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Abstract

The effect of parametric uncertainties on the dispersion of Statistical Energy

Analysis (SEA) models of structural-acoustic coupled systems is studied with

the Fourier analysis sensitivity test (FAST) method. The method is firstly

applied to an academic example representing a transmission suite, then to

a more complex industrial structure from the space industry. Two sets of

parameters are considered, namely error on the SEA model’s coefficients, or

directly the engineering parameters. The first case is an intrusive approach,

but enables to identify the dominant phenomena taking place in a given

configuration. The second is non-intrusive and appeals more to engineering

considerations, by studying the effect of input parameters such as geometry

or material characteristics on the SEA outputs. A study of the distribution of

results in each frequency band with the same sampling shows some interesting

features, such as bimodal repartitions in some ranges.
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composite,

1. Introduction

Vibroacoustic design is a topic of great importance in many engineering

sectors. Especially in the transportation industries, both on the ground or

in aeronautics, noise and vibration have to be addressed in order to achieve

competitive products. This has even become more important since a trend

towards lightweight design has initiated in order to improve energy efficiency,

which has the downside of degrading noise and vibration performance. The

wide frequency spectrum which has to be studied leads to different method-

ologies in handling vibroacoustic problems: some methods deal primarily

with low frequencies, and others with high frequencies. Statistical Energy

Analysis (SEA) [1] belongs to the second category. It is a widely-used

method, which considers average energy quantities through energy balance.

SEA modelling is quite simple. The system is divided into simple substruc-

tures, and the power balance leads to an algebraic equations giving the total

energy stored within each of them. This model requires knowledge of sev-

eral coefficients, which can be difficult to estimate reliably. For instance, the

energy flow balance needs the damping loss factor (DLF) to be provided for

each subsystem. The coupling loss factor (CLF) of each couple of subsys-

tems is also needed to close the analytical formulation. CLF and DLF are

often provided by a database of materials and interfaces. These quantities

can also be estimated experimentally or numerically. The literature about

SEA reports a significant amount of publications dealing with SEA inputs

estimation in vibroacoustic contexts, either analytically [1] or deriving from
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finite element models [2, 3]. The impact of the variability of such inputs on

the SEA design can be of great interest at the pre-design stage.

Uncertainty and variability are the core of the SEA approach, as it deals

with ensemble statistics rather than deterministic quantities. However, the

actual averaging lies in the SEA hypotheses rather than in the mathematical

formulation itself, and the account of uncertainty is not explicit in classical

SEA. Fahy and Mohammed [4] investigated the effect of uncertainties on the

output variance of power flows in SEA systems composed of coupled plates

and beams. Work has been done by Langley and Brown [5, 6] to estimate the

variance of the kinetic energy of an SEA subsystem. This was extended and

validated in [7] for systems with only structural components. Uncertainties

in SEA models have been studied by several authors as well: Culla et al. [8]

used partial derivative analysis and Design of Experiment (DoE) techniques

to study the sensitivity of models to the SEA factors. Partial derivative

sensitivity was also used for transfer path analysis by Büssow and Petersson

[9]. The effect of the variance of SEA couplig loss factors on transfer path

analysis is studied by Aragonès and Guasch [10]. Cicirello and Langley [11]

also studied the sensitivity of a mixed FE-SEA model to both parametric

and non-parametric uncertainties.Xu et al. [12] proposed two methods to

estimate the interval of variability of SEA results for structural-acoustics

coupled systems.

The objective of this work is to contribute to the quantification of uncer-

tainty due to model inaccuracy, by establishing a ranking of the most influen-

tial parameters of a SEA model. Global sensitivity analysis in general is used

to derive indicators of influence for parameters which have broad variation
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ranges, as opposed to local methods which target variations around a working

point. There are several ways of deriving global indicators [13]. Among these,

the class of methods grouped under the term ANOVA (acronym of Analysis

of Variance) are based on the variance decomposition [14] as an estimate

for the sensitivity of each parameter. The Fourier amplitude sensitivity test

(FAST) is one of these methods, which was originally developed by Cukier et

al. [15] as a computationally efficient method to compute the ANOVA sen-

sitivity indices, with application in the study of complex chemical reactions.

This method has later been reused by Iooss et al. [16] for radiologic risk

assessment models. Ouisse et al. [17] applied the FAST method to porous

material models, regarding acoustic impedance and absorption. This work

was later extended to different models of porous materials with focus on

microgeometry in [18]. The parametric approach proposed here can be used

both for lack of knowledge of parameters, or for model inaccuracies, and so

be used in combination with an interval analysis such as the one proposed

by Reynders [19].

SEA models are subject to uncertainty in two forms: lack of knowledge

of the input parameters, and modelling errors in evaluating the damping and

coupling coefficients. The originality of the present work lies in the applica-

tion of an ANOVA global sensitivity analysis method to an SEA model in

order to identify the contribution of every uncertain parameter to the output

variance. Both modelling uncertainties and input parameter variability can

be handled in the proposed framework.

The method is first presented on the academic case of noise transmission

between two reverberant rooms through a composite plate. Variation on the
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coupling coefficients enable to highlight the dominant phenomena occurring

in the model. The effect of engineering parameters is then studied on the

same academic set-up and an industrial structure. Because the FAST method

is a sampling method, the values at samples can also be recovered and used in

a statistical analysis enabling to get more information about the distribution,

such as the standard deviation or simplified models of the probability law.

This paper is structured as follows: section 2 presents the general SEA

model that will be used for the academic case. A brief overview of the

FAST sensitivity analysis method is presented in section 3. The uncertainty

of modelling itself is investigated on the academic transmission suite case

in section 4. Finally, the effect of uncertainties on engineering parameters

is studied in section 5 with the same transmission suite example and an

industrial test case.

2. SEA modelling

2.1. General SEA equations

SEA modelling is based on the analogy between energy exchanges in

vibrating systems and heat transfer between bodies at different temperatures.

The mechanical system is decomposed into N elementary subsystems. The

power flow between each pair of subsystems is supposed to be proportional

to the difference between their total vibrational energies. In addition, each

system can dissipate energy, again proportionally to its energy level. The

power transferred from subsystem i with total energy Ei to subsystem j

with energy Ej in the band centred around frequency f is written

Pij = ω (ηijEi − ηjiEj) , (1)
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where ω = 2πf , ηij and ηij are called coupling loss factors (CLF), while the

power dissipated in system i is

Pi,diss = ωηiEi, (2)

where ηi is the damping loss factor (DLF). All these coefficients depend on

the nature of the subsystems and their coupling, as well as on the width

of the frequency band considered. The CLFs obey a reciprocity rule, as

ηijni = ηjinj where ni and nj are the modal densities of systems i and j.

The SEA system is obtained by writing the power balance of each subsystem,

where the injected power equates the power losses due to dissipation and

couplings:

Pi,inj =
∑
j 6=i

Pij + Pi,diss. (3)

[Figure 1 about here.]

The considered configuration is that of the transmission suite shown on

Figure 1, comprising two rooms separated by the studied plate. The plate

is made of a sandwich composite material whose core is honeycomb-shaped.

The SEA model used in [20] is considered in this study. It consists of 3

subsystems, numbered 1 for the cavity where the source is radiating, 2 for

the plate, and 3 for the receiving cavity. The non-resonant transmission

introduces a direct coupling between the two rooms, and is taken into account

through the CLF η13. The SEA equations then write as a matrix system:

ω


(η1 + η12 + η13)n1 −η21n2 −η31n3

−η12n1 (η2 + η21 + η23)n2 −η32n3
−η13n1 −η23n2 (η31 + η32 + η3)n3



E1/n1

E2/n2

E3/n3

 =


P 1
inj

0

0

 ,

(4)
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where P 1
inj is the power injected in this frequency band in the source cavity

1.

Since the two rooms are identical and the plate radiates identically on

both sides, the following equalities between CLFs, DLFs and modal densities

hold, respectively: η23 = η21 = ηrad, η1 = η3 = ηcav and n1 = n3 = ncav. Since

the system is symmetrical, we also have η13 = η31. With the reciprocity rule,

we also have for all i, j ∈ {1, 2, 3}. The energy ratio between the two rooms

then writes
E1

E3

= 1 +
2ηradη1n1 + (η1n1 + ηradn2)η2
η2radn2 + η13(2ηrad + η2)n1

; (5)

The noise reduction index (NR), which is the difference of sound pressure

levels in the two rooms, then writes

NR = 10 log10

(
E1

E3

V3
V1

)
, (6)

where V1 and V3 are the volumes of the two rooms, which are equal in the

considered case. The sound transmission loss (TL), defined as the logarithmic

ratio of sound intensities on each side of the plate, can be computed from

this ratio as well, introducing the receiving cavity’s absorption αcav, which is

part of the definition of the DLF ηcav. According to [20], the TL writes:

TL = 10 log10

(
A2

Scavαcav

(
E1

E3

− 1

))
, (7)

where A2 is the area of the plate and Scav the absorbing surface of the re-

ceiving room.
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2.2. Evaluation of SEA parameters

2.2.1. Damping loss factors

The damping loss factor for the composite plate can be expressed as a

function of frequency f . It is calculated with the following formula [21]:

η2 = ηplate = Af−B. (8)

The parameters A and B are found experimentally. The same reference gives

B = 0.63 as a good fit for experiments on space structures, and coefficient A

may vary between 0.1 and 0.6.

The DLF of a room is given from the reverberation time as

ηcav =
2.2

fTcav
, (9)

where Tcav = 0.161
Vcav

αcavScav

is the reverberation time and Vcav is the volume

of the cavity. This equation, known as Sabine’s formula, is valid for normal

conditions in which the speed of sound in air is c0 = 343 m.s−1 and the

density of air is ρ0 = 1.21 kg.m−3.

2.2.2. Plate-cavity coupling

The coupling loss factor between the plate and one cavity is linked to

the radiation efficiency of the plate, which itself depends on the critical fre-

quency fc. Maidanik’s corrected formulas [22, 23], are used for the radiation

resistance of the plate, with following notations: f̃ =
√

f
fc

, λc = c0
fc

. The

plate is rectangular with length lx and width ly. The radiation resistance is
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then

Rrad = A2ρ0c0


σcorner + σedge if f < fc√
lx/λc +

√
ly/λc if f = fc(

1− fc
f

)− 1
2

if f > fc,

(10)

where

σcorner =


0 if f > fc/2

8c20
A2f 2

c π
4

1− 2f̃ 2√
f̃ 2(1− f̃ 2)

otherwise,
(11)

σedge =
P2c0

4π2fcA2

(
1− f̃ 2

)(
ln 1+f̃

1−f̃ + 2f̃
)

(
1− f̃ 2

) 3
2

, (12)

and P2 = 2(lx + ly) is the perimeter of the plate. The CLF for the power flow

from the plate to the cavity is finally:

ηrad =
Rrad

ωmA2

, (13)

where m is the surface density of the plate and mA2 is therefore the total

mass of the structure.

2.2.3. Non-resonant transmission

The resonant coupling described in the previous paragraph does not take

into account non-resonant transmission between the two rooms, also known

as mass law. This phenomenon is negligible above the critical frequency, but

important below it. It is thus necessary to account for it by introducing

a coupling loss factor between the two rooms. This term depends on the

room’s volume and the mass of the plate. Since the two rooms are identical,
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the expression of the CLF is given by [1]:

η13 =
3ρ20c

3
0A2

2ω3m2Vcav
; (14)

2.2.4. Critical frequency

The critical frequency is the frequency where the wavenumber of free

propagating flexural waves kbend is equal to that of a grazing acoustic wave,

which reads

kbend(fc) = 2π
fc
c0
. (15)

This corresponds to the minimum of all possible coincidence frequencies.

Since this paper only discusses diffuse fields, by language abuse the terms ”co-

incidence” and ”critical frequency” will be used interchangeably. Narayanan

and Shanbhag’s model [24] for wave propagation in sandwich panels is used,

for which the constitutive equation for an isotropic sandwich without damp-

ing writes in the frequency domain

−Dtk
6
bend − g(Dt +B)k4bend −mω2 − mB

N
ω2k2bend = 0, (16)

where g = 2 G
Ehshc

, m is the surface mass of the whole plate, Dt =
Eh3s

6(1− ν2)
is

the skins’ bending stiffness, B = Ehs(hc+hs)
2 is the overall bending stiffness

and N = Ghc is the shear stiffness. In these definitions, E is the Young’s

modulus of the skins, G the shear modulus of the core, hc and hs respectively

the thickness of the core and each skin, and ν is the Poisson’s ratio of the

skins. Combining Eq. (16) with Eq. (15), gives the equation to which the

critical frequency is solution

Dt

(
2π
fc
c0

)4

+

(
g(Dt +B)

c20
+
mB

N

)
(2πfc)

2w +mc20 = 0. (17)
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As this equation is a second order polynomial in f 2
c , the positive root is

the critical frequency.

2.2.5. Modal densities

The modal density of a rectangular acoustic cavity surrounded by hard

walls is classically evaluated with the following formula [20]

ncav =
4πf 2Vcav

c30
+
πfScav

2c20
+
Pcav

8c0
(18)

where Vcav, Scav and Pcav are respectively the volume, surface and perimeter

of the cavity. The perimeter Pcav is the sum of the lengths of the cavity’s

edges, and is independent of the plate.

The modal density of a composite plate is obtained from the wave prop-

agation analysis of the plate

n2 = A2kbend
dkbend

dω
, (19)

where the expression for kbend with respect to frequency is obtained again

from Eq. (16). All the expressions of the SEA coefficients are averaged over

third-octave frequency bands when used in Eq. (5).

3. The FAST method

3.1. Analysis of variance

One parameter’s influence on the model output can be quantified by the

impact it has on the variance in the given design range. In the following

development, a generic mathematical model is considered. A model is a real
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valued function f defined over Kn, where K = [0, 1]. With appropriate scal-

ing and translations, any model defined over continuous ranges of parameters

can be represented that way.

For a given model f linking input parameters x = (x1, ...xn) to a scalar

output y = f(x), the Hoeffding decomposition, or high order model repre-

sentation (HDMR) [14], writes:

y = f(x1, x2, ...xn) = f0 +
n∑

i=1

fi(xi) +
∑
i<j

fij(xi, xj) + ...+ f1...n(x1, ..., xn).

(20)

There exist a unique such decomposition so that every function fU involved

in the decomposition, except f0, has zero mean over its range of variation

K|U , which is the subspace of K spanned by the dimensions contained in

subset U , or in mathematical terms,

for all U ⊂ [1, n],

∫
K|U

fU(xU)dxU = 0. (21)

For a given set of indices U ⊂ [1, n], the partial variance is therefore the

variance of fU

VU =

∫
K|U

fU(xU)2dxU . (22)

The sensitivity index relative to the set U is expressed as the ratio of the

variance of the function fU to the total variance of the model:

SI(U) =
VU
V
. (23)

The computation of all the 2n sensitivity indices is needed to represent

completely the model, however this becomes quickly a very costly task in

terms of computational time, as they have to be evaluated by numerical
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integration. However, most information about a parameter’s influence can

be found in the first-order sensitivity index and the total sensitivity index,

which can be computed more efficiently with the FAST method.

For a given parameter i ∈ [1, n], the main effect (ME) is then the sensi-

tivity index relative to the 1-dimensional function fi:

ME(i) = SI({i}).

Another interesting sensitivity measure for a given parameter i is the total

sensitivity index, defined as the sum of the indices of all sets of parameters

U to which i belongs:

TSI(i) =
∑

U⊂[1,n]
i∈U

SI(U). (24)

3.2. Main effect computation

The functions fU are defined recursively [14], and their explicit computa-

tion, as well as the computation of their variances, demands a high number

of integrals on subsets of parameter space K. The principle behind the FAST

method is to avoid the evaluation of these multidimensional integrals by a

clever sampling of K. This sampling is made along a space filling curve,

which is periodic with different periods in each dimension of K, allowing

for Fourier analysis. We use here the sampling function proposed by Saltelli

et al. [25], defining the following parametric curve:

xi(s) =
1

2
+

1

π
arcsin (sin (ωis+ ϕi)) , (25)

where the integers ωi are chosen according to [15]. Their values are recalled

for 4 and 5 parameters in Table 1. The values ϕi are real numbers randomly
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chosen in the interval [0; 2π]. This allows to average the results over several

analysis made with different values of ϕi in order to better span the parameter

space K.

[Table 1 about here.]

The function s 7→ (x1(s), ..., xn(s)) is 2π-periodic. The number of samples

is N >> 2ωn + 1, taken in the [0, 2π] interval for the variable s. Let the

model output be denoted yk = f(xk), where xk = (x1(sk), ..., xn(sk)). The

discrete Fourier transform ŷk of the vector of the yk can be easily computed

numerically.

The total variance of the function in the design space is computed with

Parseval’s theorem as

V =

∫
K

(
f 2(x)− f 2

0

)
dx ≈

N∑
k=1

y2k =
N∑
k=1

ŷ2k (26)

The contribution of parameter i will then be:

Vi =
M∑
k=1

ŷ2kωi
, (27)

leading to the first-order sensitivity indices ME(i) = Vi

V
.

3.3. Total sensitivity index computation

A method proposed in [25] is to assign one rather high integer frequency ωi

to parameter i and a set of low frequencies {ω∼i} to all other parameters. The

same sampling curve as defined in Eq. (25) is used with these frequencies, and

post-processed so that the lowest order harmonics give the partial variance
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D∼i relative to all parameters but i. The total sensitivity index of parameter

i is then

TSI(i) = 1− V∼i
V
. (28)

3.4. Interpretation

By definition, the sensitivity indices range between 0 and 1. The sum

of main effects is less than or equal to 1. The difference 1 −
n∑

i=1

ME(i) is a

measure of how much interaction there is between parameters to produce the

variance, i.e. how much of the variance cannot be explained by variations of

each parameter individually. This difference is exactly zero only for models

whose outputs can be expressed as a sum of one-variable functions of the

inputs. These models are also called additive models. For such models, main

effect and total sensitivity indices are equal.

The first-order index represents the share of the output variance that is

explained by the considered parameter alone. Most important parameters

therefore have high ME, but a low ME does not mean the parameter has no

influence, as it can be involved in interactions.

The total index is a measure of the share of the variance that is re-

moved from the total variance when the considered parameter is fixed to its

reference value. Therefore parameters with low TSI can be considered as

non-influential.

4. Model uncertainty

The formulas established in the previous sections are approximations, es-

pecially in the case of Maidanik’s formulas, which were primarily established

for a thin plate. As the behaviour of a sandwich structure implies some
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shear in the core that is not taken into account, it is expected that the SEA

parameters calculated above contain some inaccuracy. Other error-prone pa-

rameters include the DLFs, as damping is notoriously difficult to evaluate

for complex structures.

The sensitivity of the NR with respect to uncertainties in the following

four SEA parameters is studied with the FAST method: the plate-cavity

CLF ηrad, the cavity absorption αcav, the plate DLF ηplate, and the criti-

cal frequency fc. The academic design chosen has following characteristics:

the cavities are cubic with an edge length of 5.1m, the size of the plate

is 0.8m×1.2m. The plate is made of a composite sandwich with isotropic

core (shear modulus G=400MPa, thickness hc=12.7mm) and isotropic skins

(Young modulus E=50GPa, Poisson ratio ν=0.1, thickness hs=1mm). The

overall surface density of the plate is m = 5kg.m−2. The fluid is air with

density ρ0 = 1.21kg.m−3 and sound speed c0 = 343m.s−1. Under these con-

ditions, the critical frequency is around 640Hz.

In order to study this uncertainty, the reference values of each parameter

are evaluated for each frequency band with the formulas described in sec-

tion 2. The reference value of parameter i is then multiplied by a random

error factor ε(i) with a probability law centred on 1. For example, if the

reference DLF in the plate is denoted ηplate, then the error factor is denoted

ε (ηplate), which should not be interpreted as a function of ηplate, but simply

as a writing commodity. The actual DLF in one sample is then ηplateε (ηplate).

Two kinds of probability laws are considered for the error factors, namely

a uniform law, in which the possible values are bounded and equiprobable,

and a lognormal law, which only restricts the error factor to positive values,
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with an average value equal to 1.

4.1. FAST results

4.1.1. Uniform law on uncertainty parameters

The uniform laws are chosen to be centred on 1, and with non-negative

values. The chosen bounds for each parameter are presented in Table 2. The

error on the critical frequency is chosen rather low (±10%), while that on

the plate’s internal damping is very high (±40%).

[Table 2 about here.]

Figure 2 shows the first-order sensitivity indices (ME) of all the considered

parameters for the NR in each third-octave band between 100Hz and 20kHz.

It can be seen that the CLF between the plate and the cavities is dominant

over most of the frequency range, except in the bands around 800Hz, where

the nominal value of the critical frequency lies, and in which the error on fc is

dominant. This can be expected, as all energy flowing between the emitting

and receiving cavities has to go through the plate, no indirect coupling being

taken into account in this model. Despite its high uncertainty (±40%), the

plate’s damping is on the contrary relatively unimportant on the whole range,

meaning that whatever its value in the considered range, much less power is

dissipated in the plate than transferred to the receiving cavity. The effect of

the critical frequency is limited to the third octave bands around coincidence,

and negligible for extreme high and low frequencies.

The asymmetry observed between high and low frequencies is partly due

to the logarithmic scale used but also mainly to the expression of the radi-

ation efficiency (Eq. (10)), which tends to infinity when f approaches fc as
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∣∣∣1− f
fc

∣∣∣− 3
2

when f < fc, faster than
∣∣∣1− f

fc

∣∣∣− 1
2

when f > fc. As the NR

varies with η−1rad, this means that an error on fc will have more importance

when f < fc than when f > fc.

It can be noted that the sum of the main effects is always close to 1,

meaning that the model is free from interactions between parameters in the

case a uniform law is used for all of them.

[Figure 2 about here.]

4.1.2. Lognormal law

A lognormal law is traditionally characterised by the mean µ and the

standard deviation σ of the associated Gaussian law, while its actual average

is

µl = exp

(
µ+

σ2

2

)
, (29)

and its actual standard deviation is

σl =
(
exp(σ2)− 1

)
exp(2µ+ σ2). (30)

The parameters of the lognormal law presented in Table 3 are chosen so

that their actual mean is 1, and their actual standard deviations match those

of the corresponding uniform laws.

[Figure 3 about here.]

[Table 3 about here.]

The main effects from the FAST analysis of the NR in this case are pre-

sented on Figure 4. They compare well with those computed in the previous
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section with a uniform law, except the fact that they do not add up to 1, but

to a slightly lower value around 0.95, indicating the presence of interactions.

As the parameters vary in a broader range, albeit with a low probability, this

indicates that the model is not fully additive in this case, and that the use of

a non-uniform probability law induces some interaction between parameters

[Figure 4 about here.]

4.2. Statistical considerations

With the sampling used for the FAST analysis, it is possible to compute

some statistical features of the response, which are summarized on Figure 5

for the uniform law and Figure 6 for the lognormal law. These two figures

present the distribution of the response on a coloured scale, the bluer part

indicating the least probable values, and the redder the most probable. The

mean and the interval width of ±1 standard deviation around the mean are

superimposed as black and dashed black lines respectively, and the nominal

response is shown as a dashed purple line.

It can be seen that in both cases, for most of the frequency range the

nominal response coincides with the average, but the most probable response

may differ by several dB, especially in the coincidence range around 800Hz.

The lognormal law show as expected a wider range: as the parameter values

are theoretically unbounded, so is the response. The standard deviation is

nearly the same in both cases, and reaches about 2dB, which is acceptable for

most industrial applications. The considered errors on modelling parameters

are therefore reasonable here.

[Figure 5 about here.]
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[Figure 6 about here.]

5. Parametric uncertainty

One of the main aims of sensitivity analysis is to study the effect of

input parameters. While the analysis in section 4 was focused on internal

parameters of the SEA model, we propose here to apply it to parameters that

are more readily manipulable by a designer, namely material parameters.

The two cases considered are first the same academic transmission suite, and

second a test structure shaped like a mock-up of a space structure.

5.1. Transmission suite

The plate between the two rooms of the transmission suite being made

of sandwich composite material, the most relevant parameters from an engi-

neering point of view are the Young’s modulus of the skins E, the equivalent

transverse shear modulus of the coreG, the overall surface massm, the plate’s

damping ηplate and the cavity’s absorption coefficient αcav. The damping loss

factor is calculated with the formula defined in Eq. (8). The uncertainty

is applied on the coefficient A, while the exponent B is constant and taken

equal to 0.63, which is thus equivalent to the uncertainty studied previously.

[Table 4 about here.]

The main effects on the NR are presented in Figure 7. It is noticeable

that the absorption of the cavity has a high impact, accounting for between

50 and 60% of the variance everywhere, except around coincidence. The

second most important parameter is mass below coincidence, and the shear

modulus above it.
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[Figure 7 about here.]

The same analysis on the transmission loss (TL) defined in Eq. (7), which

should neutralise the effect of absorption in the rooms exhibits a similar

ranking of parameters, except that absorption does no longer play a role, as

shown in Figure 8.

[Figure 8 about here.]

These results are consistent with a previous study made on an analytical

model of the same configuration [26]: mass is dominant in low frequencies,

while the influence of stiffness peaks around coincidence, and the effects of

shear and damping are predominant in high frequencies. Both for NR and

TL, the model is additive for all frequency ranges, except the coincidence

range, where a high level of interaction is observed. This is due to the

expression of the critical frequency as a function of mass and stiffness of

the plate: the value of the critical frequency has more effect on the overall

variability than the drop in TL that occurs at this frequency.

5.2. Industrial structure

The same kind of analysis was finally applied to a structure composed of

two cones and a cylinder, as shown in Figure 9a. It will be referred to as

SYLDA-like, because its configuration is loosely inspired from the Ariane 5

SYLDA double launch system. The holes on the top and bottom sides are

supposed to be hermetically sealed. An SEA model has been implemented in

an industrial code, based on modal formulations for the CLFs. Five subsys-

tems are considered, one cavity representing the exterior diffuse sound field,

the inner cavity, and three structural parts: the top and bottom conical shells
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and the cylindrical shell in the middle, as shown in Figure 9b. All shells are

made in the same sandwich material, and feature the same engineering pa-

rameters as the plate in the previous subsection (Table 4). The outer cavity

is open, and the sound field is supposed to be uniform and diffuse in the

vicinity of the shell. The model output is the noise reduction (NR) factor,

which is the difference in sound pressure levels between the outer and inner

cavities.

[Figure 9 about here.]

Figure 10 shows the results of the FAST analysis by third-octave bands

between 400Hz and 16 kHz. The lowest frequency band is chosen because

there are no structural modes in the lower (320Hz) third-octave band, making

the mode-based model used unable to compute CLFs in this range. The

main effects (ME) presented in 10a indicate an additive model except again

in the coincidence range. This time, as the transmission occurs through the

whole surface of the structure, the cavity absorption is again predominant

in most of the frequency range, while the effect of mass is sensible only in

low frequencies, and the effect of shear increases with frequency. The total

sensitivity indices (TSI) presented in 10b are, as expected from the previous

figure, identical to the ME except in the band where most critical frequencies

appear, where the highest TSIs are those of the mass and Young’s modulus,

indicating again that the variance of the NR in this band is largely due to

an interaction between these two factors, which determine the value of the

critical frequency.

[Figure 10 about here.]
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The FAST sampling here leads to interesting considerations concerning

the distribution of the response (Figure 11): in this case, the average response

is globally centred in the distribution for all third-octave-bands, except the

one centred on 630Hz, which contains the reference critical frequency. In

this octave the probability density function is not centred, but exhibits two

local maxima, one being a real maximum around 4dB, 2dB lower than the

average, and one around 8dB, more than one standard deviation away from

the average, which pleads in favour of looking for more advanced statistical

features of the response distribution than just the mean.

[Figure 11 about here.]

6. Conclusion

The parametric sensitivity analysis method FAST has been employed in

this paper to study the effect of model and parametric uncertainties on the

noise reduction and transmission loss through composite structures modelled

with SEA. The academic case of a transmission suite allowed us to apply

uncertainties on several SEA model features such as coupling loss factors

and damping loss factors, showing that the most important parameters are,

unsurprisingly, the plate-cavity coupling and, much less, the cavity’s absorp-

tion coefficient. The effect of the probability law was also tested, comparing

a uniform law on the model error parameters to a lognormal law. Both

results were found compatible, as the laws were chosen to have the same av-

erage and standard deviation, but the unboundedness of the parameter range

with the lognormal law leads to interactions between parameters. Concern-

ing uncertainties on design or engineering parameters, the results found on

23



the academic case are consistent with common knowledge, while the more

general frame of the SEA method allowed us to validate these results on a

more complex industrial-like case. It should be noted that the results in this

case are very specific to the chosen set-up, and hence cannot be intuitively

extrapolated from the results of the academic case.

The fact that the FAST method uses a sampling of the parameter space

makes it possible to derive some informations about the general statistics

of the response. For the studied cases, the most probable response is usu-

ally close to the nominal and to the average response, but difference may

arise especially around the critical frequency, when the interactions between

parameters in the sense of ANOVA is high.
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Figure 4: Sensitivity indices of the NR for model error parameters with lognormal law
(for each bar, from top to bottom: fc, ηrad, ηplate, αcav)

33



Figure 5: Distribution of the NR around the mean for the ”model error” setting and
uniform distributions
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Figure 6: Distribution of the NR around the mean for the ”model error” setting and
lognormal distributions
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Figure 7: Sensitivity indices of engineering parameters for the NR of the transmission
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Figure 8: Sensitivity indices of engineering parameters for TL of the transmission suite.
For each bar, from top to bottom: αcav (too small to be visible), ηplate, m, G, E.
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Figure 9: SEA model of the SYLDA-like structure.
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Figure 11: Distribution of the NR around the mean for SYLDA-like test case.

40



List of Tables

1 Integer frequencies for the FAST method for 4 and 5 parameters. 42
2 Parameters of the uniform laws used for the model uncertainty

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3 Actual standard deviations σl of the lognormal laws used for

the model uncertainty parameters. The mean µl is always
equal to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Parameters of the uniform laws used for the engineering pa-
rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

41



Number of parameters Frequencies
4 [11; 21; 27; 35]
5 [11; 21; 27; 35; 39]

Table 1: Integer frequencies for the FAST method for 4 and 5 parameters.
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Name Description Uncertainty
fc Critical frequency ±10%
ηrad Plate-cavity CLF ±30%
ηplate Plate damping parameter ±40%
αcav Cavity absorption ±20%

Table 2: Parameters of the uniform laws used for the model uncertainty parameters
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Name Description Standard deviation
fc Critical frequency 0.0577
ηrad Core shear modulus 0.1732
ηplate Plate damping parameter 0.2309
αcav Cavity absorption 0.1155

Table 3: Actual standard deviations σl of the lognormal laws used for the model uncer-
tainty parameters. The mean µl is always equal to 1.
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Name Description Unit Reference value Uncertainty
E Skin Young modulus GPa 50 ±15 %
m Surface density kg.m−2 5.0 ±10%
G Core shear modulus GPa 0.24 v30%
η Plate damping – 0.6 ±30%
αcav Cavity absorption – 0.1 ±30%

Table 4: Parameters of the uniform laws used for the engineering parameters
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