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Abstract. In the frame of Thermodynamics of irreversible process, a model describing
the thermomagneto-mechanical behavior of a single crystalof Ni-Mn-Ga is built. The
choice of internal variables is linked to the physics of the problem (fraction of marten-
site variants, fraction of Weiss domains, magnetization angle). The simulations permit to
describe the paths in the space (stress, temperature, magnetic field) in agreement with ex-
perimental tests. A special attention will be devoted to thecontrol laws required to use
these functional materials as sensors or actuators.

1 Introduction

The interest of Magnetic Shape Memory Alloys (MSMAs) compared with the classical Shape Mem-
ory Alloys (SMAs) is their possible activation not only by stress and temperature actions but also
by magnetic field. A model of rearrangement process of martensite platelets in a non-stoichiometric
Ni2MnGa MSMA single crystal under magnetic field and (or) stressactions has been proposed by the
same authors in [1]. The aim of this following paper is to extend these works purpose to the anisother-
mal behavior when including the process of martensite platelets reorientation and phase transformation
austenite⇋ martensite.

Firstly, MSMA present the same properties as classical shape memory alloys but with the addition
of a magnetic field sensibility. Several models are then devoted to the variant reorientation process.
Some relatively old models are based on simple energy function [2], energy minimization [3,4] or
using a magnetic stress to disconnect mechanical and magnetic behaviours [5]. One of the first ther-
modynamic approaches was built in [6] and the addition of internal variables in the thermodynamics
of irreversible processes was proposed in [7,8] A very interesting experimental study concerning the
shape memory and martensitic deformation response of Ni2MnGa single crystals is performed by
Callaway et al. [9]. Few papers relate the global modeling ofMSMA including temperature, stress and
magnetic field effects in the same formalism. The thermodynamical approach proposed in this paper
is a relevant way to model the complex behaviour of MSMA in a global and macroscopic form.
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2 Gibbs free energy expression associated with a
magneto-thermo-mechanical loading

The Gibbs free energyG expression can be split into four parts : the chemical oneGchem (generally
associated with the latent heat of the phase transformation), the thermal oneGtherm (associated with
the heat capacity), the mechanical oneGmech and the magnetic oneGmag.

G(Σ, T,H,zo, z1, . . . , zn, α, θ, αA) = Gchem(T, zo) +Gtherm(T )

+Gmech(Σ, zo, z1, . . . , zn) +Gmag(H, zo, . . . , zn, α, θ, αA)
(1)

where the state variables are:

– Σ = diag(0, σ, 0) the applied stress tensor,
– H = H · x the magnetic field,
– T the temperature.

The internal variables are:

– zo the austenite volume fraction,
– zk the volume fraction of martensite variant Mk (k = 1 . . .n, i.e. the martensite presentsn different

variants),
– α the Weiss domain proportion inside a martensite variant (see figure 1),
– αA the Weiss domain proportion inside the austenite phase A,
– θ the rotation angle of the magnetization vectorM under the magnetic fieldH.

The coupling between mechanic and magnetism is made by the choice of internal variables, for in-
stancezi, and not by the addition of an interaction termGmech−mag in the free energy.
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Fig. 1. Representative Elementary Volume (REV) when the sample is composed by only two martensite variants
M1 andM2 (z = z1 and 1− z = z2).

For a Ni-Mn-Ga single crystal presenting three variants of martensite and a mother phase (cubic
austenite⇋ tetragonal martensite), under thermal, magnetic loading and mechanical one, the Gibbs
free energy expression can be:

ρG(H, σ, T, z0, z1, z2, z3, α, θ, αA) = uM
o − T sM

o + zo(∆U − T∆S )

+Cp

[

(T − To) − T · log

(

T
To

)]

−
σ

2

(

(z1 + z3)
(

β2
a − 1

)

+ z2

(

β2
c − 1

))

−
1
2
σ2

E
+ Azo(1− zo) + K(z1z2 + z1z3 + z2z3) − µ0ms(T )

[

z1

(

(2α − 1)H −
ms(T )
2χa

(2α − 1)2
)

+ (z2 + z3)

(

sin(θ)H −
ms(T )
2χt

(sin(θ))2

)

+z0

(

(2αA − 1)H −
ms(T )
2χA

(2αA − 1)2
)]

(2)
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with
3
∑

k=0
zk = 1, uM

O andsM
O the internal and entropy of martensite.ms(T )

m0
= tanh

[

Tcms(T )
mOT

]

.

Cp is the heat capacity,E the Young modulus,βa =
a
a0

, βc =
c
a0

. a0 lattice parameter of A.a
andc lattice parameters of M;A andK constant belonging to the mechanical part of free energyG.
Tc is the Curie temperature andm0 the magnetisation at 0K. In order to simplify the model,m0 and
Tc parameters are considered as the same for austenite and martensite.µ0, χa andχt are the vaccum
magnetic permeabilty, the magnetic susceptibilities in the easy and transverse axis.

3 Clausius-Duhem inequality

In the classical frame of Thermodynamics of Irreversible Process, the total strain iny direction, the
magnetization inx direction, and the entropy can be written as:

ε = −
∂ρG
∂σ

µom = −
∂ρG
∂H

s = −
∂ρG
∂T

(3)

A magneto-thermal effect takes place in the entropy expression due to the temperature dependence of
ms. This effect will be neglected in the present paper. The thermodynamical forces associated with the
progression of the Weiss domains widthsα, αA and rotation angleθ are:

∂ρG
∂αA

= 0
∂ρG
∂α
= 0

∂ρG
∂θ
= 0 (4)

The choice of the free energy expression confirms that the pure magnetic behavior is considered
as reversible. Actually, the magnetization curves of the two martensite variants have no hysteresis on
the figure 2 taken from [10].

Fig. 2. Magnetization curves measured in easy (free sample) and hard (sample constrained by stress) magnetiza-
tion directions [10].

Finally, the thermodynamical forces associated with thezi martensite and austenite fractions are:

π
f
i = −

∂ρG
∂zi

for i = 0, 1, 2, 3 (5)

The mechanical behavior is highly irreversible, hence the Clausius-Duhem inequality has to be written:

dD = −ρdG − µomdH − εdσ − sdT ≥ 0 (6)
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wheredD is the dissipation increment. This expression can be reduced to:

dD = π f
odzo + π

f
1dz1 + π

f
2dz2 + π

f
3dz3 ≥ 0 with

3
∑

k=0

dzk = 0 (7)

3.1 kinetic equations (example with two variants)

In the previous inequality, three of the four variables are independent and the evolution depends on
the configuration of the forces. For example, if the sample contains only two variants (zo = z3 = 0)
during the evolution at constant temperature, thenz = z1 = 1− z2 and the Clausius-Duhem inequality
becomes:

dD = π f
1dz1 + π

f
2dz2 ≥ 0

dD = (π f
1 − π

f
2)dz1 ≥ 0

(8)

Fig. 3. Thermodynamical force [π f
1 − π

f
2](σ, α, θ) as a function of theM1 martensite fractionz ∈ [0, 1].

An external loop, e.g. a complete rearrangement fromz = 0 to z = 1 (path a) and fromz = 1 to
z = 0 (path b), is reported on figure 3. Rearrangement begins when(π f

1 − π
f
2) ≥ πcr(T ) for the path a

and when (π f
1 − π

f
2) ≤ −πcr(T ) for the path b. After the rearrangement start, the behavioris modeled

according to the following kinetic equations:

π̇
f
1 − π̇

f
2 = λż with: ż = ż1 = −ż2 (9)

λ is considered as a constant value in the present paper. But, in [1], the value ofλ was considered
depending on the previous strain history. The concept of memorized point was introduced and a differ-
ence appears between partial loops and major loops. Moreover, πcr(T ) is a function of the temperature
as it was shown in [11]. A linear dependence is used in this paper asπcr(T ) = πo

cr + kcr(Ao
S − T ).

Parameters are summarized in the table 1 with∆S = 2∆U
As+Ms , A = −∆S (As−Ms)

2 andλA = −∆S (A f −Ms).

Ao
S = 309.4 K Mo

S = 301.7 K A = 5.48.105 J/m3

ao = 5.84 Å a = 5.95 Å c = 5.60 Å
E = 5.109 Pa λM = 4.105 K = 0
χa = 5 χt = 1.05 χA = 1.76

Tc = 370 K mS 0 = 710 kA/m λA = 1.26.106 J/m3

πo
cr = 12.103 J/m3 kcr = 800 Pa/K

Table 1.Selected material parameters.
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Fig. 4. Simulation results of thermal action with or without magnetic field and mechanical stress.

Fig. 5. Experimental results of strain and magnetization under magnetic action and constant stress (σ = −1 MPa)
at different temperature levels (taken from [12]).

A numerical simulation was done with the help of the Matlab/Simulinkr software. The powerful
of the modeling approach presented here is that either mechanical (pseudo-elasticity and martensite re-
orientation), thermal, and magnetic effects can be taken into account in the same numerical simulation.
Some different cases will be considered in this section.
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Fig. 6. Simulation results of strain and magnetization under magnetic action and constant stress at different tem-
perature levels (σ = −1 MPa, experimental results in F. 5).

4 Conclusion

The purpose of this paper was to propose a full single crystalmodeling of Magnetic Shape Memory
alloys including the magneto-thermo-mechanical coupling. In the frame of the thermodynamics of
irreversible processes, a model was proposed using a Gibbs free energy expression. As it can be seen
in (2), the model is quite complicated and its use may be difficult. Nevertheless in practical applications
and for specific conditions, some reductions can be made (isothermal process on 2D motions) and in
such a case, the usefulness of the model is shown. For example, in the paper [13], an extension of the
quasi-static isothermal model to the dynamical case was made, including the magnetic circuit creating
the magnetic field and a dynamical load applied to the MSMA sample. A thermodynamic approach
with hamiltonian modeling was used by the authors to design actuators [13] and new control laws [14].
Moreover, the thermodynamical approach proposed in this paper to model a specific MSMA can be
easily extended to other materials, such as future MSMA monocristals and polycristals. Finally, this
global model can be a basis to model MSMA in a Finite Element Analysis to design new mechanical
structures for actuation and sensing applications.
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