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Introduction

Optomechanics in photonic/phoXonic crystal slab cavity
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Safavi-Naieni et al., PRL 112 153603 (2014): phoXonic bandgap

for photons (190 — 210 THz) and phonons (7 — 9.5 GHz).
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Introduction

Related structures: nanoscale waveguides

e Chalcogenide rib waveguide, Pant et al., Opt. Express 9, 8285 (2011);
Merklein et al., Nature Communications 6, 6396 (2015)

" As,S, waveguide Optical mode Acoustic mode

@ Silicon waveguide, Rakich et al., Phys. Rev. X 2, 011008 (2012); Van Laer
et al., Nature Photonics 9, 199 (2015)
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Introduction

Problem considered: photon-phonon interaction

The consideration of nanoscale waveguides and cavities calls for a
renewed view at acousto-optical and opto-acoustic interactions.

@ Plane wave theories are not very useful anymore,

@ The presence of surfaces and interfaces must be taken into
account,

o All-optical generation of acoustic phonons can be observed at
high power densities enabled by strong confinement.

Our approach: we formulate a Lagrangian (or energetic, or
variational) picture of photon-phonon interaction under

phase-matching.
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Sound & light interaction

Representation of the interaction problem

Basic idea

Perturbation of the optical polarization (dielectric tensor)
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Sound & light interaction

Scattering

(a) Photo-elastic effect
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Pennec et al., Nanophotonics 3, 413 (2014)
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Sound & light interaction

Lagrangian for Sound & light interactions

L= /V AV(EM) + /V dV(mech.) + /V dV(iner.)

N——
SE| |éu SEL |éu
Ml RP PE  ES

(EM) = S(E-D ~ B-H)

1 .. 1
(mech.) = S PUi i = = Ui jCijii U,

(inter.) = —eg pijki Di Djuy g

Acousto-optics PE  photoelastic

Ml moving interface  Laude & Beugnot, New
J. of Physics 17, 125003

Opto-acoustics ES  electrostriction (2015)
RP  radiation pressure
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Sound & light interaction

Brillouin scattering: coupling coefficients

@ Assume both the photonic mode and the phononic modes are
known, then we can compute coupling coefficients

e PE coupling
w [, AV €opijia DiDjuy,
8PE = —5
2 [,dVE-D
e MI coupling
W fz dsS u, - (A€|E|||2 — Ae_lDi)
EMI=3 J,dVE-D

o If there are well defined photonic and phononic modes,
evaluation is straightforward.

o Criticism: if there are many phononic modes available (e.g., in
extended membranes), how do we obtain them?
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Sound & light interaction

Electrostriction of acoustic phonons

@ Since we can select a particular photonic mode of the cavity,
can we know exactly which phonons are excited by light?

@ Idea: we can obtain the elastodynamic equation (for elastic
waves, or acoustic phonons) subject to an optical force.

@ The bulk optical force is given by electrostriction

82u,-
Pap — (Ciuni)y = —Ti;
with the ES stress tensor TE?S = —%eopk,,-jDkD/.

Beugnot et al., PRB 86, 224304 (2012)

@ What about the surface optical force?
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Sound & light interaction

Surface contribution to electrostriction: radiation pressure

@ The variation of the electromagnetic energy stored in the
cavity is given by

5E%/ updS Fs
X

with the surface force (pressure) Fs = %(AGE”Z — Ae™1D?).

The surface integral is added to the variational formulation of
the elastodynamic equation:

_92//PU§Ui+/‘/U;JCUk/Uk,I:/\/u:{,jt?s“‘/zuzds Fs

where ' is the virtual displacement.

@ These equations can be solved by a finite element method
(FEM).
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Electrostriction in photonic crystal cavity

e Dimensions from Gavartin et al, PRL 106 203902 (2011):
L3 cavity in an InP membrane
(h =260 nm, a =420 nm, r = 90 nm).
Optical index n = 3.17.

(a) Optical geometry (b) Elastic geometry
PML: perfectly matched layer
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Photonic mode

Fundamental TE mode at A = 1.55 um.
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Phonon energy in the photonic crystal slab cavity

Phonon energy density (a.u.)
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Phonon displacement distribution at the main resonances
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@ Mostly thickness extensional motion (u;).

@ Phonon distribution at 9.4 GHz is (weakly) confined laterally
in response to the optical force distribution.

@ These phonons are not normal modes of the holey membrane.
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Photonic fibers and waveguides
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fundamental TE mode, A = 1.55 um



Photonic fibers and waveguides

Waveguide deformation within one acoustic period

(a) mode #2 (b) mode #3




Photonic fibers and waveguides

and PE modulations (acousto-optics)
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Photonic fibers and waveguides

Phonon generation including bulk and surface contributions

Lineic phonon energy (nJ/m)
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Conclusion

Conclusion

e Lagrangian (energetic, variational) formulation of

photon-phonon interaction in dielectrics
Laude & Beugnot, New J. of Physics 17, 125003 (2015)

o Leads to efficient finite element implementation
o Both (bulk) electrostriction and radiation pressure are included.
e Applies to both waveguides and cavities

o Explains very well Brillouin scattering gain in optical fibers

@ Various acoustic phonons (elastic waves) can be excited
all-optically, including surface waves

@ Comparison with experiments in optomechanical cavities still
pending
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