulae

∇θa,b(F (l), u) = a (ln(F (l)) + 1)

∇θa,b(F, u(l)0 ) = −b (ln(−u(l)0 )− 1)

∇θa,b(F, u(l)3,m) = −b (ln(−u(l)3,m)− 1)

∇θa,b(F, u(l)4,m) = −b (ln(−u(l)4,m)− 1).

On the other hand, the gradients of the Lagrange function are given by

∇FL(F, u) = ∇F ‖F‖1 +

M∑
m=1

(
λ1,m∇F ‖∆f1,m‖1 + λ2,m∇F ‖∆f2,m‖∞ + λ2′,m∇F ‖∆2f2,m‖1

)
+

T∑
t=0

u0,t∇Fψ0,t(F ) +

M∑
m=1

T∑
t=0

u3,m,t∇Fψ3,m,t(F ) +

M∑
m=1

u4,m∇Fψ4,m(F )

and

∇uL(F, u0) =

M∑
m=1

fm − σ

∇uL(F, u3,m) = fmax,m − fm

∇uL(F, u4,m) = 1−
T∑

t=0

Φ(fm(t))

Finally, iteration l is completed once we take the inverse of the mirror map:

(F (l+1), u(l+1)) = exp
(
D−1a,b ∇θa,b(F

(l+1), u(l+1))− 1
)
, (24)

where

Da,b =

[
D(a · ec×M×(T+1)) 0

0 B(b · eM×(T+1)+M )

]
(25)

where for all d, ed denotes the vector of all ones in Rd.

6.1 A subgradient of ‖F‖1
Recall that

‖F‖1 =
∥∥∥[f1,1, f2,1, . . . , f1,M , f2,M ]t∥∥∥

1
=

∑
c=1,2

m=1,...,M

|fc,m| (26)

One possible gradient for ‖F‖1 is de�ned by the following function:

x 7→ sign(x) =


−1 if x < 0

0 if x = 0

1 if x > 0.

(27)

Then,

∇fc,m‖F‖1 =
[
sign(f1,1), sign(f2,1), . . . , sign(f1,M ), sign(f2,M )

]t
. (28)
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6.2 A subgradient of ‖∆f1,m‖1
∆tsign(∆f1,m) is a subgradient in f1,m, with ∆ the function previously de�ned
in Equation 10.

Since

∆ sign(∆f1,m) =


−1 1 0 . . . 0
0 −1 1 0 . . . 0
0 . . . . . . 0
...

...
...

0 . . . 0 −1 1

 ∈ R(T+1)×T , (29)

we have

∇fc,m‖∆f1,m‖1 = ∆tsign(∆f1,m) =



−1 0 0 . . . 0
1 −1 0 . . . 0
0 1 −1 0 . . . 0
...

...
...

0 . . . 0 1 −1
0 . . . 0 1


∈ RT×(T+1).

(30)

6.3 A subgradient of ‖∆f2,m‖∞
Using the variational formulation of the `∞-norm and the chain rule of subdif-
ferential calculus, we have

∇fc,m‖∆f2,m‖∞ = ∆ty∗(∆f2,m), (31)

with

y∗(∆f2,m) =
[
0, 0, . . . , 0, sign((∆f2,m)max), 0, . . . , 0

]t
. (32)

6.4 A subgradient of ‖∆2f2,m‖1
Using the variational formulation of the `1 norm, we easily obtain

∇fc,m‖∆f2,m‖1 = ∆′t∆tsign(∆′∆f2,m), with ∆′ ∈ RT×(T−1) (33)

6.5 A subgradient of ‖F‖1 + φ(F )

Let G(F ) be a part of the objective function and de�ned by F 7→ ‖F‖1 +φ(F ).
Considering the previous developments, we have:

G(F ) =



sign(f1,1) +λ1,1∆tsign(∆f1,1)
sign(f2,1) +λ2,1∆ty∗(∆f2,1) +λ2′,1∆t∆′tsign(∆′∆f2,1)
sign(f1,2) +λ1,2∆tsign(∆f1,2)
sign(f2,2) +λ2,2∆ty∗(∆f2,2) +λ2′,2∆t∆′tsign(∆′∆f2,2)

...
...

sign(f1,M ) +λ1,M∆tsign(∆f1,M )
sign(f2,M ) +λ2,M∆ty∗(∆f2,M ) +λ2′,M∆t∆′tsign(∆′∆f2,M )


∈ R2M(T+1)

(34)

14



6.6 Computation of (F (l+1), u(l+1))

We have now collected all the necessary information for providing an explicit
formula for the successive iterates. Indeed, we have:

(F (l+1), u(l+1)) = exp
(
D−1a,b ∇θa,b(F

(l+1), u(l+1))− 1
)
, (35)

where Da,b is given by (25).
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