
Reduction of Workflow Nets for Generalised
Soundness Verification

Hadrien Bride, Olga Kouchnarenko, and Fabien Peureux

Institut FEMTO-ST – UMR CNRS 6174, Univ. Bourgogne Franche-Comté
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Abstract. This paper proposes a reduction method to verify the gener-
alised soundness of large workflows described as workflow nets–a suited
class of Petri nets. The proposed static analysis method is based on the
application of six novel reduction transformations that transform a work-
flow net into a smaller one while preserving generalised soundness. The
soundness of the method is proved. As practical contributions, this paper
presents convincing experimental results obtained using a dedicated tool,
developed to validate and demonstrate the effectiveness, efficiency and
scalability of this method over a large set of industrial workflow nets.

1 Introduction

Nowadays workflows are extensively used by the economic and scientific com-
munities to model and analyse processes. Indeed, a great diversity of application
domains exist today that use workflow management systems on a daily basis
in order to control their business processes. These include office automation,
healthcare, manufacturing and production, finance and banking, just to name
a few. Intuitively, a workflow describes the set of possible runs of a particular
system/process by describing the ways in which operations can be carried out to
reach its intended goals. With the increasing use of workflows for modelling cru-
cial business processes, analysis and verification of specifications become manda-
tory to ensure such processes are properly designed and reach the expected level
of trust and quality with respect to involving domain and business requirements.

Among proposed workflow modelling languages, workflow Petri nets [1] are
well suited for modelling and analysing finite or infinite-state discrete processes
exhibiting causalities, concurrencies, and conflicts. Moreover, the development of
large and intricate workflow nets can be a difficult task which requires powerful
structuring mechanisms [2]. It also forces modellers to follows strict abstraction
patterns in order to produce quality workflow nets [3]. For instance, to cope with
this challenge, stepwise refinement [4] is often used to ease verification.

Verification of workflow nets is an a posteriori approach: given a workflow net,
it checks whether properties (e.g., generalised soundness) hold. Although these
properties are usually known to be decidable for workflow nets [5], their verifi-
cation is a very time consuming task due to the high complexity (EXPSPACE)
with respect to the size of the workflow net under analysis [6]. Unfortunately,
most often, the abstraction mechanisms, used by modellers of workflow nets, are
not explicitly given or deductible to ease the analysis process.



However, within verification approaches, some generic reduction rules [7] have
the ability to reduce workflow nets size while strongly preserving properties of in-
terest (e.g., liveness, boundedness). This allows the analysis of studied properties
to be performed on reduced workflow nets, in many cases, greatly decreasing its
complexity by alleviating state explosion of their state space, which undermines
state exploration methods [8]. More generally, reduction rules are abstraction op-
erations: they reduce the level of details of workflow nets, and aim at capturing
the abstraction mechanisms used by modellers of workflow nets. It follows that
the inversion of reduction rules (i.e. synthesis rules) are refinement operations.
Conceptually, this leads to an analysis paradigm where the analysis of workflow
nets is substituted by the analysis of their construction.

Within this paradigm, this paper aims to provide an effective and efficient
reduction method based on six novel reduction rules to cope with soundness ver-
ification of industrial large-scale models. Soundness is indeed a well-established
correctness feature for workflow specification that all workflows should verify [5],
since it relies on three major properties: weak termination, proper completion,
and quasi-liveness. More precisely, the proposed method makes it possible to
automate and improve (in terms of calculation time) the generalised soundness
verification of large workflows described as workflow nets. Furthermore, in order
to conclusively assess the effectiveness, efficiency and scalability of the proposed
reduction method, a dedicated tool has been developed and used to conduct in-
tensive experiments over two benchmarks of 1976 industrial workflow nets, which
were previously studied in [9–14] by applying others reduction procedures.

The paper is organized as follows. Section 2 introduces related work about the
soundness verification of workflows, and motivates the present work. In Sect. 3
we overview the background of the proposed method, i.e. Petri nets and work-
flow nets. Section 4 details the proposed method to semi-decide the generalised
soundness of arbitrary workflow nets. Section 5 describes the tool, called Hadara-
AdSimul-Red, developed to support the method, and reports on conclusive ex-
perimental results. Finally, Sect. 6 concludes the paper and outlines future work.

2 Related Work

On soundness verification. Many techniques and methods have been investigated
in order to verify the soundness of workflow nets [12]. It has been proved that
generalised soundness of workflow net is decidable [15, 16]. For some subclasses of
workflow nets (e.g., well-handled, free choice nets), it has been shown that clas-
sical soundness, i.e. (weak) 1-soundness, implies generalised soundness [17]. For
these subclasses, generalised soundness can be investigated using model check-
ing techniques. For example, [18] uses the Woflan tool to verify soundness of
a workflow net through the construction of its reachability graph, whereas [19]
uses the well-known SPIN model-checker [20]. However, as the state space may
be infinite in the general case (even when dealing with particular classes of nets),
such approaches cannot be applied without suitable abstractions. Other meth-
ods based on structural properties have also been proposed [17, 21]. Nonetheless,
establishing these characterizations may similarly become intractable.
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On reduction rules. To cope with difficulties arising when facing large work-
flow nets, some works have investigated reduction techniques to transform a
workflow net into a smaller one while preserving some properties of interest such
as liveness, boundedness and soundness. For example, when using Woflan in [18],
reduction rules proposed in [7] are used to reduce workflow nets before analysing
soundness. For free-choice Petri nets, a complete set of reduction rules preserv-
ing well-formedness is proposed in [22]. Reduction rules preserving deadlock and
lack of synchronization conflicts of acyclic workflows are given in [23]. Finally,
reduction rules preserving liveness and boundedness are proposed for arbitrary
workflow nets in [23–27], and for workflow nets extensions in [13, 28, 29].

The verification method proposed in this paper is based on reduction tech-
niques that are applied to arbitrary workflow nets and that focus on rules pre-
serving generalised soundness. It should be noticed that in contrast with [25] the
condition of application of these reduction rules are defined solely structurally
and that they extend those previously described in the literature. For instance,
all the reduction rules presented in [7] (except the elimination of self-loop place,
which cannot be applied to workflow nets) can be seen as special cases of the
rules presented in this paper. Further, all abstraction rules (i.e. reduction rules)
defined in [24] are also special cases of the rules presented in the present paper.

3 Preliminaries
This section introduces preliminaries on Petri nets [30] and workflow nets [31].

3.1 Petri Nets

Definition 1 (Petri net [30]). A Petri net is a tuple 〈P, T, F 〉 where P is
a finite set of places, T is a finite set of transitions (P ∩ T = ∅), and F ⊆
(P × T ) ∪ (T × P ) is a set of arcs.

Let g ∈ P ∪T and G ⊆ P ∪T . We use the following notations: g• = {g′|(g, g′) ∈
F}, •g = {g′|(g′, g) ∈ F}, G• = ∪g∈G g•, and •G = ∪g∈G •g.

The marking of Petri net, representing the number of tokens on each place is
a function M : P → N. It evolves during its execution since transitions change
the marking of a Petri net according to the following firing rules. A transition
t is enabled in a marking M if and only if ∀p ∈ •t,M(p) ≥ 1. When an enabled
transition t is fired, it consumes one token from each place of •t and produces
one token in each place of t•. Notice that, in the context of workflow, specifiers
often consider ordinary Petri nets [31] (i.e. Petri nets with arcs of weight 1).

Let Ma and Mb be two markings and t a transition of a Petri net N , we denote

Ma
t−→ Mb the fact that the transition t is enabled in marking Ma, and firing

it results in the marking Mb. The marking Mb is denoted as directly reachable
from Ma by transition t. Let M1,M2, ..,Mn be markings and σ = t1, t2, .., tn−1
a sequence of transitions of a Petri net N , we denote M1

σ−→ Mn the fact that

M1
t1−→ M2

t2−→ ..
tn−1−−−→ Mn. The marking Mn is then said to be reachable from

M1 by the sequence of transitions σ. We denote RN (M) the set of markings of
N reachable from a marking M . Based on these rules, a transition t is dead at
marking M if it is not enabled in any marking M ′ reachable from M . A transition
t is live if it is not dead in any marking reachable from the initial marking.
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3.2 Workflow Nets

Fig. 1. Example of workflow net

Workflow nets are special cases of Petri nets.
They are usually used to model the control-
flow dimension of a workflow. They allow the
modelling of complex workflow exhibiting con-
currencies, conflicts, and causal dependencies
of activities. The activities are modelled by
transitions, while causal dependencies are modelled by places and arcs. Figure 1
depicts an example of a Petri workflow net. Workflow net, and soundness, k-
soundness and generalised soundness within workflow nets, are now defined.

Definition 2 (Workflow net [31]). A Petri net N = 〈P, T, F 〉 is a workflow
net if and only if:

– N has two special places i and o, where •i = ∅ and o• = ∅, and
– for each node n ∈ (P ∪ T ) there exists a path from i to o passing through n.

We denote Mi(k) the initial marking (i.e. Mi(n) = k if n = i, and 0 other-
wise) and Mo(k) the final marking (i.e. Mo(n) = k if n = o, and 0 otherwise).
Intuitively, soundness means that once a workflow has started it should always
be able to terminate without leaving tokens in the net. Formally,

Definition 3 (Soundness [5]). Let N = 〈P, T, F 〉 be a workflow net, N is
sound if and only if:

– ∀M ∈ RN (Mi(1)),Mo(1) ∈ RN (M) (option to complete),
– ∀M ∈ RN (Mi(1)), (M(o) > 0)⇒ (M = Mo(1)) (proper completion), and

– ∀t ∈ T, ∃M,M ′ ∈ RN (Mi(1)),M
t−→M ′ (no dead transitions).

The notion of k-soundness in [21] extends the classical soundness to k tokens,
while a workflow net is generalised sound if it is k-sound for all k ∈ N.

Definition 4 (k-soundness [21]). Let N = 〈P, T, F 〉 be a workflow net, and
k ∈ N. N is k-sound if and only if:

– ∀M ∈ RN (Mi(k)),Mo(k) ∈ R(M)

– ∀t ∈ T, ∃M,M ′ ∈ RN (Mi(1)),M
t−→M ′

Definition 5 (Generalised soundness [21]). Let N = 〈P, T, F 〉 be a work-
flow net, N is generalised sound if and only if ∀k ∈ N, N is k-sound.

4 Verification Method Using Reduction Transformations

This section presents the proposed verification method to check the generalised
soundness of arbitrary workflow nets. This method is based on the application
of reduction transformations. In this way, we define a set of reduction rules that
allow transforming a workflow net into a smaller one (in terms of the number of
nodes) while preserving generalised soundness. We also show that this method is
sound: if the successive application of the proposed reduction rules to a workflow
netN produces, at the end of this processing (i.e. when no rule can be applied any
more), an atomic workflowNAtomic, we can conclude thatN is generalised sound.
Before describing this method, we first introduce the related basic notions [22].
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4.1 Basic Definitions

We define a workflow net transformation rule φ as a binary relation on the class
of workflow nets. It is fully described by the conditions of application under
which it can be applied to a source workflow net, and the construction algorithm
that is applied to the source workflow net to form a target workflow net. Let
N , Ñ be two workflow nets and φ a transformation rule, the fact that φ is
applicable to N and that applying φ to N results in Ñ , is denoted (N, Ñ) ∈ φ.
Such a transformation rule φ is called a workflow net reduction rule if for all
(N, Ñ) ∈ φ, the number of nodes (i.e. the number of places and transitions) of
Ñ is strictly smaller than the number of nodes of N .

Let ψ be a workflow net property, such as generalised soundness (Def. 5),
N |= ψ denotes the fact that the workflow net N satisfies ψ. If, for all workflow
nets N and Ñ , (N, Ñ) ∈ φ and N |= ψ ⇒ Ñ |= ψ, φ is said to preserve ψ. If the
reverse holds as well, i.e. Ñ |= ψ ⇒ N |= ψ, φ is said to strongly preserve ψ.

The relation over the class of workflow nets induced by a set of transformation
rules is called a kit. Let Φ be the kit induced by the n workflow net transformation
rules φ1, .., φn, Φ defines a binary relation on the class of workflow nets: (N, Ñ) ∈
Φ ⇔ ∃i ∈ {1, .., n}, (N, Ñ) ∈ φi. If a kit is induced by a set of workflow net
reduction rules, it is called a reduction kit. We say that Φ (strongly) preserves
ψ if and only if ∀i ∈ {1, .., n}, φi (strongly) preserves ψ. Finally, Φ∗ denotes
the transitive closure of Φ, where (N0, Nm) ∈ Φ∗ if and only if there exists a
sequence (φ1, N1), .., (φm, Nm) such that ∀i ∈ {1, ..,m}, (Ni−1, Ni) ∈ φi.

Lemma 1. Let ψ be a workflow net property, Φ a kit, which strongly preserves
ψ, and N , Ñ two workflow nets such that (N, Ñ) ∈ Φ∗, then N |= ψ ⇔ Ñ |= ψ.

Our approach is based on Lemma 1. Indeed, defining a kit Φ of reduc-
tion rules, which strongly preserve generalised soundness, enables semi-deciding
whether a workflow net N is generalised sound. It holds when (N,NAtomic) ∈ Φ∗,
where NAtomic = 〈{i, o}, {t}, {(i, t), (t, o)}〉 is a generalised sound workflow net.

4.2 Reduction Kit

This section defines the workflow net reduction rules forming a reduction kit,
which strongly preserves generalised soundness as introduced in Def. 5. In what
follows, each workflow net reduction rule is defined by giving the conditions of
application under which it can be applied to a source workflow net N = 〈P, T, F 〉,
and the construction algorithm to apply to N to produce a target workflow net
Ñ = 〈P̃ , T̃ , F̃ 〉. Since the conditions of application are defined only structurally,
avoiding explicit or symbolic exploration of the state-space of the workflow nets
under analysis, the approach does not suffer from state explosion. For clarity,
every rule is illustrated by a figure depicting two possible applications of this rule.
The first one only considers the plain element of the figure and corresponds to
the minimal pattern. The second one considers both the mandatory (plain) and
the optional (dashed) elements, and corresponds to a possible extended pattern.
Figures are thus not exhaustive but aim to clarify the rules formally described
by the related conditions of application and the construction algorithm.
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R1: Remove Place.

We define φRemoveP , a workflow net reduction rule, which strongly preserves
generalised soundness and consists in removing a place for which there exists a set
of places with the same input transitions as well as the same output transitions.
Places removed in such a way are called redundant places as they do not modify
the set of correct executions of a workflow net.

Figure 2 illustrates the reduction rule φRemoveP formally described as follows.

Conditions on N :

– ∃ p ∈ P \ {i, o}
– ∃ G = {g1, .., gn} ⊆ P \ {i, o, p}
– p• = G•

– •p = •G
– ∀i, j ∈ {1, .., n}, i 6= j ⇒

•gi ∩ •gj = g•i ∩ g
•
j = ∅

Construction of Ñ :

– p• = {ot1, .., otn}
– outArc := {p} × p•
– •p = {it1, .., itm}
– inArc := •p× {p}
– P̃ := P \ {p}
– T̃ := T
– F̃ := F \ (inArc ∪ outArc)

Fig. 2. Reduction rule φRemoveP (R1)

This rule generalises the Fusion of Parallel Places rule given in [7] and the
Abstraction of Parallel Places rule given in [24]. It can also be seen as an adapta-
tion of the rule φS of [22] (reduction rule proved to be complete with respect to
the subclass of free-choice Petri nets) to the context of ordinary workflow nets.

The inverse of this rule is the only synthesis rule able to add a single place
to a workflow net while preserving generalised soundness and is notably used
to introduce concurrency. In the context of Petri net, a self-loop place (i.e. a
place p such that •p = p•) can be added without compromising liveness and
boundedness. However, this requires changing the initial marking which is not
possible within workflow nets. However, a generalisation of this rule could be
applied to an extension of workflow nets modelling resources by marked places.

The soundness of φRemoveP , with respect to generalised soundness, is given
by the following proposition.

Proposition 1 (Soundness of φRemoveP ). φRemoveP is a workflow net reduc-
tion rule which strongly preserves generalised soundness.

Proof. (Sketch). Let f : (P̃ → N) → (P → N) be a bijective function such that
f(M)(g) = M(g) for all g ∈ P̃ and f(M)(p) = M(g1)+..+M(gn). By conditions
on N , every transition that produces (resp. consumes) a token in any of the
places of G also produces (resp. consumes) a token in p. Consequently, ∀k ∈ N
one has: M ∈ RÑ (M Ñ

i(k)),M
Ñ
o (k) ∈ RÑ (M) ⇔ f(M) ∈ RN (MN

i(k)),M
N
o (k) ∈

RN (f(M)), and transitions ot1, .., otn, it1, .., itm of N are not dead if and only
if transitions ot1, .., otn, it1, .., itm of Ñ are not dead.
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R2: Remove Transition.

We define φRemoveT , a workflow net reduction rule, which strongly preserves
generalised soundness and consists in removing a transition for which there exists
a set of transitions having the same input and output places. Intuitively, the
transitions removed by this rule are transitions whose firing can be simulated by
the firing of a set of other transitions.

Figure 3 illustrates the reduction rule φRemoveT formally described below.
Let D be a set of places, we define the function ϑ : D → (P → N) such that:

∀ d ∈ P, ϑ(D)(d) =

{
1, if d ∈ D
0, otherwise

Let f1, f2, f3 : P → N be three functions, we overload the operator +,− and =
such that f3 = f1 Ω f2 ⇔ ∀p ∈ P, f3(p) = f1(p) Ω f2(p) where Ω ∈ {+,−}.
The function ϑ is used to compare inputs and outputs of a set of transitions.
Note here that this function does not consider self-loop transitions, a desired
property as self-loop transition can be added to places (see rule R3, introduced
in the next subsection).

Conditions on N :

– ∃ t ∈ T
– ∃ G = {g1, .., gn} ⊆ T \ {t}
– ϑt = ϑ(t•)− ϑ(•t)
– ϑG = ϑ(g•1 ) + ..+ ϑ(g•n)− ϑ(

•g1)− ..− ϑ(•gn)
– ϑt = ϑG

– ∀i, j ∈ {1, .., n}, i 6= j ⇒
(•gi ∩ •gj = g•i ∩ g

•
j = ∅)

– (∃ ts ∈ T \ ({t} ∪G), ∀g ∈ G, •g ⊆ t•s) ∨ (|G| = 1)

Construction of Ñ :

– t• = {op1, .., opn1}
– outArc := {t} × t•
– •t = {ip1, .., ipn2

}
– inArc := •t× {t}
– P̃ := P
– T̃ := T \ {t}
– F̃ := F \ (inArc ∪ outArc)

Fig. 3. Reduction rule φRemoveT (R2)

This rule is an original rule generalising the Fusion of Parallel Transitions
rule of [7] and the Abstraction of Parallel Transitions rule of [24]. It is an adap-
tation of the rule φS of [22] to the realm of ordinary workflow nets with no
restriction on their subclasses. Indeed, outside the scope of free-choice workflow
nets, additional constraints are required to ensure that the removed transitions
are live. To this end, the liveness of a transition to be removed in such a way is
inferred from the liveness of a source transition, a transition that, when fired,
enables the transition to be removed. Note that this requirement could be re-
laxed. Instead of requiring the presence of a source transition, one could require
the presence of a sequence of transitions, where each successive transition is en-
abled by the firing of the previous ones, such that the firing of this sequence of
transitions enables the transition to be removed.
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The inverse rule of this reduction rule is a synthesis rule able to add a single
transition to an arbitrary workflow net based on its structure while preserving
generalised soundness and is used to introduce choice.

The soundness of φRemoveT , with respect to generalised soundness, is given
by the following proposition.

Proposition 2. φRemoveT is a workflow net reduction rule which strongly pre-
serves generalised soundness.

Proof. (Sketch). Let us suppose that ϑt = ϑG. By conditions on N , for all k in N,
and ∀MN in RN (MN

i(k)), transition t is enabled if and only if transitions g1, .., gn
are also enabled. Moreover, the firing of t must result in the same marking as
the successive firing of transitions g1, .., gn in any order. It follows that ∀k ∈
N,M ∈ RN (MN

i(k)),M
N
o (k) ∈ RN (M) ⇔ M ∈ RÑ (M Ñ

i(k)),M
Ñ
o (k) ∈ RÑ (M).

To conclude, suppose |G| = 1, then t is not dead in N if and only if g1 is not
dead in Ñ . Alternatively, suppose (∃ ts ∈ T \ ({t} ∪G),∀g ∈ G, •g ⊆ t•s), then t
is not dead in N if and only if ts is not dead in Ñ .

R3: Remove Self-loop.

We define φRemoveST , a workflow net reduction rule, which strongly preserves
generalised soundness and consists in removing a transition whose input places
are its output places.

Figure 4 illustrates φRemoveST that is formally described below.

Conditions on N :

– ∃ t ∈ T
– t• = •t
– ∃ ts ∈ T \ {t},• t ⊆ t•s ∨

•t ⊆ •ts

Construction of Ñ :

– outArc := {t} × t•
– inArc := t• × {t}
– P̃ := P
– T̃ := T \ {t}
– F̃ := F \ (inArc ∪ outArc)

Fig. 4. Reduction rule φRemoveST (R3)

This original rule generalises the Self-Loop Transition rule described in [7].
Similarly to rule φRemoveT , the liveness of a transition removed by this rule also
needs to be inferred from the existence of a source transition (alternatively a
source sequence of transitions).

The inverse of this reduction rule is a synthesis rule able to add a single
transition to an arbitrary workflow net while preserving generalised soundness.
It is typically used to introduce choice and repetitive tasks.

The soundness of φRemoveST , with respect to generalised soundness, is given
by the next proposition.
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Proposition 3. φRemoveST is a workflow net reduction rule which strongly pre-
serves generalised soundness.

Proof. (Sketch). By conditions imposed on N , we know that the firing of tran-
sition t does not change the markings of N in which it is enabled. It follows

that ∀k ∈ N,M ∈ RN (MN
i(k)),M

N
o (k) ∈ RN (M) ⇔ M ∈ RÑ (M Ñ

i(k)),M
Ñ
o (k) ∈

RÑ (M). Notice that t is not dead in N if and only if ts is not dead in Ñ .

R4: Remove Transition Place

We define φRemoveTP , a workflow net reduction rule, which strongly preserves
generalised soundness and consists in removing a place and its only input tran-
sition. Intuitively, this rule consists in removing a place p and its only input
transition t by merging transition t with the output transitions of place p.

The φRemoveTP rule is depicted in Fig. 5, and formally described below.

Conditions on N :

– ∃ p ∈ P \ {i, o}
– •p = {t}
– t• 6= {p} ⇒
∀ ot ∈ p•, •ot = {p}
∧ t• ∩ ot• = ∅

– t• = {p} ⇒
∀ ot ∈ p•, •t∩•ot = ∅ ∧ (∃ ot ∈
p•, •ot = {p} ∨ ∀ ip ∈
•t, ip• = {t})

Construction of Ñ :

– t• \ p = {op1, .., opn1}
– •t = {ip1, .., ipn2

}
– p• = {ot1, .., otn3

}
– outT := {t} × t• \ p
– inT := •t× {t}
– outP := {p} × p•
– inArc := •t× p•
– outArc := p• × t• \ p
– P̃ := P \ {p},
– T̃ := T \ {t}
– F̃ := (F ∪inArc∪outArc)\((t, p)∪inT ∪outT ∪outP )

(a) t• = {p} (b) t• 6= {p}

Fig. 5. Reduction rule φRemoveTP (R4)

This rule generalises the Post-Fusion rule of [25, 29]. Its inverse is a synthesis
rule introducing a sequence of tasks (adding a task that has to be accomplished
before others) by factoring common input/output places of a set of transitions.

The soundness of φRemoveTP , with respect to generalised soundness, is given
by the following proposition.

Proposition 4. φRemoveTP is a workflow net reduction rule which strongly pre-
serves generalised soundness.

Proof. (Sketch). In N the transitions ot1, .., otn3
have to consume a token in

place p. All tokens consumed in place p have to be produced by transition t,
which consumes a token in places ip1, .., ipn2 and produces a token in places
op1, .., opn1

and p. Thus, ot1, .., otn2
have to consume a token in ip1, .., ipn2

and
produce a token in op1, .., opn1

. Conversely, the same analysis holds on Ñ , we
conclude that N is generalised sound if and only if Ñ is generalised sound.

9



R5: Remove Place Transition

We define φRemovePT , a workflow net reduction rule, which strongly preserves
generalised soundness and consists in removing a place and its only output tran-
sition. Intuitively, this rule consists in removing a place p and its only output
transition t by merging transition t with the input transitions of place p.

The φRemovePT rule is depicted in Fig. 6, and formally described below.

Conditions on N :

– ∃ p ∈ P \ {i, o}
– p• = {t}
– •t 6= {p} ⇒
∀ it ∈ •p, it• = {p}
∧ •t ∩ •it = ∅ ∧ (•it)• = {it}

– •t = {p} ⇒
∀ it ∈ •p, t• ∩ it• = ∅

Construction of Ñ :

– t• = {op1, .., opn1}
– •t \ p = {ip1, .., ipn2}
– •p = {it1, .., itn3

}
– outT := {t} × t•
– inT := •t \ p× {t}
– inP := •p× {p}
– inArc := •t \ p× •p
– outArc := •p× t•
– P̃ := P \ {p},
– T̃ := T \ {t}
– F̃ := (F ∪ inArc∪outArc)\ ((p, t)∪ inT ∪outT ∪ inP )

(a) •t = {p} (b) •t 6= {p}

Fig. 6. Reduction rule φRemovePT (R5)

This rule generalises the Pre-Fusion rule of [25, 29] as well as the reduction
rule φA proposed in [22].

The inverse of this rule is a synthesis rule introducing a sequence of tasks
(adding a task that have to be accomplished after others) and able to factor
common input/output places of a set of transitions.

The soundness of φRemovePT , with respect to generalised soundness, is given
by the following proposition.

Proposition 5. φRemovePT is a workflow net reduction rule which strongly pre-
serves generalised soundness.

Proof. (Sketch). In N the transitions it1, .., itn3
have to produce a token in place

p. All tokens produced in place p have to be consumed by transition t, which
consumes a token in places ip1, .., ipn2 and p, and produces a token in places
op1, .., opn1

. Thus, it1, .., itn3
have to consume a token in ip1, .., ipn2

and produce
a token in op1, .., opn1

. Conversely, the same analysis holds on Ñ , we conclude
that N is generalised sound if and only if Ñ is generalised sound.
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R6: Remove Ring

We define φRemoveR, a workflow net reduction rule, which strongly preserves
generalised soundness, and consists in merging places among a ring. A ring is a set
of places strongly connected by transitions with a single input place and a single
output place. The transitions forming the ring are also removed. Intuitively,
tokens among the places of a ring can freely move from a place of the ring to an
other, therefore they might as well be on the same place.

Figure 7 illustrates the rule φRemoveR that is formally described below.

Conditions on N :

– ∃ {p1, .., pn} ⊆ P
– ∃ {t1, .., tm} ⊆ T
– ∀ i ∈ {1, ..,m}, |•ti| = |t•i | = 1
– ∀ i, j ∈ {1, .., n}, •pi ∩ •pj = p•i ∩ p

•
j = ∅

– ∀ i, j ∈ {1, ..,m}, ∃ σ : {1, .., k} →
{p1, .., pn} ∪ {t1, .., tm} a path of length k
such that σ(1) = pi ∧ σ(k) = pj ∧ ∀ x ∈
{1, .., k − 1}, (σ(x), σ(x+ 1)) ∈ F

Construction of Ñ :

– ringArc := (({p1, .., pn} × {t1, .., tm}) ∪
({t1, .., tm} × {p1, .., pn})) ∩ F

– inT := •p1 ∪ .. ∪ •pn
– outT := p•1 ∪ .. ∪ p

•
n

– removedA := ((inT × {p1, .., pn}) ∪
({p1, .., pn} × outT )) ∩ F

– addA := (inT × p) ∪ (p× outT )

– P̃ := (P ∪ p) \ {p1, .., pn}
– T̃ := T \ {t1, .., tm}
– F̃ := (F ∪ addA) \ removedA

Fig. 7. Reduction rule φRemoveR (R6)

This rule is an original one. Its inverse is a synthesis rule which transforms a
place into a ring, distributing its input and output transitions among the places
of the created ring.

The soundness of φRemoveR, with respect to generalised soundness, is given
by the following proposition.

Proposition 6 (Soundness of φRemoveR). φRemoveR is a workflow net reduc-
tion rule which strongly preserves generalised soundness.

Proof. (Sketch). By conditions imposed on N , tokens among the places p1, .., pn
of a ring can freely move from a place of the ring to an other by firing a sequence
of transitions formed with transitions t1, .., tm. It follows that each token pro-
duced (resp. consumed) by an input (resp. output) transition of a place in the
ring will eventually be (resp. has been), after (resp. before) the firing of a pos-
sibly empty sequence of transitions formed with transitions t1, .., tm, consumed
(resp. produced) by any output (resp. input) transitions of a place of the ring.
Likewise, in Ñ each token produced (resp. consumed) by an input (resp. output)
transition of p will be (resp. has been) consumed (resp. produced) by an output
(resp. input) transition of p. It follows that N is generalised sound if and only if
Ñ is generalised sound.
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This section defined six reduction rules, which together constitute a generic
reduction kit, denoted Φ∗, preserving generalised soundness. These rules gener-
alise the rules previously presented in the literature [25, 7, 29, 26, 27, 23, 22, 24]
and thereby extend the range of workflow nets reducible in such a way.

4.3 Verification Algorithm

This section proposes an algorithm, based on the workflow net reduction rules
previously described, for semi-deciding the generalised soundness. Our approach
is based on Lemma 1. This lemma allows us to infer the generalised soundness a
workflow net from its transformed instance as long as the transformation rules
applied to obtain it strongly preserve generalised soundness.

The reduction kit Φ∗, composed of the six reduction rules introduced in the
previous section, strongly preserves generalised soundness. Therefore, let N and
Ñ be two workflow nets such that (N, Ñ) ∈ Φ∗ then the workflowN is generalised
sound if and only if the workflow net Ñ is generalised sound. Furthermore, it is
trivial that the workflow net NAtomic (i.e. a workflow net composed of a single
transition whose input place is the initial place and output place is the final place)
is generalised sound. It follows that if (N,NAtomic) ∈ Φ∗ then the workflow net
N is generalised sound. Since the reduction kit Φ∗ is not complete with respect
to generalized soundness over ordinary workflow nets, this leads to the design of
an algorithm to semi-decide whether a workflow net N is generalised sound.

This algorithm proceeds by iteratively trying to apply any of the reduction
rules of Φ∗ to the input the workflow net N until a fix-point is reached (none of
the reduction rules can be applied). If the resulting workflow net equals NAtomic,
one can conclude that N is generalised sound. Otherwise, one cannot directly
conclude about generalised soundness, but the reduced workflow net is saved to
be further analysed using classical techniques such as model-checking.

This procedure is described by Algorithm 1, which is based on: (i) the set of
workflow net reduction rules Φ = {R1, .., R6}, (ii) an auxiliary function size(N),
which returns the number of nodes of a workflow net N at each iteration step,
(iii) a function TryApplyRule(φ,N), which returns either Ñ if the rule φ can be
applied to N to produce Ñ , or N otherwise, and (iv) save(N), a function that
saves N .

Data: N = 〈P, T, F 〉
Result: Generalised soundness of N
int sizeN = 0;
do

sizeN = size(N);
N = ApplyReductionRules(N);

while size(N) < sizeN ;
if N = NAtomic then

return true;
else

save(N);
return unknown;

end

Function ApplyReductionRules(N)
forall the φ ∈ Φ do

int subsizeN = 0;
do

subsizeN = size(N);
N = TryApplyRule(φ,N);

while size(N) < subsizeN ;

end
return N ;

Algorithm 1: Generalised soundness semi-decision algorithm
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Theorem 1. The procedure described by Algorithm 1 terminates.

Proof. (Sketch). Every rule applied by Algorithm 1 strictly reduces the number
of nodes of N . None of the applied rules can produce a workflow net with less
than one node. Thus, it always terminates when no workflow net reduction rules
can be applied, providing an atomic sound net or saving a reduced workflow net.

Theorem 2. The procedure described by Algorithm 1 is sound.

Proof. (Sketch). The set of workflow net reduction rules strongly preserves gen-
eralised soundness. By Theorem 1 the procedure of Algorithm 1 is thus sound.

Before concluding this section, let us remark again that the presented reduc-
tion procedure is not complete, and leads to a semi-decision procedure. However,
this paper presents generalizations of previously known rules [25, 7, 29, 26, 27, 23,
22, 24]. Consequently, in comparison with the previously cited results, which are
also not complete for arbitrary workflow nets, the rules introduced in this pa-
per are able to further reduce workflow nets allowing other analysis approaches
(e.g., [16, 18]) to be carried out on smaller instances, enabling to increase their
scalability. Finally, an extension of the range of reducible workflow nets is a
work in progress; to this end, the presented rules would be further generalised
or extended to handle generalised Petri nets instead of ordinary ones.

5 Verification Tool and Experimental Results

A dedicated open source tool suite, called Hadara-AdSimul-Red1, has been de-
veloped to conduct intensive experiments in order to evaluate the effectiveness,
efficiency and scalability of the proposed reduction method. This section presents
this tool, as well as convincing experimental results demonstrating its benefits.

5.1 Verification Tool

Figure 8 depicts the global architecture of the verification tool Hadara-AdSimul-
Red, which has been developed (in C++) to support the proposed method.

Reduced
Workflow net

4

Hadara-AdSimul
Red

2

Workflow net

1

  Results
Report

3

Fig. 8. Tool architecture

This tool takes as input an ordinary workflow
net (1), saved as an XML file and conform to an
ad-hoc and proprietary standard – a dedicated
meta-model –, or to the PNML standard [32]
– a generic Petri nets XML format – so that
third party editor can be used (e.g., VipTool [33],
WoPeD [34],Yasper [35], PIPE [36]).

Hadara-AdSimul-Red (2) then tries to apply
any of the six reduction rules presented in Sec-
tion 4.2 to the input workflow net until a fix-point
is reached(i.e. none of the reduction rules can be
applied) by following the procedure described by
Algorithm 1.

1 The tool Hadara-AdSimul-Red (including examples and source code) is available in
Github: https://github.com/LoW12/Hadara-AdSimul
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Once the computation is completed, the tool provides a result report (3)
including the status of the verification regarding the generalised soundness,
and metrics about execution time and size reduction. Whenever the generalised
soundness verification is inconclusive (i.e. the workflow net cannot be completely
reduced), the resulting reduced workflow net (4) is saved for further analysis.

In order to ease and foster its use, this tool features a Web interface available
online2. As an example, Fig. 9 shows the Web screenshot displaying the verifica-
tion results obtained using an industrial workflow net as input. Information and
graphical representations of the original and resulting reduced workflow nets are
respectively shown at the left and right of the central frame, which displays the
spent reduction time, the status of the generalised soundness verification, as well
as the reduction factor obtained.

Fig. 9. Screenshot of the Hadara-AdSimul-Red verification results

5.2 Experimental Evaluation

This section presents an experimental evaluation of the reduction method pro-
posed in this paper. In a first step, the objectives of this experimentation are
stated. In a second step, the experimental protocol, designed to reach the given
objectives, is described. Finally, obtained results are presented and discussed.

Objectives – The objectives of this experimental evaluation are to experi-
mentally assess the effectiveness, efficiency and scalability of the proposed re-
duction method. Formally, the effectiveness of the proposed reduction method
is measured with respect to its ability to reduce the size (number of places
and transitions) of the considered workflow nets: given a workflow net of size
OriginalSize, the effectiveness of the proposed reduction method is given by the
ratio ReducedSize/OriginalSize, where ReducedSize is the size of the workflow
net obtained after reduction.

2 http://www.adsimul.com/
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Furthermore, the efficiency of the proposed method is evaluated with respect
to the time spent to reduce the considered workflow nets. Finally, it follows that
the method is scalable over a considered set of workflow nets of growing size if
it is able to effectively and efficiently reduce them.

Experimental Protocol – It considers the benchmark suite of 1976 industrial
workflow nets previously studied in [9–12] and more recently in [13, 14] where
others reduction procedure, also based on reduction rules, have been applied.
This benchmark suite is actually composed of two main benchmarks.

The first benchmark, denoted IBM-bpm, is a collection of 1386 free choice
workflow nets, organized into five libraries (A, B1, B2, B3, and C). All have
been derived from industrial business process models provided by IBM R©. They
have been translated into Petri nets from IBM Web-Sphere Business Modeler3’s
language (i.e. a language similar to UML activity diagrams [37]) according to
[38]. The resulting Petri nets often have multiple sink places and have therefore
been completed according to [39] in order to obtain workflow nets. We notably
point out that four of the largest workflow nets of this data set are included in
the benchmark used by the 2016 Edition of the Model Checking Contest [40].
More information about this data set can be found in the reference paper [12].

The second benchmark, denoted SAP-ref, is a collection of 590 workflow nets
that have been derived from SAP R©’s ERP Software4 reference models. These
590 industrial workflows have been translated into workflow nets from their
original EPCs models [41]. More information about this data set can be found
in the reference papers [9–11].

For each workflow net of this benchmark suite, the experimental protocol
consists in gathering the obtained reduction factor, the time spent to reach this
result, as well as the related generalised soundness verification status.

Results – The experimental results obtained using the dedicated reduction
tool described in Sect. 5.1 by applying the experimental protocol introduced
previously are now presented. All experimentations have been computed using
Hadara-AdSimul-Red on a personal laptop featuring an Intel core i7-3740QM
@ 2.70GHz processor (using only a single core). The complete data-sets as well
as the obtained experimental results are accessible at https://dx.doi.org/10.
6084/m9.figshare.3573756.v5.

Figures 10(a) and 10(b) respectively present the reduction factors and the
sizes of workflow nets of the IBM-bpm and SAP-ref benchmarks. Table 1 sum-
marizes the overall results of these experiments.

We have analysed 1976 industrial workflow nets and determined that 642 of
them are generalised sound (i.e. have been completely reduced). In addition, each
workflow has been reduced by an average factor of 82.2%. These experimental
results obviously highlight the effectiveness of the proposed reduction method.

3 http://www.ibm.com/software/products/en/modeler-basic
4 http://go.sap.com/product/enterprise-management/erp.html
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Fig. 10. Reduction factor with respect to original size

Table 1. Results for the IBM-bpm and SAP-ref benchmarks

Benchmark Status #workflow nets
#Nodes r-factor(%) time(ms)

avg. max. avg. max. avg. max.

IBM-bpm(libA)
Sound 152 61.4 193 93.5 98.4 3.2 44

unknown 130 99.7 277 86.8 95.1 9.6 51

IBM-bpm(libB1)
Sound 107 38.6 228 86.7 98.7 3.8 67

unknown 181 98.6 360 82 95.8 7.1 54

IBM-bpm(libB2)
Sound 161 38.9 334 85 99.1 7.3 380

unknown 202 110.3 404 83 95.8 8.5 60

IBM-bpm(libB3)
Sound 207 47.5 252 87.8 98.8 3.9 56

unknown 214 125.7 454 85.2 96 8.7 72

IBM-bpm(libC)
Sound 15 127 548 94.4 99.5 7.1 46

unknown 17 135.6 480 84.7 94.9 5.1 28

IBM-bpm(all)
Sound 642 49 548 88.4 99.5 4.6 380

unknown 744 110.6 480 84.1 96 8.3 72

SAP-ref
Sound 0 – – – – – –

unknown 590 97.7 512 73 95 9.9 967

With regard to the 1386 free choice workflow nets of IBM-bpm, 642 of them
were identified as generalised sound by our tool. This results (i.e. the detected
soundness) are in agreement with the results obtained during previous experi-
ments applying different analysis techniques to the same data set [12, 14] (i.e.
the complete subset of generalised sound workflow nets has been identified by
our tool). We underline the fact that all 642 sound workflow nets have been iden-
tified through structural reduction by our approach whereas only 464 of them
have been identified through structural reduction by Woflan [42]. Furthermore,
let us point out that workflow nets of this data set have been on average re-
duced to 13.9% of their original size (i.e. reduced by a factor of 86.1%). This
underlines the greater effectiveness of our method compared with the reduction
method of [13] where workflow nets of the same data set have only been reduced
to about 23% of their original size (i.e. reduced by a factor of about 77%).
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Regarding the 590 workflow nets of SAP-ref, only three of them are free
choice workflow nets. None of those 590 workflow nets has been found to be
generalised sound by our method. However, workflow nets of this data set have
been on average reduced to 27% of their original size (i.e. reduced by a factor of
73%). These results further highlight the effectiveness of our reduction method
over arbitrary workflow nets. Indeed, once more (albeit to a lesser extent), these
results show that our reduction method ability exceeds the one of [13] where
workflow nets of the same data set have been reduced to about 35% of their
original size (i.e. reduced by a factor of about 65%).

Finally, the results of these experiments based on the IBM-bpm and SAP-
ref benchmarks have also illustrated the efficiency of the proposed reduction
method. Indeed, workflow nets of these benchmarks whose sizes are ranging from
9 to 548 nodes have been reduced on average in about 8 ms. Such a short anal-
ysis time means that this method could be continuously executed by integrated
development environment to provide useful feedback and diagnostic information
regarding the generalised soundness of in-development workflow nets.

6 Conclusion

This paper presented an effective, efficient and scalable method to semi-decide
the generalised soundness of large-scale workflow nets. This method aims to re-
duce an arbitrary workflow net into a smaller one while preserving generalised
soundness. This enable soundness verification to be carried out over smaller in-
stances of workflow nets, thus drastically decreasing the calculation time required
for such a verification. To reach this goal, six novel workflow net reduction rules
are proposed and proven to be correct with respect to generalised soundness,
a well-established correctness notion in the context of workflow specification.
These workflow net reduction rules enable the definition of a reliable and effi-
cient algorithm that semi-decides the generalised soundness of workflow nets.

It also presented conclusive experimental results obtained using a dedicated
open-source tool suite implementing the method. Indeed, over a benchmark suite
of 1976 industrial workflow nets previously studied in [9–14], it demonstrated
convincing size reductions benefits. More precisely, these results illustrated the
effectiveness, efficiency and scalability of the proposed reduction method to the
verification of generalised soundness by providing, for the considered workflow
nets, an average size reduction of 82.2%, in an average time of 8 ms, over indus-
trial workflow nets of size up to 548 nodes.

On the basis of these conclusive results and in order to even more increase
the effectiveness of this reduction method, we plan as future work to design and
experiment more sophisticated strategies to order the workflow net reduction
rules application. From a formal point of view, we also would like to extend the
range of workflow nets reducible by adding new rules and further generalising the
presented rules by considering generalised Petri nets rather than ordinary Petri
nets as stated in Sect. 4 of the present paper. Finally, we are investigating the use
of the reduction techniques presented in this paper to optimise the verification
of workflow net modal specifications [43] in a way similar to [24].
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