A HBAR-oscillator-based 4.596 GHz frequency source: design, characterization and application to a Cs microcell atomic clock

Rodolphe Boudot¹, Gilles Martin¹ and Jean-Michel Friedt¹

¹FEMTO-ST, CNRS, UFC, ENSMM, Besançon, France.

Email: rodolphe.boudot@femto-st.fr

The most common technological approach for the development of a local oscillator in miniature atomic clocks (MACs) application consists of a frequency synthesizer using a LC voltage-controlled oscillator (VCO) phase-locked to a 10 MHz quartz oscillator through a fractional-N phase-locked loop (PLL) [1,2]. However, in such systems, the frequency multiplication degrades the phase noise and can consume up to 50% of the MAC total power budget [1]. In that domain, a promising alternative solution is the development of microwave MEMS oscillators based on bulk acoustic wave (BAW) resonators, exhibiting small size, low power consumption and high Q-f products.

This work reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally-controlled two-port AlN-sapphire HBAR resonator with a Q-factor of 24000 at 68°C, is frequency multiplied by 2 to 4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency (TCF) of the HBAR is measured to be -23 ppm/°C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dBrad²/Hz at 1 kHz offset and -150 dBrad²/Hz at 100 kHz offset. These phase noise performances are significantly better than those achieved with usual technologies [1,2].

The 4.596 GHz output signal is used as a local oscillator (LO) in a laboratory-prototype Cs microcell-based coherent population trapping (CPT) atomic clock [3]. The HBAR-based source signal is frequency-stabilized onto the atomic transition frequency in two steps: a coarse frequency tuning by adjusting the HBAR resonator temperature and a fine tuning by using a voltage-controlled phase shifter (VCPS) implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis (DDS).

The short-term fractional frequency stability of the free-running oscillator is 1.8 10^{-9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 $10^{-11} \tau^{1/2}$ up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance. The potential of this technology to be embedded in viable miniature atomic clocks will be discussed.

References

R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. Leblanc, M. Mescher, D. K. Serkland, K. M. Geig and S. Romisch, 39th Annual Precise Time and Time Interval (PTTI) Meeting, Long Beach, CA, p. 269-281, 2007.

[2] Y. Zhao, S. Tanner, A. Casagrande, C. Affolderbach, L. Schneller, G. Mileti and P. A. Farine, "CPT cesium cell atomic clock operation with a 12-mW frequency synthesizer ASIC", IEEE Trans. Instr. Meas., vol. 64, p. 263, 2015.

[3] T. Daugey, J. M. Friedt, G. Martin and R. Boudot, A high-overtone bulk acoustic wave resonatoroscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock, Rev. Sci. Instr. 86, 114703 (2015).