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Abstract. Evidential Hidden Markov Models (EvHMM) is a particular
Evidential Temporal Graphical Model that aims at statistically repre-
senting the kynetics of a system by means of an Evidential Markov Chain
and an observation model. Observation models are made of mixture of
densities to represent the inherent variability of sensor measurements,
whereas uncertainty on the latent structure, that is generally only par-
tially known due to lack of knowledge, is managed by Dempster-Shafer’s
theory of belief functions. This paper is dedicated to the presentation of
an Expectation-Maximization procedure to learn parameters in EvHMM.
Results demonstrate the high potential of this method illustrated on
complex datasets originating from turbofan engines where the aim is to
provide early warnings of disfunction.
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1 Introduction

The statistical representation of multi-dimensional time-series originating from
a dynamical system consists in finding a concise and meaningful mathematical
model that can be easily interpreted and used to undertand the behavior of the
system. Those models can then be used to enhance data-driven phenomenolog-
ical physics model with better prediction capabilities in in-service applications.
However, sources of uncertainty are numerous in real-world applications which
accounts for systems’ oversizing to ensure people safety and equipments’ avail-
ability. Uncertainty quantification thus plays a critical role during both systems’
design (upstream) and in-service monitoring (downstream).

Dempster-Shafer’s theory of belief functions is a mathematical framework
that allows to represent, quantify and propagate uncertainties. Its application
in mechanical engineering has however been limited due to a lack of tools to
handle temporal data. The additional temporal dimension compared to static
data makes both the inference and learning problems more difficult than with
probability theory.
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Fig. 1. Graphical representation of a hidden Markov model: z is discrete and hidden,
x is continuous and observed, t is the time index.

This paper is focused on a simple – yet not tackled – problem that is the
estimation of parameters in Hidden Markov Models when uncertainty is no more
represented by probabilities but by belief functions. This model has been initially
called Evidential Hidden Markov Models (EvHMM) and represents a particular
statistical discrete-latent Markov model which is depicted in Fig. 1. This model
assumes that the system is driven by a doubly stochastic process: A Markov
chain on discrete hidden (not observed) variables called states, and an observa-
tion model that statistically represents the distribution of sensor measurements
(recorded on the system) defined conditionally to the states.

Inference mechanisms in EvHMM has been proposed by the author in [15, 20]
(not recalled here) to estimate the belief functions over hidden variables given
both an observation model and data. Those mechanisms provide exact belief
functions and enable one to compute the equivalent of a likelihood of a given
model for some sequences of observations, as well as to estimate sequences of
hidden states. Those procedures can then be used to explore relevant regions in
the feature or parameter space.

Only the learning problem is considered subsequently, with some assumptions
required to make the problem tractable [17].

2 Parameter learning in Evidential discrete-latent models

2.1 The criterion

The quality of a model such as depicted in Fig. 1 can be quantified by minimizing
the amount of conflict between the model and the data. Time-series are denoted
as X = [x1; x2; . . .xT ] with length T in D dimensions with xt = (x1, . . . , xD)′

called feature vector. The latent states are represented by discrete random vari-
ables z1, z2 . . . zt taking values in a finite set Ωz = {s1, s2, . . . , sK}, si ∩ sj = ∅.

Finding the parameters θ∗ in a latent variable model, in which uncertainty
is managed by belief functions, and made of one observed variable xt and one
discrete hidden variable zt with t = 1 . . . T , can be turned into the maximization
of the potential support assigned to the subset (x1, Ωz) , (x2, Ωz) . . . (xT , Ωz)
after observing all data vectors:

θ∗ = argmax
θ

plR
T×ΩTz ((x1, Ωz) , (x2, Ωz) . . . (xT , Ωz) | θ) (1)
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R is the domain of xt. For short, this criterion is rewritten as argmax θ pl(X,Ωz |
θ). By definition of the plausibility function, the criterion can be computed by
summing belief masses assigned to all configurations of the hidden variables S:

pl(X,Ωz | θ) =
∑
S63∅

m(X,S | θ) (2)

Direct maximization of this criterion is untractable but by making use of the
latent structure, it is possible to formulate the problem differently in order to
use an EM procedure (Expectation-Maximization) [6]. In EM, the E-step can
indeed be used to estimate the distribution over latent variables given both the
data and the current values of the parameters θ(q) (at iteration q) while the
M-step can be used to find the parameters θ(q+1) that allows to maximize an
“auxiliary” function such that the criterion (that is not directly maximized) does
not decrease. For that, we can rewrite the criterion as

pl(X,Ωz | θ) =
∑
S63∅

R(S)
m(X,S | θ)

R(S)
(3)

where S ⊆ Ωz and R is a distribution such that
∑
AR(A) = 1 that allows

Jensen’s inequality to be applied [8, Eq. 5]:

log pl(X,Ωz | θ) ≥ Qm,m(θ(q), θ)−Hm,m(θ(q), θ(q)) (4a)

Qm,m(θ(q), θ) =
∑
S63∅

R(S, θ(q)) logm(X,S | θ) (4b)

Hm,m(θ(q), θ(q)) =
∑
S63∅

R(S, θ(q)) logR(S, θ(q)) (4c)

s.t.
∑
S

R(S, θ(q)) = 1 (4d)

where Hm,m depends only on previous estimates θ(q) and allows to underline
that when the function in the logarithm ideally evolves towards the target R
(which can change at each iteration) then Qm,m −Hm,m → 0. Since R(S) must
sum up to 1, it follows that a rational choice for R is a BBA denoted as mγ

subsequently and Qm,m is an expectation taken with respect to mγ .

2.2 E/M-steps

An EM-like procedure can thus be applied. At iteration q, the E-step aims at
maximizing the expectation 4b given fixed parameters θ(q). We can cancel its
derivative with repect to R using appropriate Lagrangian multipliers (integrating

the aforementionned constraint on R) to get the maximizer m
(q)
γ :

E-step: ⇒ m(q)
γ =

m(X,S | θ(q))∑
S′ 63∅m(X,S′ | θ(q))

≡ m(S | X, θ(q)) (5)
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m
(q)
γ (· | X) is the posterior BBA on states given observations. The posterior is

then used in the M-step to find the best estimate θ(q+1) for the next iteration

so that it maximizes the expectation under m
(q)
γ :

M-step: ⇒ θ(q+1) = argmax
θ

E
m

(q)
γ

[logm(X,S | θ)] (6)

The algorithm iterates likewise to standard EM until the relative increase of the
support pl(X,Ωz) between two consecutive iterations remains below a threshold.

Property 1. Since R is a BBA, then Jensen’s inequality holds so that this algo-
rithm is guaranteed to converge.

The proof follows the same line of reasoning as in standard EM.

Conjecture 1. Similarly to the auxiliary function in EM [1, Theorem 2.1], the
maximization of the lower bound Qm,m does not decrease the total support.

This conjecture was implicitly assumed in [22] for the Credal EM algorithm
applied to Gaussian Mixture Model.

Remark 1. According to the model considered, it can be practically feasible to
check whether the conjecture holds or not. It is the case for EvHMM [17] by
using the evidential forward propagation [15].

2.3 Incorporating evidential prior to adjust the posterior BBA

The target BBA m
(q)
γ computed in the E-step is of paramount interest to rees-

timate the parameters. In cases of model’s misspecification (choice of A for in-
stance) or biases induced by the data collection process, this BBA may eventually
lead to wrong parameter estimates.

One solution was proposed in [22]. It considers that the prior knowledge on
hidden variables are encoded by a set of T belief functions. For temporal data,
the prior may be defined on Ωz with a BBA mΩz

prior(t). Note that it is likely

to encounter situations where the prior can be defined on Ωz × Ωz. If nothing
is known about the hidden variables, then ∀t,mΩz

prior(t)(Ωz) = 1. Those priors

can then be incorporated into the computation of the mathematical expectation
(Eq. 4a) by Dempster’s rule ∩© as proposed in [22]:

m(q)
γ ← m(q)

γ ∩©mprior(t) (7)

The second solution relies on the Theory of Weighted Distributions (TWD) [10]
that allows to incorporate prior knowledge on expectations computed in EM [3].

3 Learning parameters in EvHMM

3.1 What is an EvHMM?

An EvHMM is a particular evidential discrete-latent model enhanced by a
Markov chain [15] in which the states can be partially observable with some
degree of uncertainties. It is defined by two main sets of parameters:
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– Transition matrix A: An entry aij represents the belief mass of observing
subset Sj at time t given that the system was in subset Si at t− 1.

– Observation model: Allows to generate the belief mass on subset Sj at t
given observation xt. Observations are supposed to follow a multivariate
Gaussian Mixture Model (GMM) for each state, characterized by parameters
Φ = {µ, c,Σ} representing the means, covariances and mixing weights.

The symbol θ = {A,µ, c,Σ} represents the set of parameters of an EvHMM.
In this model, the joint BBA (Eq. 6) located in the logarithm of the crite-

rion can not be expressed using only products which makes the estimation of
parameters untractable.

Assumption 1 It is possible to decouple the estimation of the transitions pa-
rameters in the Markov chain from the parameters in the observation model.

This decoupling appears naturally in standard HMM due to factorisation [2,
Chap. 13]. The criterion can thus be rewritten as Qm,m = Qam,m +Qbm,m where

Qam,m is related to the transitions while Qbm,m to the observation model.

3.2 M-step for the Markov chain

Suppose that the transition matrix is made of BBAs mΩz
a (· | St−1), St−1 ⊆ Ωz. A

sequence S = (S1, S2, . . . St . . . ST ), St ⊆ Ωz starting at S1 requires to considering
that S1 is true at t = 1, S2 is true at t = 2 and so on.

Proposition 1. The total support assigned to a sequence S =
(S1, S2, . . . St . . . ST ), St ⊆ Ωz can be quantified by the plausibility on
ΩTz = Ωz × Ωz × . . . Ωz (T times) after conditioning on the sequence.
Given a vacuous BBA on initial states, the total support is given by:

plΩ
T
z (S) =

T∏
t=2

plΩza (St | St−1) (8)

It defines an Evidential Markov Chain (EMC).

Note that the solution is different if the prior is not vacuous. The solution is also
different from the result proposed in [11, Def. 4.1]:

Definition 1 (proposed in [11]). An EMC has been defined as

mΩTz (S) =

T∏
t=2

mΩz
a (St | St−1) (9)

This definition is of practical interest in the sequel since estimating the transition
given plausibilities (Eq. 8), although exact, would lead to incoherences due to
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the presence of BBA in the suggested EM procedure (Section 2). The proposed
criterion has thus the following form:

Qam,m(A(q),A) =

T∑
t=2

∑
Sj⊆Ωz

∑
Si⊆Ωz

mΩz×Ωz
ξ(t,t−1)(Si, Sj | A

(q)) logmΩz
a (Sj | Si,A)

(10)
where mξ(t,t−1) is a BBA defined on two consecutive time slices that represents
the probability mass of observing two given subsets. The maximization of Qam,m
with respect to ma at iteration (q) requires to take the derivative of Qam,m and

using appropriate Lagrangian multipliers (ensuring that
∑
Bm

Ωz
a (B | St−1) =

1,∀St−1 ⊆ Ωz yielding:

m(q+1)
a (Sj,t | Si,t−1) =

∑T
t=2m

Ωz×Ωz
ξ(t,t−1)(Si, Sj | A

(q))∑T
t=2

∑
∅6=Sl⊆Ωz m

Ωz×Ωz
ξ(t,t−1)(Si, Sl | A(q))

(11)

By assuming that the BBAs defined conditionally to subsets are computed by
the DRC based only on BBAs defined conditionally to singletons, it follows that
Eq. 11 allows to estimate |Ωz| × 2|Ωz| parameters.

3.3 M-step for the observation model

In [22], the authors suggested an approach (EM-like) to estimate the parameters
in a GMM using belief functions to represent uncertainty on mixing (discrete
latent) variables. The criterion relies on both BBA and plausibilities generating
inconsistencies for reestimation formulas. We can thus aim at maximizing an
approximation of the support similarly to the Markov chain given by:

Qbm,m(θ(q), θ) =

T∑
t=1

∑
S⊆Ωz

mΩz
γ,t(S | X,A(q), Φ(q)) logmΩz

b (S Rxt, Φ) (12)

where it is important to remark that mγ is made dependent not only on the
current parameters of the observation model (Φ(q)) but also on the EMC (A(q)).
Indeed, the Evidential Forward-Backward algorithm proposed in [15] can com-
pute this quantity, which is related to Eq. 11 by a marginal operation likewise
to standard HMM [12, Eq. 38].

The Generalized Bayesian Theorem (GBT) [21] allows to deduce the BBA
mΩz
b (S Rxt, Φ) given plausibilities conditional to singleton plΩz (xt RSt, Φ) [5]:

mΩz
b (S Rxt, Φ) =

∏
sk∈S

plR(xt R sk, Φ)
∏
sk /∈S

(
1− plR (xt R sk, Φ)

)
(13)

where plR(xt R sk, θ),∀sk ∈ Ωz is given by a GMM [12, Sect. 4A]. Making use of
Eq. 13, the criterion Qbm,m can be rewritten as:

Qbm,m(θ(q), θ) =

T∑
t=1

∑
sl∈Ωz

{
plΩzγ,t(sl | θ(q)) log pl(xt R sl, θ)

+belγ,t(sl | θ(q)) log
(
1− pl(xt R sl, θ)

)} (14)



EvHMM: Learning 7

where belγ,t is the belief function.

Assumption 2 The contribution of “belγ,t(sl | θ(q)) log
(
1 − pl(xt R sl, θ)

)
” is

negligible compared to plΩzγ,t(sl | θ(q)) log pl(xt R sl, θ).

This assumption does not narrow the expression down to a probabilistic formu-
lation because the weight plΩzγ,t(sl | θ(q)) makes use of the information held by
all subsets that contain sl.

For illustration purpose, we consider one Gaussian component for each sin-
gleton state. The criterion can thus be approximated as:

Qbm,m(θ(q), θ) ≈
T∑
t=1

∑
sl∈Ωz

plΩzγ,t(sl | θ(q)) log pl(xt | sl, θ) (15)

The means µk, k = 1 . . .K for the next iteration are obtained by

µ
(q+1)
j =

∑
t pl

(q)
γ,t(sj) xt∑

t pl
(q)
γ,t(sj)

(16)

and the covariances by

Σ
(q+1)
j =

∑
t pl

(q)
γ,t(sj) · (xt − µj) (xt − µj)′∑

t pl
(q)
γ,t(sj)

(17)

Due to component annealing observed in practice [9], the mixture weights were
not considered.

3.4 E-step

mγ,t represents the knowledge on subsets of states after observing X which is
obtained by the evidential forward-backward algorithm [15]. This algorithm can
be written using commonality functions which allows point-wise multiplication
and therefore with limited complexity.

4 Results

4.1 Turbofan engine datasets

The turbofan datasets were generated using the CMAPSS simulation environ-
ment that represents an engine model of the 90,000 lb thrust class [7, 19]. The
authors used a number of editable input parameters to specify operational profile,
closed-loop controllers, environmental conditions (various altitudes and temper-
atures). Some efficiency parameters were modified to simulate various degra-
dations in different sections of the engine system. Selected fault injection pa-
rameters were varied to simulate continuous degradation trends. The datasets
generated possess unique characteristics that make them very useful and suitable
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for developing classification and prognostics algorithms [16]: Multi-dimensional
response from a complex non-linear system, high levels of noise, effects of faults
and operational conditions, and plenty of units simulated with high variability.

In the present paper, the 100 training instances of dataset #1 are con-
sidered to illustrate the EvHMM on a complex system. These instances were
generated by considering one operating condition and one fault mode. The
data were collected from various parts of the system to record effects of
different degradation mechanisms on 21 sensor measurements. The time-series
thus represent different degradation behaviors in multiple units. From sensor
measurements in each instance of the training dataset #1, a health indi-
cator is built as proposed in [13]. The health indicators (HI) are depicted
in Figure 2 where we can observe high variability in terms of noise and
degradation level. For classification purpose, a ground truth of the state
sequences corresponding to each time-series was proposed in [18] which is
used subsequently, and available at https://fr.mathworks.com/matlabcentral/

fileexchange/54808-segmentation-of-cmapss-trajectories-into-states. The
comparison between the ground truth and the estimations provided by both
HMM and EvHMM is made by the Adjusted Rand Index (ARI) [23] that tends
to 1 if the sequence estimated and the ground truth are equal.

0 50 100 150 200 250 300 350 400
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time unit

H
e
a
lt

h
 i

n
d

ic
a
to

r

Dataset #1

Fig. 2. Instances in training dataset #1.

4.2 Influence of a possibly wrong ground truth

The ground truth may be corrupted by errors due, for instance, to the lack
of expertise on the degradation, to the noise on the HI or to some parameter
tuning. To evaluate the influence of labeling errors, we proceed as proposed in
[4, 14] where at each time step t of a training instance, an error probability qt is
drawn randomly from a beta distribution with mean ρ and standard deviation
0.2. Then, with probability qt, the state yt is replaced by a completely random
value ỹt with a uniform distribution over possible states. We thus obtain noisy
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labels corresponding to a crisp random labeling. Note that ρ = 1 corresponds to
the unsupervised case (no labels). The use of prior in HMM was proposed in [14]
with available code at https://fr.mathworks.com/matlabcentral/fileexchange/

55172-continuous-partially-hidden-markov-models-with-uncertain-noisy-labels.

Training and testing sets were then generated to evaluate the EvHMM. 20
instances and the corresponding labels were randomly selected for training, the
remaining 80 are kept for testing (without labels), and this process is repeated 8
times. For each run, the labels were corrupted 10 times with the random process
explained previously. For each value of ρ, 6400 results were thus obtained which
are represented by box plots in Figure 3.
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(a) HMM with noisy labels
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(b) EvHMM with noisy labels

Fig. 3. Performance (ARI) of EvHMM and HMM for the classification of hidden states
with respect to the quantity and quality of prior about states (controlled by ρ).

Figure 3(a) and 3(b) depict the evolution of the performance of both HMM
and EvHMM when noisy labels are considered. It can be observed that the
behavior of the EvHMM is highly different from standard HMM. The former
indeed appears more robust to label switching compared to the latter, with a
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stable performance around 90% until high level of noise (ρ = 0.8), whereas the
performance of the HMM highly decreases with report to the noise level ρ. For
noisy labels, the EvHMM always outperformed the HMM, except for the super-
vised case with ρ = 1 yielding similar results. Note that the low performance
of the HMM in this case was also underlined in [14]. The 75-th percentiles of
the EvHMM’s performance are almost always close to 1 while the boxes for the
HMM follows the decreasing trend of the median with report to the noise level.
Therefore, with an appropriate initialization (made similarly for both models),
the EvHMM may lead to perfect recognition for this dataset.

5 Conclusion and on-going work

EvHMM (Evidential Hidden Markov Model) is a new method for time-series
modelling based on Dempster-Shafer’s theory of belief functions. The main dif-
ference with standard Hidden Markov Models is the consideration of random
disjunctive sets in the Markov chain. The use of belief functions to quantify and
propagate uncertainty and imprecision on subsets of random latent variables al-
lows to represent the gradual evolutions of a state variables of a system which
is monitored through sensors.

Some preliminary results are presented on complex datasets on which the
proposed EvHMM depicts high performance compared to standard HMM in
presence of noisy labels.

In [17], it is shown that the likelihood (termed as a plausibility) can be
exactly computed so that the conjecture and approximations proposed in this
learning procedure to make the solution tractable can be easily checked in real
applications.

The application of the proposed procedure to various evidential latent models
is considered for future work.

Codes will be available on https://fr.mathworks.com/matlabcentral/

profile/authors/7468430-emmanuel-ramasso.
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