
An Agent Based Framework for Urban Mobility Simulation

Nicolas Marilleau∗ Christophe Lang∗ Pascal Chatonnay∗ Laurent Philippe∗

∗Laboratoire d’Informatique
de l’Universit́e de Franche-Comté
CNRS FRE 2661
16 route de Gray
25030 Besançon CEDEX
marilleau, lang, chatonnay, philippe@lifc.univ-fcomte.fr

Abstract

Mobility study is composed of many research areas
which one interests us: urban mobility. In the literature,
urban mobilities are represented by analytical techniques
like stochastic laws or they are defined by simulation tools
like Multi-Agents Systems (MAS). The goal of our work is
to define citizen behaviour in order to observe population
dynamics by a simulation. This strategy is facilitated by a
meta-model and a toolkit which are used with a particular
method. The latter begins by a conceptual representation of
each mobile and finishes by a mobility simulator. This paper
aims at describing the mobility simulation toolkit. Thanks
to this framework, mobility simulator development is sim-
plified. It allows us to create distributed applications which
are based on MAS.

1 Introduction

Mobility is more and more studied in many research ar-
eas which one interests us : urban mobility. These works
are often achieved by a software development. Up today,
many simulation softwares of prospective evolution like
Mobisim [1] have been created. They help the analysis of
particular systems. Due to their mobility representation,
they can be applied to describe specific kinds of motion.
For example, Vanbergue in [25] focuses on migrations in
Bogota.

The goal of our work is to create a generic meta-model1

and a generic toolkit. They aim at describing spacial mobil-
ities and implementing simulators by following a method-
ology.

1A meta-model is a tool which intends to create another models [21]

Distributed tools, particularly Multi-Agent Systems
(MAS) are an interesting answer to our problem. A MAS
is composed of autonomous entities, called agents which
interact together and move on an environment in order to
accomplish tasks.

Agents represent studied mobiles and evolve on a spatial
environment. Agents and their environments are built ac-
cording to real data coming from Geographical Information
Systems (GIS). Each agent is, firstly, located at a position
which is defined by, for example, geographical laws. Then,
it moves according to its behaviour.

We apply the meta-model on an urban environment. We
want to exhibit urban dynamics by describing people be-
haviours and simulate them in a virtual city. This strategy
intends to aggregate movements of each person to observe
group trips.

In [16, 17], we have presented a meta-model which aims
at describing people which move on urban environment.
The goal of this paper is to present the associated toolkit
we use to develop a simulator of urban mobility.

In a first part, we define the meaning of mobility and
how it is implemented in frameworks presented in the lit-
erature. Then, we introduce a methodology which use our
meta-model and our toolkit we focus on the fourth part. Due
to the structure of our meta-model and our toolkit, a gener-
ated simulator is based on agent concepts. We describe the
general structure of it before presenting each agent with ac-
curacy. Finally, this article is illustrated by a case of study.

2 How mobility concepts are implemented ?

Mobility studies are often achieved by creating models
and software in order to design and simulate different kinds
of trips. Geographers often focus on human journeys in an
urban environment. They make models and implement sim-
ulators to describe and simulate different systems like cities
or crossroads. These tools help town administration (design
of roads, managing of big events, ...).

In the literature, mobility is divided into four main levels:
macroscopic [14] mesoscopic [26], microscopic [2, 12, 18]
and nanoscopic [7]. According to the level of mobilities
we want to describe, different techniques are used. Indeed,



analytical tools are often used to study macroscopic mobili-
ties. Several models of mobility and simulator are based on
differential equations [9], statistical queues [6] or Markov
chains [11] to study town traffic flows. These techniques
can be associated with others which are used to describe mi-
croscopic mobilities. cellular automatons [24] or MAS [20]
are famous microscopic simulation tools.

Due to their properties, MAS are more and more used
in many research area. Interest for this concept increase
while computer power grows. Thus many frameworks have
been developed. According to [5], there are three kinds of
toolkits:

• general frameworks(MadKit [10]) are very open.
These tools can be used in a wide panel of situations.

• oriented frameworks(SWARM [19]) contain functions
which help users to create agents with few properties
like a representation of a spatial environment.

• specific frameworks(Mobidyc [8]) are straightforward.
They can be used in a narrow panel of situations.

The meaning of the mobility concept is different accord-
ing to multi-agent platforms. Some of them, likeGrassHop-
per [3], allowsmobile computingi.e. agents moving from a
server to another one. Others contain functions which sim-
ulate motions. Swarm [19] allows us to simulate agent jour-
neys in a spatial environment. So, two kinds of motions are
proposed in Multi-Agent frameworks: real mobilities and
simulated mobilities.

3 From conception to simulation

We want to describe persons who move in a city by defin-
ing their behaviours, their goals, their beliefs. . . The goal is
to observe human trips by a simulation. Mobiles are de-
fined by agents which move in a virtual environment. These
autonomous entities are cognitive and look like VON-BDI
(Value Obligation Norm-Belief Desire Intention) agents [4],
an extension of BDI agents [13]. VON-BDI agents have
been created to describe human. They contains elements
which compose BDI agents and new elements likeValue
which represents agent’s habits,Norm for describing soci-
ety’s habits andObligationswhich are constraints.

An agent-based meta-model have been created to
describe human journeys by representing mobiles’ be-
haviours. It keeps a traditional methodology which is used
to develop software (see the figure 1). First of all, a spec-
ification document must be written. It describes, textually,
the system which we want to study. In fact, it gives a global
idea about mobiles that we are going to describe. Then,
three steps are needed to obtain a concrete simulator :

1. The Global descriptionis the first step. It intends to
define how a system is structured. This stage can be
achieved thanks to two sub-meta-models. The first one
aims at designing mobile structure. It represents mo-
bile beliefs, desires, and so one. The second one is
used to describe structure of groups. It shows every
element, for example beliefs, desires, that members of
a group have in common. Both of these two meta-
models use UML diagrams. This language allows us
to simply describe mobiles and groups. But, it is not
very accurate. It does not describe mobile behaviour
rules.

2. The specificationis the second step. Contrary to the
UML description, it represents, with accuracy, the
studied system. This stage uses two sub-meta models.
One of them, the mobile specification shows how mo-
biles move, communicate, learn and so on. In fact, a
mobile specification allows us to define mobile mental
attitudes. The other sub-meta model, the group spec-
ification, instantiates mobiles and organises them into
groups. A group model locates mobiles in a virtual en-
vironment, it defines mobile mental state at the begin-
ning of a simulation. A specification is written with a
language called PLOOM-UNITY. This language takes
advantage of two formalisms: Mobile-UNITY [22, 23]
and PLOOM [15]. It allows us to describe agents be-
haviour rules by algorithms and predicates. It is not
constrained by computer hardware specificities where
mobiles are going to be simulated. When this step is
achieved, we obtain a mobility model.

3. The developmentaims at implementing mobiles which
have been described before. This implementation is
facilitated by a toolkit which keeps meta-model struc-
ture. Indeed it was created to help users during a sim-
ulator creation. This library is composed of classes
which are an abstraction of desires, beliefs, and viewed
elements. It contains a pattern of mobile which is, in
fact, a MadKit agent sub-class. So, when we imple-
ment a mobile, we need to create classes defined in
UML class diagrams and fill gaps of the mobile pattern
by algorithms which have been defined in the mobile
specification.

This methodology helps users to design mobiles and to im-
plement them in a simulator. Three steps are necessary to
create a simulator. Each of them uses a different tool. Up
today, transitions between these different stages are done
manually. However, they are simple.

4 Toolkit presentation

The presented toolkit is used at the last step of our
methodology. Its main goal is to facilitate development of



Mobile description

Group description

Global description

Start idea

Mobile specification

Group description

2

ToolKit : Action

: Result

: Used tools

: Methodology process

: Use

1

Meta−modele

Mobility model

specification
System

Simulator

Development 3

MadKit

Figure 1. Steps of simulator creation

applications which simulate models of mobility we create
according to our meta-model. In fact, it is a pattern we ex-
tend in order to create simulators urban mobility simulator.

This toolkit contains specific tools which intend to simu-
late urban phenomenas. It is an oriented agent-based frame-
work. It contains several abstract classes which allow us to
implement a virtual town and mobiles which move on it.

This framework is based on a multi-agent platform called
MadKit [10]. The latter solves every problem which are
associated with agent life management and communication
between agents.

Figure 2. General structure of the toolkit

It is implemented with JAVA language. It is divided into
three packages like our meta-model (see figure 2):

• Domaincontains every class we must extend to imple-
ment mobiles and to manage them.

• Environmentis composed of elements which intend to
describe a virtual city by streets and locations (build-
ing, house, shop).

• Control allows us to implement every simulation ac-
cess points. It permits to observe and modify a simu-
lation.

A simulator is the result of a development step which
aims at extending classes ofDomain, EnvironmentandCon-
trol packages and a compilation step. Generated simulator
can be distributed on grids.

5 Simulator structure

A simulator created with the presented toolkit uses sev-
eral technologies which come from distributed system area.
It is based on a MAS associated with Enterprise Java Beans
(EJB) and a database (see figure 3). Agents are organised
into four categories:

• environment agentsaim at representing a virtual city.
They manage space elements like buildings or roads,
and mobile motions.

• control agentsallow user to interact with a simulation
(seeing motions, modifying simulation parameters).

• mobile agentsrepresent mobile we want to study.

• master agentsmanage mobile agent. They can create
or destroy them. They are allowed to modify mobile
parameters. For example, a master agent can stop an
agent evolution when a control agent ask a pause of a
simulation.

Several computers can work together in order to execute
a simulator. On each site, there is a master agent and an
environment agent. It allows us to divide a virtual city into
areas. Each area is managed by an environment agent. The
associated master agent takes care of mobiles which move
on the zone.

Agent cooperation is done by sending messages. These
interactions follow FIPA-ACL specifications. For each mes-
sage, we define, obviously, a sender and a receiver, an on-
tology name and a content which is written in XML.

Representing time in a distributed mobility simulator is
an important problem which must be solved by implement-
ing a distributed clock. We choose to use an EJB in order to
create a centralised clock which can be accessed by every
agent of a MAS. This bean is managed by an application
server called JONAS(Java Open Application Server).

The second goal of the application server is to manage
environment data as streets, crossroads or locations. In fact,
we will create different kinds of entity beans to save infor-
mation into an OpenGIS database. Thus, information saved
in a database is seen through objects. There is no SQL code
in agent source.

An application based on our toolkit contains two kinds of
agents: simulation agents to represent mobiles we study and
system agents (MasterAgent, Environment and Control) to
manage simulation.



Figure 3. Structure of a simulator

6 Description of agent categories

In previous section, we seen structures of our toolkit and
generated simulators. In this section, we pinpoint each part
of our framework. We present how mobiles, environment
and controllers are structured and how they work.

6.1 Mobiles

Mobiles are represented by autonomous agents. They
learn during their life according to interactions they have
with the virtual city and other mobiles. They move by fol-
lowing a plan computed thanks to their knowledge, their
view, their objectives and their behaviour rules.

Mobile structures we define in conception step thanks
to our meta-model [17], is kept in simulator development
step (see figure 4). Indeed, we need to extend few JAVA
classes calledBelief, SeenObjectand Desire in order to
store knowledge, view and objective information.

A kernel of a mobile is implemented by extending an ab-
stract class (MobileAgent). This element contains several
predefined functions likemoveor changeStreet. These two
methods allow agent to move on the virtual city. In addition,
MobileAgentclass owns abstract functions we must extend.
For example, we need to implement functions calledcom-
puteViewand actionComputing. The first one intends to
change mobile knowledge according to his view. The sec-
ond one contains low level behaviour rules.

Behaviour rules are divided into two levels. The high
level intends to define cognitive rules which aim at com-

puting agent trip according to is mental state (knowledge,
view,. . . ). These rules are implemented by functions writ-
ten by developers. These methods are called by low level
behaviour rules. The goal of them is to move agent accord-
ing to the path computed before. They are implemented in
actionComputingfunction by a succession of conditions.

Each mobile is represented on the evolution world by an
instance ofActiveMobilesub-class. This object defines how
other mobiles can see the current agent. Therefore, it is an
agent face. It contains a method (isViewed) which aims at
computing agent view after each movement.

When a mobile wants to move, it callsmoveoperation of
MobileAgentclass. This function sends a message to envi-
ronment which contains motion vector. When the environ-
ment agent receives the message, it changes agent location
and computes another mobile view. This perception is sent
to mobile by another message. It is a movement acknowl-
edgment.

6.2 Environments

Environment has two goals. The first one intends to
define a space where studied mobiles move. The second
one aims at creating an ambient traffic and services (shop,
restaurant,...) in order to disturb mobile evolutions.

An environment describes an urban space with a set of
streets we divide into cells. So, a relative location can be
associated for each mobile. This position is defined by the
couple of numbers (street number, cell number). A mobile
move cell by cell on a street. When it arrives at the end of



Figure 4. Structure of the toolkit

a street, it goes to a queue before moving to another street.
At the end of each street, we associate several queues to
represent crossroads. Each of them is associated with few
directions (next streets). This technique solves problem of
crossroads priorities.

The second role of environment agent is to manage mo-
bile movements and the landscape of the evolution world
(building, ambient traffic, and so on). It moves agent on its
map, it generate an ambient traffic. These elements are rep-
resented by an object. We define three kinds of entities (see
figure 4):

• ActiveMobileis a representation of mobile agent in an
evolution world. In fact, Each class which extends
ActiveMobile, is associated with a sub-class ofMo-
bileAgent. It defines data that other agents can read.
It is an agent face.

• PassiveMobiledefines several particles which evolve
on streets in order to disturb mobile agent trips. These
objects move according to stochastic laws.

• StaticObjectis an element which does not move on an
evolution world. But it evolves according to a life-
cycle. In fact we define different states for eachStati-
cObject. An environment agent change a state to an-
other one when a particular event arise. These objects
are important in our system because they symbolise
buildings and services. Mobiles can access and could
be attracted byStaticObjectto achieve desires. For
example, aStaticObjectcan describe a shop with two
state : open and closed.

So environment agents have to do many tasks like: re-
ceiving motion messages, moving mobiles and computing
their view, moving particles and changing static elements
states by following a life cycle. Environment agents can not
achieve these tasks alone. Therefore, they cooperate notably

when a mobile wants to go from a street managed by an en-
vironment agent A to another one supervised by an agent
B.

6.3 Control

The goal of a control agent is to allow user to interact
with the simulator. A controller can show mobile journeys
with a graphical interface or save motion in a database. It
can focus on movements of every mobile or pinpoint knowl-
edge changes of a particular agent. In fact, a controller de-
fines how users see a simulation and which simulation pa-
rameter they can modify.

Figure 5. Controller interactions with other

Controllers keep always the same structure (see figure 5).
They are composed of interaction systems like a Graphi-
cal User Interface and an agent which aims at leading other
agent of the simulator. For example, when a street is cre-
ated by a graphical interface, the associated agent sends a
message to an environment agent to insert the new object in
the simulation.

Using a controller agent is an interested way to lead a
simulation because, it permits us to have a GUI separated



from the simulation. This technique facilitate the creation
and the destruction of a controller when a simulation is al-
ready started.

7 A case of study

This framework is used in a project called MIRO
(Modélisation Intra-urbaine des Rythmes Quotidiens). The
goal of this work is to describe human trips which take place
in a town by using a bottom-up strategy. At first we want
to describe different kinds of citizens by behaviour rules,
cognitive maps and few tasks. Then we intend to simulate
mobiles in a virtual city.

Figure 6. Screen shot of the map controller

Up today, we have implemented an application which
simulates pedestrians. These mobiles move with a realistic
speed (average 5 km/h). The time is managed by a compo-
nent we can access through a Graphical Interface (see fig-
ure 7). Mobile trips take place in a representation of the
center of Besançon (see figure 6). At the beginning of the
simulation, they have no knowledge of world and they want
to go to a location. As long as their desire are not achieved
they move. When a mobile arrives at the end of a street it
chooses randomly a next one in his view. Several tests have
been done in order to validate toolkit functionalities. A sim-
ulator has already been execute in an heterogeneous cluster.
The latter is composed of three computers with different
hardwares and operating systems. This simulation contains
approximately one hundred agents.

8 Conclusion and futher work

We have presented a framework based on multi-agent
system. This toolkit facilitates development of urban mo-

Figure 7. Screen shot of the clock controller

bility simulators. It defines citizens by agents which move
on an environment (a virtual city) managed by an agent.

This toolkit is used by following a methodology. At first,
mobile and group structures are represented by using UML
diagrams. Then a formal language called Ploom-Unity is
used to define mobile behaviour and instantiate them into
groups. After these two steps we obtain a qualitative mobil-
ity model. We need to implement it to obtain results. This
task is facilitated thanks to the presented toolkit.

The framework is divided into three main parts called:
domain, controlandenvironment. The first one contains ev-
ery class we use to develop mobiles. The second one aims
at implementing interfaces we use to interact with a simula-
tor. The last one is constituted by elements which are used
to describe an environment.

In a simulator generated by our toolkit, each mobile is
represented by an agent which has beliefs, goals and be-
haviours. It is also managed by agents because environ-
ment and control are composed of agents. This structure
and MadKit function allow us to create distributed simula-
tor.

Several functions must be added to the toolkit. For ex-
ample, we need to improve environment in order to add am-
bient traffic and building management.

A version which include mobile computing concept has
been developed. Yet, we have to add load balancing func-
tionality in order to increase velocity.

Up today this framework is applied to a project called
MIRO. It will used to simulate a demand transport system.

References

[1] ATN. Simulation de sćenario d’́evolution, prospective de la
mobilité urbaine 20 ans. Rapport de résultats, Minist̀ere de
l’ équipement et du logement, DRAST, 2002.

[2] J. Barcel̀o. Microscopic traffic simulation: A tool for the
analysis and assessment of its systems. InHighway Capacity
Committee, Half Year Meeting, Lake Tahoe, 2001.

[3] C. Baumer, M. Breugst, S. Choy, and T. Magedanz.
Grasshopper - an universal agent platform based on omg
masif and fipa standards. Rapport technique, IKV++, 2000.



[4] G. Beavers and H. Hexmoor. In search of simple and respon-
sible agents. InThe GSFC Workshop On Radical Agents,
2002.

[5] F. Bousquet, C. Le Page, and J. P. Müller. Mod́elisation et
simulation multi-agents. Indeuxìemes assises du GDRI3,
Nancy, France, 2002.

[6] N. Cetin, A. Burri, and K. Nagel. A large-scale multi-agents
traffic microsimulation based on queue model. InThe third
swiss transport research conference, 2003.

[7] N. Daiheng. 2dsim: A prototype of nanoscopic traffic sim-
ulation. In Intelligent Vehicles Symposium, pages 47–52,
Columbus, Ohio,USA, 2003.

[8] V. Ginot and C. Le Page. Mobydic, a generic multi-agents
simulator for modeling population dynamics. In P. P. D.
Pobil, J. Mira, and A. Moonis, editors,Tasks and meth-
ods in applied artificial intelligence, volume 1416. LNCS,
Springer, 1998.

[9] C. Gloor, D. Cavens, E. Lange, K. Nagel, and W. Schimd.
A pedestrian simulation for very large scale applications.
Multi-agenten-systeme in der geographie(Klagenfurter Ge-
ographishe Schriften, 23, 2003.

[10] O. Gutknecht, J. Ferber, and F. Michel. Madkit: une archi-
tecture de plate-forme multi-agents géńerique. Rapport de
recherche 00061, Laboratoire d’Informatique, de Robotique
et de Micróelectronique de Montpellier, 2000.

[11] M. L. Hazelton. Day to day variation in markovian traffic
assignment models.Transportation research, 36B:637–648,
2002.

[12] D. Helbing, A. Hennecke, V. Shvetsov, and M. Treiber.
Micro- and macro-simulation of freeway traffic.Mathemat-
ical and Computer Modelling, 35(5/6):517–547, 2002.

[13] D. Kinny. A methodology and modelling technique for sys-
tems of BDI agents. Inthe seventh European Workshop
on Modelling Autonomous Agents in a Multi-agents world,
Eindhoven, The Netherlands, 1996.

[14] A. Kotsialos, M. Papageorgioy, C. Diakaki, Y. Pavlis, and
F. Middleham. Traffic flow modeling of large-scale motor-
way networks using the macroscopic modeling tool metanet.
IEEE Transactions on Intelligent Transportation Systems,
3(4):282–292, 2002.

[15] C. Lang. Contributioǹa l’élaboration d’un ḿeta-langage
multi-agents pour la description des systèmes complexes.
Mémoire de dea, Laboratoire d’Informatique de l’Université
de Franche-Comté, 1995.

[16] N. Marilleau. An agent based meta-model for urban mo-
bility modeling. In The first Internationnal Conference
on Distributed Frameworks for Multimedia Applications,
DFMA’2005, pages 168–175, Besançon, France, 2005.

[17] N. Marilleau, C. Lang, P. Chatonnay, and L. Philippe. A
meta-model of group for urban mobility modeling. Inprocs.
of International Conference on Active Media Technology,
AMT 2005, pages 397–400, Takamatsu, Japan, 2005.

[18] E. J. Miller, J. D. Hunt, J. E. Abraham, and S. P. A. Mi-
crosimulating urban systems.Computer, Environment and
Urban Systems, Elsevier, 28:9–44, 2004.

[19] N. Minar, R. Burkhart, and M. Langton. The swarm simula-
tion system, a toolkit for building multi-agents simulations.
Technical report, Santa Fe Institute, 1996.

[20] K. Nagel and B. Raney. Large scale multi-agents simulations
for transportation applications. InBehavioral Responses to
ITS, Eindhoven, Pays-Bas, 2003.

[21] OMG. Meta object Facilitors (MOF). Technical report,
OMG, 2002.

[22] G.-C. Roman, P. J. McCann, and J. Y. Plun. Mobile UNITY:
Reasoning and specification in mobile computing.ACM
Transactions On Software Engineering And Methodology,
6(3):250–282, 1997.

[23] G.-C. Roman and J. Payton. Agent coordination paradigms
in mobile unity. In B. E., G. A., and R. E., editors,The 10th
International Workshop on Abstract State Machines, 2589,
pages 126–150. Lecture Notes in Computer Science, 2003.

[24] P. Simon and H. Gutowitz. A cellular automaton model of
bi-directional traffic.Physical Review E, 57(2):2441–2444,
1998.

[25] D. Vandbergue. Conception de simulation multi-agents :
Application la simulation des migrations intra-urbaines de
la ville de Bogota. PhD thesis, Laboratoire d’Informatique
de Paris 6, 2003.

[26] K. T. Waldeer. Numerical investigation of a mesoscopic
vehicular traffic flow model based on a stochastic acceler-
ation process. Transport Theory and Statistical Physics,
33(1):31–46, 2004.


