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Abstract 

 
This paper deals with the proposition of a prognostic approach that enables to face 
up to the problem of lack of information and missing prior knowledge. Developments 
rely on the assumption that real data can be gathered from the system (online). The 
approach consists in three phases. An information theory-based criterion is first used 
to isolate the most useful observations with regards to the functioning modes of the 
system (feature selection step). An evolving neuro-fuzzy system is then used for on-
line prediction of observations at any horizons (prediction step). The predicted 
observations are classified into the possible functioning modes using an evidential 
Markovian classifier based on Dempster-Shafer theory (classification step). The 
whole is illustrated on a problem concerning the prediction of an engine health. The 
approach appears to be very efficient since it enables to early but accurately estimate 
the failure instant, even with few learning data. 
 
 
Keywords: Prognostic, Choquet Integral, Neuro-Fuzzy Systems, Evidential Theory. 
 
 
1. Introduction 
 
Prognostic is now recognized as a key process in maintenance strategies as the 
estimation of the remaining useful life (RUL) of an equipment allows avoiding 
critical damages and spending. Industrial and academics show a growing interest in 
this thematic, and various prognostics approaches have now been developed. They 
used to be classified into three categories: model-based, data-driven, and experience-
based approaches [1, 2, 3]. Assuming that it can be very difficult even impossible to 
provide a model of the system under study, and that it is prohibitively long to store 
experiences, data-driven approaches are been increasingly applied to prognostics 
(mainly techniques from artificial intelligence AI). However, these approaches are 
highly-dependent on the quantity and quality of operational data that can be gathered 
from the system. Thus, the purpose of this paper is to propose a method to face up 
this problem of lack of information and missing prior knowledge in prognostics 
application. The method consists in three phases. An information theory-based 
criterion is first used to isolate the most useful observations with regards to the 
functioning modes of the system (feature selection step). An evolving neuro-fuzzy 

ha
l-0

04
94

98
8,

 v
er

si
on

 1
 - 

24
 J

un
 2

01
0

Author manuscript, published in "38th ESReDA Seminar Advanced Maintenance Modelling., Pecs : Hungary (2010)"

http://hal.archives-ouvertes.fr/hal-00494988/fr/
http://hal.archives-ouvertes.fr


Proceedings of the 38th ESReDA Seminar, Pecs, May 4-5, 2010 
 

 2

system is then used for on-line multi-step ahead prediction of observations (prediction 
step). The predicted observations are classified into the functioning modes using an 
evidential markovian classifier based on Dempster-Shafer theory (classification step). 
The paper is organized in three main parts. The global prognostics approach is first 
presented. Then, the main theoretical backgrounds of each one of the three steps are 
given. The whole proposition is finally illustrated in a real-world prognostics problem 
concerning the prediction of an engine health. 
 
 
2. A data-driven prognostics approach 
 
2.1 The approach as a specific case of condition-based maintenance 

 
According to ISO 13381-1:2004 standard, prognostics is the "estimation of time to 
failure and risk for one or more existing and future failure modes" [4]. It is thereby a 
process whose objective is to predict the remaining useful life (RUL) before a failure 
occurs. However, prognostic can not be seen as a single maintenance task since the 
whole aspects of failure analysis and prediction must be seen as a set of activities that 
all must be performed. This aspect is highlighted within CBM concept (Condition-
Based Maintenance). Usually, a CBM system is decomposed into seven layers, one of 
them being that of "prognostics" [5]. The main purpose of each layer is the following: 
 

1. Sensor module. It provides the system with digitized sensor or transducer data. 
2. Processing module. It performs signal transformations and feature extractions. 
3. Condition monitoring module. It compares on-line data with expected values. 
4. Health assessment module. It determines if the system has degraded. 
5. Prognostics module. It predicts the future condition of the monitored system. 
6. Decision support module. It provides recommended actions to fulfil the mission. 
7. Presentation module. It can be built into a regular machine interface. 

 
In this paper, only layers from 2 to 5 are considered. 
 
2.2 Proposition of a data-driven approach 

 
Consider a monitored system that can switch within various functioning modes. The 
proposed approach enables to go from multidimensional data through the remaining 
useful life of the system. The procedure consists in three phases (Figure 1). Data are 
first processed (feature extraction, selection and cleaning). It enables to feed a 
prediction engine which forecasts observations in time. These predictions are then 
analyzed by a classifier which provides the most probable state of the system. The 
RUL is finally deduced thanks to the estimated time to reach the failure mode. The 
processing, prediction and classification steps are supported by three different tools 
that are respectively based on information theory, evolving neuro-fuzzy systems and 
Dempster-Shafer theory. This is more widely explained in section 3. 
 
Data have to be segmented into functioning modes. In Figure 2a for example, data 
concern the evolution of a health performance index and are segmented into four 
functioning modes: "steady state", "degrading state", "transition state", and "critical 
state". The set comprising the data and the ground truth concerning the modes is 
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called the training dataset. Given this dataset, an algorithm proposed in [6] is applied 
in order to select the most relevant set of features for each mode. This method relies 
on Kullback-Leibler divergence and on Choquet Integral. The training dataset is also 
used by both the neuro-fuzzy predictor and the classification module (Figure 2b). The 
NF predictor is based on the evolving extended Takagi-Sugeno system (exTS) 
introduced by [7]. At classification step, "modelling algorithms" are used to provide a 
confidence value that reflects how likely each functioning mode is at each instant. 
These values are then used in an Evidential Markovian Classifier (EMC) relying on 
the Transferable Belief Model framework [8]. When the prediction and classification 
modules are trained and after observing a new data at time t, the global prognostics 
architecture provides a belief concerning states at instant t and t+h (Figure 2c). 
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Figure 1. Prognostics architecture. 
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Figure 2. Procedure: a) segmentation into functioning modes, b) 
training step, c) testing step. 

ha
l-0

04
94

98
8,

 v
er

si
on

 1
 - 

24
 J

un
 2

01
0



Proceedings of the 38th ESReDA Seminar, Pecs, May 4-5, 2010 
 

 4

3. Select, predict and classify – main theoretical backgrounds 
 
3.1 Feature selection 

 
The aim of this step is to identify the best set of features for each mode. The applied 
method was initially developed in [6]. 
 
Let adopt the following notations. A data (measured or computed at t) is denoted by 
Xt = [xt,1  xt,2  …  xt,F], where F is the dimension of the feature space. A dataset is the 
set of all data and is denoted by X = {X1, X2, …, XT} while the set of modes is denoted 
by � = {M1, M2, …, XK}. Li is the set of data for which the ground truth is the 
functioning mode Mi. The other data are gathered in the dataset denoted Ri and the 
corresponding ground truth is denoted Zi (it represents all modes except Mi). Li and Ri 
are both of dimension F. Given the mode Mi, the goal is to select the dimensions of Li 
which brings the most important part of the information contained in the features. The 
resulting dataset will be denoted Li' with dimension Fi' � F. 
 
The method works as follows. All possible combinations of features are considered. 
Given a particular combination Y ⊆ X, two probability distributions based on the data 
in Li and Zi can be estimated: these two probability distributions, denoted P(Y| Mi) 
and P(Y| Zi), with Y ⊆ X, are actually defined conditionally to Mi and Zi and are both 
expressed on the joint space of the considered set of features. The divergence between 
these distributions reflects how discriminative the current set of features for the 
considered mode is. The chosen divergence is the Kullback-Leibler one: 
 

 ( )( ) ( ) log ( ) ( )i i i i
Y

KL Y P Y M P Y M P Y Z=�  (1) 

 
One set of 2F divergence measures is thus computed for each mode. Given a mode 
Mi, the subset of features Li' with the highest value of KLi(Li') (and the lowest 
cardinality Fi') is chosen. The subsets Li' will then be used in classification. 
 
The method described in [6] also enables to build weights reflecting importance, 
redundancies and complementarities of each subset of features. Let consider one 
subset Y ∈ 2F in the set of divergence measures for a given mode Mi. The weight of 
each feature f ∈ Y in the considered subset Y is given by: 
 

 
( )

{ }( )
-

- -1 ! !
( ) - ( )

!f
A Y f

n A A
v A f A

n
µ µ

⊆

= × ∪�  (2) 

 
and the interaction coefficient between two features f ∈ Y and g ∈ Y is given by: 
 

( )
{ }

{ } { } { },
- ,

- - 2 ! !
( , ) ( ) ( ) ( )

( -1)!f g
AÍY f g

n A A
I A f g A f A g A

n
µ µ µ µ= × ∪ − ∪ − ∪ +� �� ��  (3) 

 
where the importance coefficient µ(S) of a subset S is given by the value of the 
divergence normalized by the divergence of the whole set of features: 
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 ( ) ( ) ( )i iS KL S KL Xµ =  (4) 

 
Given a mode Mi, the coefficients ν and I represent the 2-additive Choquet Integral 
parameters while coefficient µ represents the generalized Choquet Integral 
parameters. If the interaction coefficient If,g > 0, the features f and g are said 
complementary while they are said redundant when the coefficient is negative. When 
all interactions are nil, coefficients ν  represent the weights of a weighted average [6]. 
 
This method has shown to be powerful in [6]. The main disadvantage is the necessity 
to compute a potentially high number of divergences that grows exponentially with 
the dimension F (until F = 15, usual PC technologies and softwares are sufficient). 
 
3.2 Temporal predictions 

 
Assuming that data are defined in an multidimensional space (at any time t, 
Xt = [xt,1  xt,2  …  xt,F], where F is the dimension of the feature space), the aims of the 
prediction module is to forecast in time the evolution of the data values: 
 
 t t,1 t,2 t,F t+h t+p,1 t+p,2 t+p,FX  = [x   x   …  x ]    X  = [x   x   …  x ]→  (5) 

 
with p = [1 , h], h being the maximum horizon of prediction. 
 
In practice, this global prediction can be performed by building a prediction system 
for each one of the sub-signals. According to previous works [9], recent works focus 
on the interest of using hybrid systems for prediction purpose. In this paper, the 
evolving extended Takagi Sugeno system (exTS) introduced by [7] is used. 
 
3.2.1 First order Takagi-Sugeno systems 
A first order TS model can be seen as a multi-model structure consisting of linear 
models that are not necessarily independent. It is based on the fuzzy decomposition of 
the input space. For each part of the state space, a fuzzy rule can be constructed to 
make a linear approximation of the input. The global output is a combination of the 
whole rules. Consider Figure 3 to explain the first order TS model. This model has 
two inputs variables. Two membership functions (antecedent fuzzy sets) are assigned 
to each one of them. The TS model is finally composed of two fuzzy rules. (That can 
be generalized to the case of n inputs and N rules). The rules perform a linear 
approximation of inputs: 
 

 1 n
i 1 i n i i i0 i1 1 in nR : IF x is A and ... and x is A THEN y =a +a .x +...+a .x  (6) 

 
where Ri is the ith fuzzy rule, N is the number of rules, Xt = [xt,1  xt,2  …  xt,F]T is the 
input vector, Ai

j the antecedent fuzzy sets, j=[1,n], yi is the output of the ith linear 
subsystem, and aiq are its parameters, q=[1,n]. Gaussian antecedent of fuzzy sets are 
used to define the regions of fuzzy rules in which the local sub-models are valid: 
 

 ( )i i* i 2
j jj
� =exp -4 x-x (� )  (7) 
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where σi
j is the spread of the membership function, and xi* is the focal point (center) 

of the ith rule antecedent. The firing level (τi) and the normalized firing level (λi) of 
each rule are obtained as follows: 
 

 i i1 1 in n� =� (x )×...×� (x )   ,  N
j=1i i j�= � ��  (8) 

 
The model output is the weighted averaging of individual rules' contributions. With 
notations πi = [ai0,  ai1,  …,  ain] the vector parameter of the ith sub-model, and 
xe = [1  XT]T the expanded data vector, the output is defined as: 
 

 TN N
i i i e ii=1 i=1y= � y = � x �� �  (9) 

 
A TS model has two types of parameters. The non-linear parameters are those of the 
membership functions (a Gaussian membership has two parameters: its center and its 
spread deviation). These kinds of parameter are referred to as premise or antecedent 
parameters. The second types of parameters are the linear ones that form the 
consequent part of each rule (aiq). All this parameters must be tuned to fit to the 
studied problem. This is the aim of the learning procedure. 
 

Π

Π

Ν

Ν

Σ y

x1

x2

R1

R2

x1 x2

x1 x2

1
1A

1
2A

2
2A

2
1A Π

Π

Ν

Ν

Σ y

x1

x2

R1

R2

x1 x2

x1 x2

1
1A

1
2A

2
2A

2
1A Π

Π

Π

Π

Ν

Ν

Ν

Ν

Σ y

x1

x2

R1

R2

R1

R2

x1 x2x1 x2

x1 x2x1 x2

1
1A

1
2A

2
2A

2
1A

 
Figure 3. A First-order TS model with 2 inputs. 

 
3.2.2 Learning procedure of the exTS 
The learning procedure of exTS is composed of two phases: (1) an unsupervised data 
clustering technique is used to adjust the antecedent parameters, (2) the supervised 
recursive least squares learning method is used to update the consequent ones. These 
algorithms can not be fully detailed in this paper but are well described in [7, 10]. 
 
The exTS clustering phase processes on the global input-output data space: 
z = [xT ; yT]T, z ∈ Rn+m, where n+m defines the dimensionality of the input/output 
data space. Each one of the sub-model of exTS operates in a sub-area of z. This 
clustering algorithm is based on the calculus of a potential which is the capability of a 
data to form a cluster (antecedent of a rule). The procedure starts from scratch and, as 
more data are available, the model evolves by replacement or upgrade of rules. This 
enables the adjustment of the antecedent parameters (the non-linear ones). 
 
Note that the main advantages of the exTS system result from the clustering phase 
since any assumption on the structure and parameters initialization is necessary. 
Indeed, an exTS is able to update the parameters without the intervention of an expert 
and has a flexible structure that evolves as data are gathered (new rules are formed or 
the existing ones are modified). 
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3.2.3 Using an exTS for prediction 
In forecasting applications, models are usually built by considering some past values 
of each input and output variables. Consider Figure 4a as for an example. In this 
figure, the NF system is composed of 2 input variables, predictions are made at one 
step ahead (t+1), one regressor is used for variable y and two for variable x1. In the 
case of a mono-variable predictor (and assuming that future is for essence unknown), 
previous predictions can be used as for the inputs for next predictions (Figure 4b). 
This type of architecture, named "cascade models" enables to perform multi-step 
ahead predictions (at t+h) without building various predictors (and thereby with a 
single learning phase). 
 
Figure 4c shows the evolution of a performance index of an engine and the prediction 
that can be obtained thanks to an exTS. Note that in this figure, all predictions (from 
51 to 231) where made at time t = 50. 
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Figure 4. Using an exTS for prediction: a) forecasting model with regressors, 
b) cascade structure for multi-step ahead prediction, c) example of predictions result. 

 
3.3 Classification of temporal predictions 

 
Given observations that can be measured at t or computed by exTS at t+h, the aim of 
this module is to provide a reliable classification into one of the functioning modes. 
 
The proposed classification method relies on one model of data for each functioning 
mode. Given these models and new observations, a decision-making process is used 
to choose the best functioning mode. This process is temporal i.e. it embeds past and 
current knowledge on the functioning modes thanks to a state sequence recognition 
algorithm. The main idea is that the sequence of modes leads to a more reliable 
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conclusion concerning the real functioning mode than a decision based on modes 
only. Most of methods implementing this idea were based on probability theory. We 
propose here to exploit the framework of "Transferable Belief Model" (TBM) 
proposed by Ph. Smets [8]. It is based on belief functions (instead of probabilities) 
extending the work on Evidence Theory of Dempster and Shafer [11, 12]. On this 
basis, we propose to use an efficient method for state sequence recognition based on 
noisy observations in the TBM, that we introduced in [13]. 
 
3.3.1 Belief functions in the Transferable Belief Model 
We first recall the basics on belief functions. Let � = {M1, M2, … MK} be the frame of 
discernment (FoD) gathering all possible and exclusive hypotheses. The number of 
hypotheses is called cardinal and denoted |�|. The distributions of masses, also called 
Basic Belief Assigment (BBA), is defined on all possible subsets of the FoD which is 
2� ={{M1}, {M2}, {M1, M2}, {M3}, {M1, M2, M3}, … {�}}. A subset is denoted for 
example S ⊆ 2� or equivalently Y ∈ 2�. The BBA is then defined as follows: 
 

 : 2 [0,1]m aΩ   ,  ( )S m SΩ   with ( ) 1
S

m SΩ =�  (10) 

 
Several functions can be computed which allow to interpret the BBA content and also 
to simplify combinations of BBA. The main functions are the plausibility function 
(pl�), the credibility function also called belief function (bel�), the commonality 
function (q�), and the weights of the canonical conjunctive decomposition (w�): 
 

 
( 1)

1

( ) ( ) , ( ) ( )

( ) ( ) , ( ) ( )

C S C S

C S A S

A S

pl S m C bel S m C

q S m C w S q A

Ω Ω Ω Ω

∩ ≠∅ ∅≠ ⊆

Ω Ω Ω −

⊇ ⊇

− +

= =� �

= =� ∏

 (11) 

 
Mathematical backgrounds of belief functions can not be largely discussed here. 
Refer to [8, 14] for a deeper understanding. Let however note that the framework 
enables to provide decision-making processes, notably for classification problems. 
 
3.3.2 Evidential Hidden Markov Models (EvHMM) 
An extension of probabilistic Hidden Markov Models (HMM) to the TBM is 
proposed in [13]. To represent EvHMM, we use an extension of Directed Evidential 
Network to the temporal domain that we call Temporal DEVN (TDEVN). A TDEVN 
is depicted in Figure 5. The advantages of this framework are listed here after: 

− it enables to represent lack of knowledge on states, e.g. at the first instant the 
prior on states can be vacuous, 

− the estimation of the network parameters is improved by using a training set 
annotated by belief functions [13, 15], 

− the inference of the state sequence based on noisy observations is improved by 
using the evidential Viterbi-like decoder proposed in [13], 

− possibly non-distinct (not independent) observations can be considered using 
particular combinations rules [16]. 

− It enables to combine several types of formalisms for uncertainty management in 
a common framework. 
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Figure 5. TDEVN representing EvHMM. 

 
Classification of sequence of observations in EvHMM 
Given a set of T observations X1:T (with dimension F), it is possible to recursively 
compute the likelihood of the sequence by using the forward belief function. For a 
particular EvHMM λ, the forward variable is given by eq. (12). In order to represent 
missing prior at the first instant, one can use a vacuous BBA: 1)( 1

1 =ΩΩ

αm . If 

observations are distinct, one may use the commonalities instead of weights. 
 

 � R� �� �
� � a tb

BÍ�

tt t-1t t-1

t-1
w (S)= m (B)*w [B](S) w [X ](S)

� �
⊗�� 	


 �
 (12) 

 
At each instant, the conflict value ( )tmα

Ω ∅  represents the amount of mass which is 

allocated to subsets not in tΩ2  and therefore, the total amount of conflict in the whole 
sequence quantifies how unlikely are the observations given the model [13]. The 
conflict value is linked to the plausibility by � �

� � t
t tm (Æ)=1-pl (� ) . Thus, it is possible 

to compute the sequence plausibility for a particular EvHMM λ like in eq. (13). and 
then the best model is given by maximizing L(λ) over all models λ. 
 

 
1

1
( ) log ( )

T

t
t

tL pl
T αλ Ω

=

= Ω�  (13) 

 
State sequence recognition in EvHMM 
Given a sequence of noisy observations, one may be interested in knowing which 
state is the best one at a given instant. This can be made thanks to an evidential 
Viterbi-like decoder that allows propagating the decision at t over the states at 
subsequent instants [13]. An evidential Viterbi-like decoder is based on the 
propagation of the following metric: 
 

 11

1
( ) ( ) [ ]( ) [ ]( )a tb

B

tt tt t

t
w S m B w B S w X Sδ δ

Ω ℜΩ ΩΩ Ω

⊆ℑ

−−

−

� �
= × ⊗�� 

� �

 (14) 

 
The difference with the forward variable is the computation of the sum which is now 
done over subsets of 1−ℑt  that is actually a subset of 1−Ωt . The hypotheses composing 

1−ℑt  are selected at each instant. First, the set of weights t
jwΩ

,δ  are computed: 

 

 ,
11

1
( ) ( ) [ ]( ) [ ]( )a j tj b

B

tt tt t

t
w S m B w B M S w X Sδ δ

Ω ℜΩ ΩΩ Ω

⊆Ω

−−

−

� �
= × ∩ ⊗�� 

� �

 (15) 
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This equation is simply a forward propagation but conditioned on each mode Mj∈�t-1. 
One obtains a set of weights for each mode. These weights are then transformed into 
BBA 

, ( )t
jm Sδ

Ω  and then into pignistic probability distributions. We thus obtain a set of 

|�t-1| pignistic distributions defined on �t conditionally to each mode. The best 
predecessor of a mode tiM Ω∈  is thus found and stored and the set 1−ℑt  is composed 

by the union of predecessors: 
 

 { } 1,
1

1
( ) arg max ( ) , ( )t i i t t ij

iM

t t t

j t
M BetP m M Mδψ ψ

Ω Ω Ω
−

∈Ω

−

−

= ℑ =  (16) 

 
At instant t, it is possible to compute the state sequence from t0. For that, the best 
mode tM*  at t must be computed in order to use the backtracking process until t0: 
 

 { }* ,
1

arg max ( )t
ij

M

tt

j t
M BetP m Mδ

ΩΩ

∈Ω −

=   ,  1
* *( )t t

tM Mψ− =  (17) 

 
Parameter learning in EvHMM 
In this paper, the training set is composed of observations for which the ground truth 
(real modes) is known. In this case, each mode can be modeled using an EM 
clustering assuming Gaussian mixtures. Given trained models, a new observation 
generates a set of likelihoods (one for each mode) which are then used in the 
Generalized Bayesian Theorem in order to compute the posterior BBA on the set of 
modes given observations. These posterior BBA are then used to estimate 
automatically the evidential transition matrix. The method consists in computing the 
expected joint belief mass defined on the product space �t × �t-1 over all time 
instants. This can not be fully described in this paper. 
 
 
4. Experiments and results 
 
4.1 Experimental dataset and prognostics procedure 

 
The proposed data-driven procedure is illustrated by using the challenge dataset of 
diagnostic and prognostics of machine faults from the first International Conference 
on Prognostics and Health Management (2008) [18]. The dataset consisted of 
multiple multivariate time series (26 variables) with sensor noise (like in Figure 2a). 
Each time series was from a different engine of the same fleet and each engine started 
with different degrees of initial wear and manufacturing variation unknown to the 
user and considered normal. The engine was operating normally at the start and 
developed a fault at some point. The fault grew in magnitude until system failure. 
 
Given a new observation sequence, the goal was to diagnose its current and future 
mode by the proposed procedure in order to determine the remaining time before 
failure, assuming that a fault has occurred when a sequence of four modes has been 
detected (steady � transition � degrading � faulty). For tests, 40 multivariate time 
series where used for training, and 40 for testing. 
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From the 26 features, we first aimed at selecting only 8 of them. We first built all 
groups of 8 features and applied the feature selection method. For each mode, the 
group with the maximum value of the Kullback-Leibler divergence has been selected. 
Then, we applied again the feature selection process considering all combinations of 
features among the group of eight. Note that the group of features for each mode was 
generally different. Following that, one detector has been built for each mode. For 
that, an EM has been run on the training set using mixture of Gaussians with adaptive 
number of components. For the prediction step, each feature has been estimated with 
an exTS model for multi-step ahead prediction (a NF cascade model as explained 
before). Table I resumes the set of inputs variables used for that purpose. All 
predictions were made until time t = 50, so that, for each data test set, the prediction 
module provided the expected values of the considered performance index from time 
t = 51 to the end of the test series. For the classification step, a four states EvHMM 
has been built where the evidential transition matrix was estimated as proposed in this 
paper (using the training set). 
 
Table I: Feature prediction with exTS. 

Feature Inputs Feature Inputs 

F 1 t, x1(t), x1(t-1), x1(t-2) F 5 t, x5(t) 
F 2 t, x2(t), x2(t-1), x2(t-2) F 6 t, x6(t) 
F 3 t, x3(t), x3(t-1), x3(t-2) F 7 t, x7(t), x7(t-1) 
F 4 t, x4(t), x4(t-1) F 8 t, x8(t), x8(t-1) 

 
4.2 Results and discussion 

 
Simulation results are reported in Table II (left side of boxes) that is a confusion 
matrix. As for an example of how to interpret it, consider the box {Transition , 
Steady}: in 9% of test for which the right classification of the functioning mode 
would have been "steady state", the procedure classified it into a "transition mode". In 
order to extract more solid conclusions on the proposed approach, a comparison has 
been made with the use of probabilistic HMM for classification (Table II, right side). 
 
Table I: Confusion matrix for state detection using: a) EvHMM (left side), b) HMM (right side). 

State Steady Transition Degrading Critical 

Steady 87 79 43 45 7 7 0 0 
Transition 9 17 52 46 23 28 10 16 
Degrading 4 4 5 9 54 48 18 24 
Critical 0 0 0 9 16 17 72 60 

 
Results show good performance in detecting states with the EvHMM, in particular the 
critical and the steady states. The main problems appear in detecting both the 
transition and degrading states: the former is of short duration and thus difficult to 
detect while the latter is highly evolving. The overall detection is slightly more stable 
with the evidential version than with the probabilistic HMM (an example is given in 
Figure 6), in particular the detection of the "transition" and "degrading" states. This is 
mainly due to the Viterbi-like decoder which postpones the decision until the last 
instants thanks to the conditioned forward propagation. The RUL of the engine can 
finally be estimated as the difference in between the instant in which the engine is 
supposed to be in a critical state and the current time (Figure 6). 

ha
l-0

04
94

98
8,

 v
er

si
on

 1
 - 

24
 J

un
 2

01
0



Proceedings of the 38th ESReDA Seminar, Pecs, May 4-5, 2010 
 

 12

 

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

EvHMM

HMM

Features

Estimated Remaining Useful Life (RUL)

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

EvHMM

HMM

Features

Estimated Remaining Useful Life (RUL)

 
Figure 6. Example of result. Green dots: data normalized in [0,4] for 
visualization. State detection: blue dashed line for HMM, red line for EvHMM. 

 
 
7. Conclusion 
 
In this paper, a data-driven approach to prognostic the system health of an equipment 
is proposed. The method enables to face up this problem of lack of information and 
missing prior knowledge in real applications, that reduces the applicability of 
conventional artificial techniques. The approach is based on the integration of three 
modules and aims at predicting the failure mode early while the system can switch 
between several functioning modes. The three modules are: an information theory-
based feature selection process, an exTS for reliable multi-step ahead predictions and 
an evidence theory-based Markovian classifier for state detection. The efficiency of 
the proposed architecture is showed on a real data set concerning an engine health. In 
particular, the average horizon for predictions used in experiments is close to t+130 
time units and despite this challenging condition, the overall performance of the 
evidential classification of states is around 70%. Comparisons with probabilistic 
HMM for state classification also clearly show the efficiency of the approach. 
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