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Abstract - In maintenance field, prognostics is recognized 
as a key feature as the prediction of the remaining useful 
life of a system allows avoiding inopportune maintenance 
spending. However, it can be a non trivial task to develop 
and implement effective prognostics models including the 
inherent uncertainty of prognostics. Moreover, there is no 
systematic way to construct a prognostics tool since the 
user can make some assumptions: choice of a structure, 
initialization of parameters… This last problem is 
addressed in the paper: how to build a prognostics system 
with no human intervention, neither a priori knowledge? 
The proposition is based on the use of a neuro-fuzzy 
predictor whose architecture is partially determined thanks 
to a statistical approach based on the Akaike information 
criterion. It consists in using a cost function in the learning 
phase in order to automatically generate an accurate 
prediction system that reaches a compromise between 
complexity and generalization capability. The proposition 
is illustrated and discussed. 

I.  INTRODUCTION 
The growth of reliability, availability or safety of a system is a 
determining factor in regard with the effectiveness of industrial 
maintenance. Thus, the implementation of provisional 
strategies is a good way to improve the availability of 
processes, to ensure the smallest variations of products 
qualities or the direct costs falling [1]. Furthermore, durable 
development involves the integration of economical strategies 
beside social and environmental ones for the optimization of 
processes. This major provocation of triple performance 
outlined a new and interesting research area: concepts like 
corrective or preventive maintenance were progressively 
completed by predictive and proactive maintenance [2] and 
prognostics is now recognized as a key feature in maintenance 
strategies as the estimation of the provisional reliability of 
equipment as well as its remaining useful life allows avoiding 
inopportune spending. 

A central problem can be pointed out: the accuracy of a 
prognostics system is related to its ability to predict the 
degradation of equipment: starting from a "current situation", a 
prognostics tool must be able to forecast the "future possible 
situations". From the research point of view, many 
developments exist to support these prognostics or forecasting 
activities [3, 4, 5, 6]. However, choosing an efficient technique 
depends on classical constraints that limit the applicability of 
the tools: available data-knowledge-experiences, complexity 

and dynamic of systems, available monitoring devices, 
implementation requirements (precision, computation time…). 

Following that and according to literature, neuro-fuzzy 
(NF) systems appear to be very promising prognostic tools: 
NFs learn from examples and attempt to capture the subtle 
relationships among data. NFs are computationally effective 
techniques and are thereby well suited for practical problems, 
where it is easier to gather data than to formalize the behavior 
of the system being studied. Actual developments confirm the 
interest of using NFs in forecasting applications [7, 8]. (Note 
that the purpose of the authors is not to present NFs systems as 
the single tools for prognostics, but as adequate to face with the 
implementation restriction and requirements.) 

Nevertheless and in spite of the capabilities of NFs systems, 
building a NFs model for prediction is not a trivial task: various 
fuzzy structures can be used, the nature and quantity of inputs, 
as well as the form of the membership's functions have to be 
chosen, different learning algorithms exist, a random 
initialization (or expert made) must be done… Moreover, these 
choices are critical as they directly have an impact on the 
accuracy of the predictions of the system. This is the problem 
addressed in this paper: how to build a prognostics system with 
no human intervention, neither a priori knowledge? 

The proposition is based on the use of an evolving NFs 
system that starts from scratch, i.e., for which any assumption 
on its structure is necessary. A statistical approach based on the 
Akaike criterion (AIC) is used in order to automatically 
generate an accurate prediction system that reaches a 
compromise between complexity and generalization capability. 

The paper is organized in four main parts. First, the concept 
of prognostics is clarified in order to provide the lector with the 
limit of this work. As the efficiency of a prognostics system is 
highly dependent on its ability to perform good predictions, the 
relationship between prognostics and prediction is also 
explained and the use of first order Takagi-Sugeno neuro-fuzzy 
systems in prognostics applications is justified. Following that, 
the next section is dedicated to the proposition of a self built 
NFs system for prognostics. For that purpose, the ways of 
building such models are discussed as well as the learning 
aspects that influence the prediction performances and an 
evolving neuro fuzzy system is pointed out. The method to 
balance complexity and generalization capability is then 
presented and the whole is finally illustrated in the last part: 
various experiments on industrial predictions benchmarks are 
used in order to discuss the proposition and to compare it with 
the classical Auto Regressive eXogenous approach (ARX). 
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II.  TOWARDS NF-SYSTEMS FOR PROGNOSTICS 

The concept of prognostics 
Prognostics is traditionally related to fracture mechanics and 
fatigue. It started to be brought up by the modal analysis 
community as an intersting field [9]. In this "meaning", 
prognostics is called the prediction of a system’s lifetime. 
Prognostics can also be defined as a probability measure: the 
chance that a machine operates without a fault or failure up to 
some future time [10]. This "probabilistic prognostics value" is 
all the more an interesting indication as the fault or failure can 
have catastrophic consequences (e.g. nuclear power plant) and 
maintenance manager need to know if inspection intervals are 
appropriate. Some authors introduce prognostics as a process 
that allows the a priori reliability modeling and thereby enables 
to estimate the remaining time to underpass a limit fixed by the 
practitioner or by past experiences [11, 12]. 

Finally, although there are some divergences in literature, 
prognostics can be defined as proposed by the International 
Organization for Standardization: "prognostics is the estimation 
of time to failure and risk for one or more existing and future 
failure modes" [13]. In this acceptation, prognostics is also 
called the "prediction of a system's lifetime" as it is a process 
whose objective is to predict the remaining useful life (RUL) 
before a failure occurs given the current machine condition and 
past operation profile [5]. 

Prognostics and prediction 
All definitions proposed here before assimilate prognostics to a 
"prediction process": a future situation must be caught. It 
obviously supposes that the current situation can be grasped 
(practically, it's the synthesis of a detection process and of 
measured data of the system). Following that and according to 
previous works, two salient aspects of prognostics appear [14]: 

1. prognostics is mostly assimilated to a prediction process 
(a future situation must be caught), 

2. prognostics is based on the failure notion, which implies 
that it is associated with a limit of acceptability (the 
predicted situation must be assessed with regard to a 
referential). 

Thus, prognostics could be split into 2 sub-activities: a first 
one to predict the evolution of a situation at a given time, and a 
second one to assess this predicted situation with regards to an 
evaluation referential. Let's resume (figure 1): 

- identification: a situation is captured by the detection 
process and additional current measures, 

- prediction: the situation is forecasted in time, 
- assessment: a situation is evaluated by the use of 

performance criteria, 
- prognostics: a predicted situation is assessed. 
In addition, a central problem appears: the accuracy of a 

prognostics system is related to its ability to approximate and 
predict the degradation of an equipment; the prediction phase is 
a critical one. Developments of this paper emphasizes on this 
aspect of prognostics. In pratice, the prediction step must be 
supported by operational tools which choice is important. 
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Fig. 1 Prognostics as a prediction and assessment process [14] 

First order TS systems for prediction / forecasting
The aim of this part is not to dress an exhaustive overview of 
prediction approaches but to explain the orientations of works 
that have been taken. For more details on prognostics 
approaches, see [6, 15]. 

Real systems are complex and their behaviour is often non 
linear, non stationary. These considerations make harder a 
modelling step, even impossible. Yet, a prediction tool must 
deal with it. Moreover, monitoring systems have evolved and it 
is now quite easy to online gather data. According to all this, 
data-driven approaches have been increasingly applied to 
prediction problems in general and to machine prognostics in 
particular, and works emphasize on the interest of using hybrid 
systems for prediction purpose. More precisely, first order 
Takagi-Sugeno (TS) fuzzy models have shown improved 
performances over conventional approaches [7, 8], and they 
appear to be adequate to perform the degradation modeling 
step of prognostics [11]. 

First order Takagi-Sugeno systems: principle 
A first order TS model can be seen as a multi-model structure 
consisting of linear models that are not necessarily independent 
[16]. It is based on the fuzzy decomposition of the input space. 
For each part of the state space, a fuzzy rule can be constructed 
to make a linear approximation of the input. The global output 
is a combination of the whole rules.  

A TS model is composed of 5 layers. Consider figure 2. 
This model has two inputs variables. Two membership 
functions (antecedent fuzzy sets) are assigned to each one of 
them. The TS model is finally composed of two fuzzy rules. 
(That can be generalized to the case of n inputs and N rules). 
The rules perform a linear approximation of inputs:

1 n
i 1 i n i

i i0 i1 1 in n

R : if x is A and ... and x is A
THEN y =a +a .x +...+a .x

  (1) 

where Ri is the ith fuzzy rule, N is the number of rules, 
Xt = [x1,  x2,  …,  xn]T is the input vector, Ai

j denotes the 
antecedent fuzzy sets, j=[1,n], yi is the output of the ith linear 
subsystem, and aiq  are its parameters, q=[1,n]. 

In layer 1, let assume Gaussian antecedent fuzzy sets to 
define the regions of fuzzy rules in which the local linear sub-
models are valid: 

i i* i 2
j jj
� =exp -4 x-x (� )� �

� �
� �

  (2) 
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Fig. 2 A First-order TS model 

where σi
j is the spread of the membership function, and xi* is 

the focal point (center) of the ith rule antecedent. The firing 
level (τi) and the normalized firing level (λi) of each rule are 
obtained as follows (layers 2 and 3): 
� =� (x )×...×� (x )i i1 1 in n , N

i i jj=1� = � ��   (3) 

The model output is the weighted averaging of individual 
rules' contributions (layers 4 and 5): 

TN N
i i i e ii=1 i=1y= � y = � x �� �  (4) 

where πi = [ai0,  ai1,  …,  ain] is the vector parameter of the ith

sub-model, and xe = [1  XT]T is the expanded data vector. 
A TS model has two types of parameters. The non-linear 

parameters are those of the membership functions (the center 
and the spread deviation for a Gaussian membership). These 
kinds of parameter are referred to as premise or antecedent 
parameters. The second types of parameters are the linear ones 
that form the consequent part of each rule (aiq in eq. 1). 

III.  A SELF BUILT NF SYSTEM FOR PREDICTION 

Fitting a neuro-fuzzy systems: critical steps 
Assuming that a TS model can approximate an input-output 
function, in practice, this kind of model must be tuned to fit to 
the studied problem (prediction in our case). This implies at 
least four complementary tasks to be performed. 

1. Choice of input signals. This step aims at determining 
which variables are relevant to model the desired input-output 
relation, i.e., to identify the exogenous variables of the 
phenomenon. It can be expert made or result from processing 
techniques (feature extraction and selection). This problem is 
not addressed in this paper, but for subsequent explanations, let 
note X = [x1, x2, …, xn] the vector of exogenous variables that 
enables to estimate yd, the endogenous variable. 

2. Inputs definition. Time series predictions are usually 
made by considering some past values of each variable. In 
order to make a prediction, one has to select the set of 
regressors for modeling (ϕs), within the global set of potential 
regressors (ϕ) of both the exogenous and endogenous variables. 
Formally, and assuming h the horizon of prediction, θ  the 
vector parameter of the model, at any time t, prediction for time 
t+h can be expressed as in equation 5. 

3. Design of the structure. In a few worlds, one has to 
choose the number and type of membership functions for each 
input (layer 1) and the number of rules which depends on the 
numbers of connections in between layers 2 and 3. The design 
of a TS model is thereby quite flexible. Nevertheless, choices 

made at this step directly influence the accuracy performance 
of the model as well as its complexity (as more membership 
functions and rules are chosen, as more parameters have to be 
tuned). Note that thanks to its generalization capabilities, 
Gaussian membership's functions are usually used. 

4. Fitting the parameters. The parameters of a TS model 
must be tuned to fit to the studied problem. This is the aim of 
the learning procedure and different approaches can be used. In 
all cases, the consequent parameters of the system (the linear 
ones) are tuned by using a least squares approach. 

d d y
1 1 x1s s

n n xn

y t 1 y t q
x t 1 x t p

y t h f
x t 1 x t p

ϕ θ ϕ ϕ

− −�
	 − −	+ = ∈ = 

	 − −	�

�
�
�
�

( ) ( )
( ) ( )ˆ( ) ( , ),
( ) ( )

 (5) 

Reducing human influence thanks to evolving algorithms 
Whereas the first of these four steps is not studied in this paper, 
the second one is discussed in section IV. Followings 
paragraphs present the ways of identifying TS model and 
enables to discuss the above points 2 and 3. 

The simplest method to construct a TS fuzzy system is the 
"mosaic scheme": the user defines the architecture of the model 
and the antecedent's parameters values [17]. This approach 
must be leaved aside to reduce the influence of practitioner. 
Gradient descent algorithms have been adapted to the TS 
structure in order to calculate the antecedent parameters by the 
standard back-propagation procedure (see for example the 
ANFIS system proposed by [18]). In the same way, genetic 
algorithms can be used to compute the fitting of antecedent 
parameters. These approaches require the user to choose the 
number of membership's functions, and to initialize various 
algorithms parameters. To face with it, clustering approaches 
(and some genetic algorithms) have been adapted to neuro-
fuzzy systems, the basic idea being to use a learning data set to 
automatically generate the adequate structure of the TS model 
(number of membership functions, and of rules). However, in 
practical applications, the learning process is effective only if 
sufficient data are available and, when trained, such a TS 
model is fixed. Thereby, if the behavior of input and/or output 
changes significantly with regards to the learning phase (like in 
a degradation process), predictions can suffer from the lack of 
representative learning data. In order to continuously integrate 
the dynamic of signals, evolving algorithms have finally been 
developed [16, 19]. These algorithms are based on clustering 
methods and therefore, do not require the user to define the 
structure of the TS model. In opposition to all previous 
approaches, they do not need a complete learning data set to 
start the identification process of the TS model (start from 
scratch): they have a flexible structure that evolves with the 
data gathered from the system. Data are collected continuously 
which enables to form new rules or to modify an existing one. 

This kind of self constructing evolving predictors are 
thereby very interesting for prognostics applications where it is 
very difficult, even impossible, to formalize the behavior of the 
system. A particular evolving TS model is that one proposed by 
[16, 20]: the evolving extended TS system (exTS). 
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Theoretical exTS backgrounds 
The learning procedure of exTS is composed of two phases: (1) 
an unsupervised data clustering technique is used to adjust the 
antecedent parameters, (2) the supervised recursive least 
squares learning method updates consequent parameters. Both 
algorithms can not be fully detailed in this paper.

The exTS clustering phase processes on the global input-
output data space: z = [xT ; yT ]T , z ∈ Rn+m, where n+m defines 
the dimensionality of the input/output data space. Each one of 
the sub-model of exTS operates in a sub-area of z. This 
clustering algorithm is based on the calculus of a potential 
which is the capability of a data to form a cluster (antecedent of 
a rule). The procedure starts from scratch and, as more data are 
available, the model evolves by replacement or upgrade of 
rules. This enables the adjustment of the antecedent parameters. 

The exTS model is used for online prediction: at step k, 
equation 4 can be expressed as follows: 

T TN N
k 1 i i i e i k ki 1 i 1y y xλ λ π ψ θ+ = == = =� � ˆˆ  (6) 
T T T T T
k 1 e 2 e n n k� =[� x , � x ,...,� x ]  is a vector of the inputs, weighted 

by normalized firing (λ) of the rules, and T T T T
k 1 2 N k� =[� , � ,...,� ]ˆ ˆ ˆ ˆ

are parameters of the sub-models. 
An estimation of the parameters based on k data samples is 

obtained by applyong the following RLS procedure: 
T

k k 1 k k k 1 k k 1C y k 2 3θ θ ψ ψ θ− + −= + − =ˆ ˆ ˆ( ) ; , ,...  (7) 
T T

k k 1 k 1 k k k 1 k k 1 kC C C C 1 Cψ ψ ψ ψ− − − −= − +  (8) 

with initial conditions T T T T
1 1 2 N k 10 C Iθ π π π= = = Ω[ , ,..., ] , , 

where Ω is a large positive number, ΩΙ a R(n+1)×R(n+1) co-
variance matrix. 

Complexity of an exTS system 
The architecture of an exTS neuro-fuzzy system is singular in 
that the number of rules is equal to the number of membership's 
functions by input. Thereby and assuming that exTS is a first-
order TS model, the number of linear parameters can be simply 
determined by the relation nbl = N×(n+1), where, N is the 
number of rules and n, the number of inputs. As being Gaussian, 
each membership has 2 parameters to be tuned and the total 
amount of non-linear parameters is expressed by nbnl = 2×n×N. 

The total number of parameters of an exTS can be 
interpreted as an indicator of the complexity of the model: 

exTS l nlnb nb nb N 3 n 1= + = × +( )  (8) 

IV.  BALANCING COMPLEXITY AND 
GENERALIZATION CAPABILITY 

Problem statement 
According to previous work [21, 22], exTS is an effective 
forecasting tool: it can perform accurate predictions while 
minimizing the user's assumptions. Nevertheless, whereas the 
number of rules is automatically computed in the clustering 
phase of the exTS learning procedure, the number of inputs 
must be set by the practitioner (which is the right set of 
regressors? – see the second critical step defined in previous 

page). According to equation 8, this implies a more or less 
complex fuzzy structure and the prediction performance 
follows from it. Thereby, the purpose of this section is to 
propose a way to automatically generate an accurate exTS 
prediction system that reaches a compromise between 
complexity and generalization capability. The approach is 
based on the Akaike Information Criterion (AIC). 

Akaike Information Criterion 
Akaike Information Criterion (AIC) has been introduced in 
order to provide a mathematical formulation of the principle of 
parsimony in the field of model construction [23]. This 
criterion enables to judge from the quality of fit of an estimator 
and can be used with prediction models. It is defined as follows: 

( )AIC S log L 2 p= × + ×  (9) 
where, S is the number of data samples used when fitting the 
model, p, the number of independently adjusted parameters 
within the model, L a likelihood function of the model, i.e., a 
loss function that traduces the accuracy of past estimations: 

S 2
d

i 1

1L y y
S =

= −� ˆ( )  (10) 

According to equations 9 and 10, AIC is composed of two parts. 
The first one (S.log(L)) enables to weight the importance of the 
accuracy of the estimator (/ predictor), whereas the second one 
(2×p) aims at weighting the complexity of the model: 

- AIC is as low, as the accuracy is good (logarithmically), 
- AIC is as high, as the number of parameters is high 

(linearly). 
Various identification / prediction models can be ranked 

according to their AIC, the more suitable been that of the 
lowest ones (suitable in the sense of "compromise in between 
accuracy and complexity"). Consider figure 3 for an illustration. 

Note that the AIC criterion can be implemented without the 
aid of subjective judgment. 
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Fig. 3 Evolution of AIC 

Balancing complexity and accuracy of an exTS predictor 
As stated in equation 5, in order to build a prediction model, 
one has to define the set of regressors of both the exogenous 
and endogenous variables. 
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Let note O = {px1, px2, …, qy} the order of the model 
containing the number of past values used for prediction for 
each input. Depending on this choice, many forecasting systems 
can be constructed. In addition, and thanks to equation 8, the 
AIC of all these potential models can be easily computed 
during the learning phase. Following that, one is able to 
determine which model presents the lowest AIC and is thereby 
providing a compromise between complexity and accuracy. 
This procedure is depicted in figure 4. 
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Fig. 4 Procedure to build a "suitable" exTS 

V.  EXPERIMENTS AND DISCUSSION 

Object 
The aim of previous sections was to point out a suitable 
prediction technique for prognostics purpose, for which any 
assumption or intervention of the practitioner is necessary, i.e., 
to propose a way to go through self built systems. That can be 
reached thanks to two aspects that are illustrated in this section: 

- the evolving exTS model is an accurate prediction tool 
that outperforms classical approaches, 

- the procedure of input selections derived from the AIC 
criterion enables to automatically generate a fuzzy 
architecture that balance accuracy and complexity. 

The Auto Regressive eXogenous approach (ARX) has been 
used for comparisons: this model is well known and extensively 
employed in modeling and prediction of times series. Given a 
set of inputs xi, an ARX prediction can be expressed as: 

n
i i

i=1
A(w). y(t)= B w x t�ˆ ( ). ( )  (11) 

where, q1 y
1 qy

pxi 1 i i
i 1 pxi

A w 1 w w

B w w w

w x t x tτ

α α

β β

τ

−−

−−

−

= + + +

= + +

= −

�

�

( )

( )

. ( ) ( )
As for the exTS model, let note O = {px1, px2, …, qy} the 

order of an ARX model, with total amount of parameters: 
ARX y x x1 n

nb q p p= + + +�  (12) 

Two real experimental data sets have been used for tests. In 
both cases, the aim of predictions is to approximate a physical 
phenomenon by learning data gathered from the system. That 
can be assimilated to the prediction step of the prognostics 
process. 

First data sets: industrial dryer 
The first data set is issued from an industrial dryer. It has 

been contributed by Jan Maciejowski from Cambridge 

University [24]. Three exogenous variables (x1, x2, x3) are 
linked to one endogenous variable (y): 

- x1: fuel flow rate, 
- x2: hot gas exhaust fan speed, 
- x3: rate of flow of raw material, 
- y: dry bulb temperature. 
This data set has been used to evaluate the ability of an 

exTS system to predict a non-linear function. This has been 
made with comparison with the ARX model. For both models, 
the procedure of input selection based on AIC criterion has 
been applied in order to identify the a priori more suitable 
structure, i.e., that one that balances complexity and accuracy 
(let name them the exTScomp and ARXcomp models). According to 
equations 8 and 12, the complexity of the models can be easily 
calculated. The prediction performance was assessed by using 
the root mean square error criterion (RMSE) which is the most 
popular prediction error measure and the coefficient of 
determination (R2) which is a measure of how well future 
outcomes are likely to be predicted by the model: 

The data set contains 876 samples. The learning phase was 
stopped after 500 data samples, and the remaining samples 
served to test the models at one step ahead. Results are shown 
in table 1 and figure 5. 

ARXcomp exTScomp
O = {px1, px2, px3, qy} { 9 , 1 , 6 , 6 } { 1 , 1 , 2 , 3 } 

nb parameters p 22 167 
AIC 1350,7 -1146,8 

RMSE test 4,6097 0,7748 
R2 test -4,4846 0,8451 

Table 1. Industrial dryer - simulation results 

According to accuracy performance indicators and as 
shown in figure 5, there is no doubt that the ARX model is not 
able to catch the behaviour of the dry bulb temperature 
(R2=-4,4846 !), whereas the exTS model presents good results, 
even if partially defined thanks to the AIC criterion approach. 

Considering our final applicative objective (prognostics of 
failures), to be capable to carry out predictions on such a signal 
is of good omen: real systems are complex and have generally a 
nonstationary and non-linear behaviour, what makes difficult a 
modelling phase. Working with this data series constitutes a 
first step to the specification of a prognostics system able to 
take into account the dynamic of real systems without prior 
knowledge and human intervention. 

Second data sets: air temperature in a mechanical system 
The second data set is issued from an hair dryer. It has been 
contributed by W. Favoreel from the Kuleuven Unversity [25]. 

The air temperature of the dryer is linked to voltage of the 
heating device. This data have inside one exogenous variable 
(x1) and one endogenous variable (y): 

- x1: voltage of the heating device, 
- y: air temperature. 
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Fig. 5 Industrial dryer – predictions at one step ahead 

This data set has been used to evaluate the ability of the 
input selection procedure based on AIC to reach a compromise 
between generalization and complexity. Similarly to the first 
data set, the procedure has been applied to both models ARX 
and exTS and leaded to two a priori more suitable structures 
ARXcomp and exTScomp. In order to extract more solid 
conclusions from the tests and expand the comparison to a 
same model (and not from one to another), the most accurate 
models have also been searched by scanning all the set of 
possible inputs (thanks to the set of potential regressors ϕ). Let 
name them the ARXaccur and exTSaccur models. 

The data set contains 1000 samples. The learning phase was 
stopped after 500 data samples, and the remaining samples 
served to test the models at one step ahead. Results are shown 
in table 2 and figure 6. 

ARXcomp exTScomp
O = {px1, qy} { 18 , 2 } { 1 , 3 } 

nb parameters p 20 117 
AIC -6,5405 -1775 

RMSE test 0,1066 0,0962 
R2 test 0,9820 0,9854 

ARXaccur exTSaccur
O = {px1, qy} { 85 , 1 } { 4, 3 } 

nb parameters p 86 242 
AIC -6,3487 -1116 

RMSE test 0,0819 0,0402 
R2 test 0,9894 0,9974 

Table 2. Air temperature - simulation results 

Results enable to notice that, whatever the model of 
prediction is, the accuracy grows as the complexity increases: 
the more the RMSE is near from zero (or R2 near from 1), the 
more parameters the model has. This seems to mean that 
accuracy and complexity are actually correlated and that there 
is no way to maximize the satisfaction on both criteria. 

Following that, the interest of using the automatic input 
selection based on AIC can be examined. Whereas the most 
accurate prediction model for both systems (ARXaccur and
exTSaccur) has much more parameters than this one obtained by 

the input selection procedure (ARXcomp and exTScomp), the 
accuracy of prediction are quite the same. As for an example, 
consider figure 7 that shows the probability density function 
(pdf) of the error of prediction for exTScomp and exTSaccur
models. Both pdf curves are much closed together. In other 
worlds, the proposed approach really enables to balance 
complexity and generalization capability and directly choose an 
adequate prediction structure. 

Remind that it can be very difficult to define a prediction 
structure for prognostics purpose. The proposed approach, 
combined with evolving capability of the exTS system provides 
practitioners with a simple methodology to directly go through 
a suitable prediction system (self built). 
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Fig. 6 Air temperature – input selection results 
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Conclusions 
The purpose of the work reported in this paper is to point out 
an accurate prediction technique to perform the approximation 
and prediction of the degradation of an equipment. Indeed, in 
one hand, choosing an efficient technique for prognostics 
depends on constraints that limit the applicability of the tools, 
and in the other hand, there is no systematic way to construct a 
prognostics tool since the user can make some assumptions: 
choice of a structure, initialization of parameters… This is the 
problem addressed in the paper: how to build a prognostics 
system with no human intervention, neither a priori knowledge? 

According to real implementation restrictions, neurofuzzy 
systems appear to be well suited for practical problems where it 
is easier to gather data (online) than to formalize the behavior 
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of the system being studied. More precisely, the paper points 
out the accuracy of the exTS model in prediction. The exTS 
model has a high level of adaptation to the environment and to 
the changing data. It is thereby an efficient tool for complex 
modeling and prediction. Moreover, any assumption on the 
structure of exTS is necessary, which is an interesting 
characteristic for practical problems in industry. 

Nevertheless, practitioners have to choose the inputs of a 
NF predictor. In order to face with it, an approach based on the 
use of the AIC criterion is proposed. It consists in building a 
cost function that takes into account simultaneously the 
accuracy of predictions and the complexity of the model. 
Various inputs can easily be tested in a computational 
procedure in order to automatically generate an accurate 
prediction system that reaches a compromise between 
complexity and generalization capability. 

Finally, the whole paper aims at proposing a self-built 
system for prognostics. Developments are at present extended 
in order to test the proposition on real degradation data. In 
addition, other criterions are studied in order to directly 
integrate the underlying idea of the procedure into the learning 
algorithms. 
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