Development of acoustic wave sensors based on cobalt corroles for carbon monoxide detection

Mario L. Naitana¹, Claude P. Gros², Valentin Quesneau², Nicolas Desbois², Stéphane Brandès², Meddy Vanotti², Virginie Blondeau-Patissier², Sylvain Ballandras³

¹Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
²FEMTO-ST time and frequency department, 26 Chemin de l’Epitaphe, 25030 Besançon cedex, France
³Fresin/sys, TEMIS Innovation, 18 Rue Alain Savary, 25000 Besançon, France

Carbon Monoxide is a well known dangerous compound acting as a “silent killer” due to its undetectable features: colourless, tasteless and odourless. For the human body cells CO manifest its quick deadly action when the organism is exposed in a concentration above 30 ppm and recently the World Health Organization has established a risk assessment in the concentration order of 10 ppm for 8 hours of exposure. Therefore, there is still an ongoing necessity to develop a device able to detect with high sensitivity and specificity the presence of low CO concentration in indoor air. Recently, we have reported the outstanding affinity of an infinite selectivity of cobalt(III)corroles for CO over O₂ and N₂¹ and in this present project, founded by the French National Research Agency (ANR), we describe the development of an efficient and cost-effective surface acoustic wave (SAW)-based sensor, exploiting cobalt corroles as sensing material for CO detection. Several cobalt corroles bearing targeted functional group were tested in order to enhance the interaction of CO vs N₂ and O₂, to optimize the textural properties of the sensing layer and increase the long-term stability of the incorporated metallocorrole.²

REFERENCES
2. V. Blondeau-Patissier et al., Euroensors 2010, Linz.