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ABSTRACT
Programmable matter can be seen as a huge modular robot
in which each module can communicate to its connected
neighbors and work all together to achieve a common goal,
more likely changing the shape of the whole robot. However,
when the number of modules increases, the memory used in
each module to store the target shape or the computation
time to recreate this shape increases too. This article studies
different approaches to describe the shape of any object for
huge modular robots. The use of a good method for coding
scene is a critical aspect that can reduce the memory, the
time of transfer and the energy used in many distributed
algorithms like self-reconfiguration. This paper proposes a
method called Constructive Solid Geometry for Programma-
ble Matter (CSG4PM), a compact description of an object
and all the associated algorithms pre-processing and run-
time. CSG4PM is compared to three existing solutions to
describe a scene.

Keywords
programmable matter, large scale distributed robots, dis-
tributed algorithm, self-reconfiguration.

1. INTRODUCTION
An autonomous modular robot composes a distributed sys-
tem in which micro-robots can communicate with their neigh-
bors and work in a collaborative way to achieve common
goals. The expected properties of modular robots [1] are:
versatility, used to fulfill different tasks, robustness as a
faulty module can be discarded, and affordable price as the
mass production of identical modules is likely to reduce the
overall cost.

Programmable matter is an interesting concept where com-
puting entities exist to make decisions but also as a real
physical instance. S.C. Goldstein and al. in [2] define Pro-
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grammable Matter as a set of millions of millimeter robots
with limited computer resources that can be reconfigured to
another shape to create a synthetic reality.

This work is part of the Claytronics project [3] and uses
the millimeter scale robots called Catoms (for Claytronics
Atoms). These quasi-spherical robots can communicate with
up to 12 neighbors, can move and change their color. The
geometry of these robots and their abilities to communicate
in a Face Centered Cubic Lattice are described in [4].

The most interesting capability of programmable matter is
the ability to move each module in order to change the global
shape or morphology of the whole, what is called self-recon-
figuration. As a first step, the goal shape has to be trans-
mitted to the system. There are actually 3 main solutions
to deal with reconfiguration scenes on modular robots:

• Representation without coordinates [5]. This method
does not need data transfer but can only describe some
simple geometrical shapes.

• Shared model using a distributed shared memory sys-
tem [6]. It can drastically reduce the size of data mem-
orized in each module but needs communications.

• Compact representation is the solution we explore here.
In a general way, the scene is first encoded and sent to
a master module. Then, it is sent to all other modules
of the network. The description is finally processed
in each module in order to determine if the module is
correctly placed or not. Compact representations are
important in order to optimize memory space, reduce
network bandwidth and to allow a faster broadcast of
the scene.

Each robot is independent and must decide where and when
to move using the knowledge of local neighborhood and dis-
tributed data only. They have the information of their posi-
tion in the map, the current state of the configuration around
their position and the final goal state.

For each step of a self-reconfiguration algorithm, each mod-
ule needs to know if it is already in the goal map, or geo-
metrical information that allows to know positions it must
reach in order to reduce the global distance of the current
configuration to the final one.

In this paper, we present Constructive Solid Geometry for
Programmable Matter (CSG4PM) which is based on a CSG



Figure 1: Huge set of 429,921 micro-robots defining a Toy
Car.

representation and provides all the algorithms needed for
accessing the data. For example, the Toy Car, constructed
using CSG4PM and presented Figure 1 is defined by 427,921
3D Catoms.

2. RELATED WORKS
Our work falls into the field of self-reconfiguration of 3D
lattice-based modular robots. Even though we focus on op-
timizing the scene description, lessons from previous work
on self-reconfiguration can be learned.

In [7], Butler et al. published related work on mapping a
configuration of modular robots. In their work, they use for
the representation of the final configuration a binary matrix,
with 0 corresponding to empty spaces and 1 to occupied
spaces. It is a well-known way to represent the goal config-
uration, and, furthermore, it is easy to implement without
any loss of details. In addition, a simple operation could tell
when the module is inside the model. But, this represen-
tation depends on the number of modules and it will grow
linearly with the size of the robots giving some restrictions
on scalability and adaptability on object resize.

In [8], Park et al. propose an automatic configuration recog-
nition in a centralized organization with chain-based mod-
ular robots, based in a graph where the nodes of the graph
are the modules of the robots and the edges represent the
connection between modules.

In the field of computer graphics, many solutions are pro-
posed to describe 3D objects. Two different models are an-
alyzed to be part of description scene for modular robots,
Triangle Mesh and Constructive Solid Geometry.

Triangle Mesh is a very common representation of 3D ob-
jects, in literature we find it under the name of b-rep model
(boundary representation) [9]. It consists in approximating
the shape of an object by a set of small surfaces that de-
fine the border of the object, and then, interior and exterior
spaces. The advantage of this description method is that we
just have to describe a 2D surface in order to construct a
3D object, and it therefore needs less memory.

A wide number of 3D image software use Triangle Mesh
despite the fact that this solution does not guarantee the
final object to be a solid. The representation of the surface

Figure 2: Mug CSG Tree.

is largely used to render objects on a screen but it may not be
the best representation for our problem. Indeed, verifying if
a module position is inside an object is complex as an object
is described as a 2D surface.

An interesting idea was proposed by Stoy [10] et al. and
followed by Fitch et al. [11], to transform a CAD model, that
is a largely used 3D format in industry that includes Triangle
Mesh, into a set of overlapping bricks. It is therefore easier
for the modules to identify if their position is inside the
model. Each brick can be represented by two coordinates
which reduces the size of the final model. But, bricks does
not produce a high quality representation of the object and
to increase fidelity we have to work with smaller bricks which
can increase dramatically the size of the model.

Constructive Solid Geometry (CSG) [12] is a classical method
for describing scenes in image synthesis. It consists in defin-
ing a tree of objects that can be combined in order to model
the final scene. Leaves of the tree contain geometric models
and internal nodes are associated to geometrical transfor-
mations or combination operators. Geometrical transforma-
tions are useful to apply displacements, rotations or scales
in a sub scene, they are placed in unary internal node of the
tree. Three combination operators are usually used: union,
intersection and difference.

The union of many objects is the volume filled by at least one
of the objects, the intersection of many objects is defined by
the common volume of all objects, and the difference A−B
is the volume of A that is not in B. These n-ary operators
are detailed in Equation 1.

Union(B1, B2, ..., Bn) = B1 ∪B2 ∪ ... ∪Bn

Inter(B1, B2, ..., Bn) = B1 ∩B2 ∩ ... ∩Bn

Diff(B1, B2, ..., Bn) = B1 ∩ ¬ (B2 ∪ ... ∪Bn)
(1)

Figure 2 shows an example of CSG tree constructing a simple
“mug” scene, this example uses 2 different operators (union
and difference). Coding a scene using a CSG tree is very
compact, because it consists in defining the volume occu-
pied by the matter of the scene. Each object may be a sim-
ple geometric entity that can be described by some intrinsic
parameters and placed using a homogeneous transformation
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Figure 3: Example of traversing a CSG tree to determine if
the point C is inside the described object

matrix. For example, a sphere is just defined by its radius,
a cylinder needs a radius and a height. However, describ-
ing a complex scene using CSG tree becomes harder when
it contains small details. In our case, the smallest size of a
detail is the size of a module.

3. THE “CONSTRUCTIVE SOLID GEOM-
ETRY FOR PROGRAMMABLE MATTER”
METHOD

In order to build the goal configuration CG, using a self-
reconfiguration algorithm, each module of the set must know
if it is already inside this goal configuration or not. The ob-
jective of Constructive Solid Geometry for Programmable
Matter (CSG4PM) is to provide the best tradeoff between
fidelity to the original shape, memory footprint and decod-
ing processing time to fulfill this task. This a three-step
process as it can be seen in Figure 4. The first step re-
quires central computation to encode a 3D object into a set
of modules. This implies a kind of discretization which will
imply a loss of fidelity. The size and the number of modules
are the two parameters that will influence the fidelity: the
smaller the size and the higher the number of modules, the
better the fidelity. But, the method chosen to represent the
goal configuration also matters and have an impact on the
fidelity.

In order to reduce memory used for the goal configuration
while keeping a high level of detail, we choose to encode it in
a vectorial compact format based on CSG Trees. Our CSG
Tree is composed of four distinct nodes: primitive shapes,
transformations, color and boolean operators.

• Primitive shapes are located on the leafs. Their param-
eters are the type of the shape (cube, sphere, cylinder,
torus, etc.) and some associated intrinsic metrics, for
example the ratio between small and large radius of
the torus, the diameter of a sphere, etc.

• Geometrical transformations are placed in inner nodes.
We consider translation, rotation, and scale transfor-
mations. Statistically in our test models, geometrical
transformations are more frequently used directly on

primitive shapes what lead us to make them accept
only one child to reduce the representation size. Geo-
metrical transformations are coded in a homogeneous
matrix M .

• Color operators are unary inner nodes. They give the
color of the subtree. The color of one node is given by
the lowest color node.

• In order to reduce the height of our CSG trees, boolean
operators are placed in inner nodes that can have 1 . . . n
children.

We propose to transmit CG model during the initial flood-
ing algorithm that sends relative position of every module
to the master module as shown in Figure 4. The flooding of
information in a set of connected modules consists in send-
ing step by step the data from the Master Module (MM)
to all other modules and then waiting for an acknowledg-
ment that every module has received the data. At the end
of the flooding, MM receives the last acknowledgment. For
positioning considerations, MM is empirically placed at the
origin, it sends a relative position to each of its direct neigh-
bors depending on the connector to which it is connected.
Then these neighbors send a relative position to its other
neighbors, and so on.

Considering a configuration coded by a CSG Tree, we de-
fine an algorithm that allows each module to solve in/out
problem like knowing if the cell C is inside the model or
not. The solution is obtained by a simple depth-first search
algorithm:

• Traversing down, transmitted data are C coordinates.

• When visiting a geometrical transformation node, co-
ordinates of C are converted into local coordinate of
the subtree: Csubtree = M−1C.

• When visiting a leaf node, simple geometrical calcu-
lation allows to defines if C is inside the geometrical
shape coded in the leaf. For example, a simple distance
calculation allows to know if C is in a sphere.

• During back tracking, the transmitted data is the boolean
value indicating if the subtree is inside or out of the
model. Arriving in a boolean operator node, the com-
bination rule of Equation 1 is applied once every sub-
tree has answered its intersection state Bi.

Figure 3 shows an example of crossing of a CSG Tree as-
sociating a rotated cylinder and a translated cube in order
to deduce if a cell placed in C is in or out of the model.
Blue arrows show cell coordinates transmitted when visiting
a node for the first time, and green arrows are associated to
boolean result (coding inside or not) after visiting a subtree.

In order to send CG to all modules, we have to encode the
tree structure into an array of bytes, send this array during
flooding process, then each module must be able to decode
the array of bytes to answer in/out problems. This array is
obtained by a simple pre-order walk of the tree, each kind of
node is coded in 1 byte followed by the intrinsics parameters
(4 bytes float for real values). For n-airy nodes a “end of
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Figure 4: Global model flow used for reconfiguration.

Figure 5: a) Initial configuration. b) Not well-placed modules are drawn in grey. c) After reconfiguration.

child code” (1 byte) is added in order to stop the crossing.
The decoding process is obtained by a simple read of the
array from the left to the right. This treatment is at least
executed once during the flooding algorithm after reception
of the map by each module, in order to know if the module
is already well-placed in the map.

Figure 5 shows a simple model defined by a simple CSG Tree
(detailed in Algorithm 1), the size of the array coding this
CSG Tree is 65 bytes only. The first image shows an initial
configuration (Figure 5.a) made of a block of 20 × 20 × 16
catoms. Second image (5.b) shows catoms after receiving
the map and evaluating locally if they are inside (black) or
outside (light gray) the model. And finally after reconfigu-
ration (Figure 5.c), i.e. displacement of light gray catoms of
the previous image to a cell placed inside the model. This
final object fills a larger volume than the initial one, because
previous not well placed modules have moved to enlarge the
parallelepipedic base and extend the cylindrical part to the
top.

Toy Car presented in Figure 1 is our high definition test
model. The associated CSG Tree is composed of 1757 nodes
including 628 primitive shapes in its leafs and with a depth
of 16. Using our coding method we obtain a 18757 bytes
long array.

4. EXPERIMENTS
We compare our CSG based model with three classical meth-
ods: Bitmap model, Mesh model and Stoy overlapping bricks

Algorithm 1 Mug CSG Example

1: Color(0, 0, 0)
2: Difference()
3: Union()
4: Cube([20, 20, 2.5]);
5: Translate([10, 10, 2.5])
6: Cylinder(20, 10);
7: Translate([10, 10, 2.5])
8: Cylinder(20, 5);

model. Bitmap model is the simplest solution consisting in
storing the configuration bounding box of cells in an array.
Each element of the array contains the color of the cell coded
in 3 bytes, considering that the (0,0,0) color is reserved to
code an empty cell. The advantage of this model is that it
makes easy to deduce if a module is inside CG or not. But it
implies to transmit a huge memory from the master module
to the others and do not allow to create objects with differ-
ent scale without regenerating a new bitmap description.

Mesh model consists in describing an object by its border
in the world coordinate system. It first describes a list of
all vertex coordinates and then a list of all faces specifying
vertices indices and face color. The complexity depends on
the precision of the mesh to approximate the shape of the
object. In this work we have to memorize 4 × 3 floats per
vertex, 4 × 3 integers plus 3 bytes for color per face. This
model implies a computational process in order to know if a
module is inside or outside the mesh.



Definition 1. A point is inside a closed object mesh if
each ray starting from this point intersects borders an odd
number of times.

According to Definition 1, to calculate if a module is inside
an object we define a ray from the center of the cell C,
going in a random direction. Then we count the number
of intersection between this ray and the list of faces of the
mesh. We conclude that the cell C is inside the object if we
obtain an odd number of intersections.

Experiments has been realized using our simulator, Visi-
bleSim [13, 14]. They aim to compare the four models of
coding in terms of memory, time of treatments and time of
transfer.

We use two very different objects for this experimentation.
The first one is a mug shape that admits low level of detail,
surfaces are smooth and of large size. The second one is
a toy car composed by complex elements with bumps and
holes, presenting high level of detail.

These CSG models have been converted into overlapping
bricks (with 3 different resolutions), triangle mesh and bitmap.
Overlapping bricks in high resolution in our tests are defined
with the smallest brick size having exactly the diameter of
a catom. The medium resolution is defined by one and half
catom diameter, and low resolution overlapping brick small-
est size is twice the diameter of a catom. Bricks are defined
by two vertices (using a float representations of 4 bytes per
real number) and a color (coded in 1 byte). In total each
brick uses 25 bytes to be stored.

4.1 Fidelity to the original format
The data structures used for comparisons are Bitmap, CSG,
Overlapping bricks and Triangle mesh. The bitmap model
is created according to the resolution of the lattice and CSG
is the reference model, they can be considered as perfect.
But triangle meshes approach curved surface by small planes
faces, that, indeed small, can produce loss of fidelity. The
smaller the faces are better is the quality, but higher is the
size of coding. Overlapping bricks can have a significant loss
of fidelity depending on the minimum brick size chosen.

Figure 6 shows the quality of models for several resolutions
and the two experimented objects.

We can see that low resolution brick can generate important
errors compared to CSG model and errors in Mesh model
may be neglected. We consider that these models are enough
similar to be used in the following experiments.

4.2 Comparison of code sizes
For bitmap model the code size S of 3 bytes for the colored
position depends directly on the size (Cn = n3) of the cubic
lattice: S = 3n3 bytes. In the case of the Mug Model, coded
with 61 bytes using CSG model, a cubic lattice C3 of n = 3
cells per edge needs S = 81 bytes, that is more than the
corresponding CSG code size. For the second test model
(the Toy Car, coded by 18, 757 bytes) a C19 cubic lattice
needs more memory to be coded by a bitmap.

CSG, Mesh and overlapping bricks methods are vectorial,
the size of the code is invariant. For overlapping bricks

Figure 6: Fidelity of the Toy Car structure using overlapping
bricks

Figure 7: Size of codes using different vectorial encoding for
2 different structures

method we produce three descriptions corresponding to dif-
ferent level of subdivisions (called High, Medium and Low).

Figure 7 shows that CSG model gives very small size of code
compared to other models. Comparing the small represen-
tation size with the fidelity proposed by the others data
structures, CSG shows great results.

In order to be able to compare the bitmap storage we evalu-
ate the memory used in each robot to represent the Toy car
model presented Figure 1. The lattice used is 145 × 229 ×
167 cells large, that represents 5, 545, 235 cells to memorize.
Then bitmap needs 15.8 Mo to memorize the model. It is
about 886 times more than the size of the code of the Toy
Car using our CSG4PM method.

4.3 Decoding process time
Vectorial models are interesting in terms of size of coded
data but they need a decoding process before using. This
process may be important in term of decompression time.
Figure 8 shows a comparison of average computation time
of decoding task for the two studied models.

We can observe that computation time with bitmap model is
a few nanoseconds, it simply consist in accessing to the cell
of an 3D array. But CSG model drawn in red (that has the
most compact encoding) gives a very good time of decoding
compared to Bricks and Mesh models. The complexity of
the decoding process is linear in the number of nodes in
the CSG Tree. In practice, the decoding time of CSG Tree



Figure 8: Time of decoding

may be neglected compared to communication time used
to exchange data between modules. Latencies from 1 to
10 milliseconds are not unexpected in this type of network
communication.

5. CONCLUSION
In this paper, we present an efficient method to reduce the
memory used in each module for storing the goal map needed
by reconfiguration processes of Programmable Matter. We
compared our CSG4PM model with three existing methods
for two very different objects both in size and in terms of
complexity. We show that the gain is very significant com-
pared to classical Bitmap models, and our model need less
decoding time for better compression size compared to Mesh
based method or overlapping bricks method.

As a future works, we think that CSG tree can be dynamical
simplified for some area of the scene that are not concerned
by a part of the geometrical model. We will work on a
method that cut off the received CSG tree in each Catom
before sending the different parts to its neighbors.
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