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Due to their lightness, the aerospace structures are vulnerable to vibrations. Their
amplitudes need to be mitigated through damping devices. The aim of this paper is to
control the tightening force of a bolted joint in order to improve the vibration reduction.
The work focuses on a single vibration mode modeled by two degrees of freedom cou-
pled with a Jenkins’ cell. Then two control strategies are proposed in order to reduce
the harmonically forced vibrations and transient vibrations. The first control law, uses
a constant optimum clamping for each excitation level. The second law consists in a
sinusoidal variation of the clamping force adapted to each level and frequency of excita-
tion. Finally, in the third section, the control law is modified in order to reduce transient
vibrations. For each control law, the performances of the model are discussed according
to the aimed application.
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1. Introduction

In structures, bolted connections have been widely studied for their strength limit

as well as for their interesting dynamic properties. Peyret et al. [2010] and Dion et

al. [2013] compared the vibrational response of a monolithic beam with an assem-

bled one and they showed that the interface affects the frequency response of the

main structure. Indeed, partial-sliding and friction generate two effects such as a

decrease of the natural frequency (variation of the stiffness) and an increase of the

energy dissipation. They demonstrated the direct effect of the tightening force on

the damping ratio. The field of friction control wss created thanks to both effects.

The use of friction induced damping is essential to aeronautical and aerospace

structures, because they are used in environments that exceed the effectiveness tem-

perature domain of viscoelastic materials. Nevertheless, the friction induced damp-

ing is less effective than the use of viscoelastic materials at ambient temperature
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and it behaves nonlinearly. This means that the stiffness and the damping depend

on the vibration amplitude. Fig. 1 shows the influence of the excitation amplitude

F on the response of an assembled structure. The use of friction control is essential

because of these two limitations. It aims to maximize the damping and to make it

less dependent from the vibration amplitude. The first application of friction control

was conducted by Lane et al. [1992].

The friction control is developed by many researchers for different applications

such as the micro and nanostructures positioning, the mitigation of lightweight

assembled structures vibrations or the isolation of machinery foundations vibration.

Shen and Yan [2013] proposed in the first topic to overcome the uncertainties and

the effect of friction of the cross roller guide in a precision positioning stage. Gaul

et al. [2004] tried to suppress the vibration of large space truss structures with

a semi-active approach which maximize the energy dissipation in friction joints.

Stammers and Sireteanu [1998] designed a semi active device to control vibrations

of machinery foundations and the ride control of a vehicle.
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Fig. 1. View of the frequency response functions of a structure for several excitation amplitudes.

Mascarenas et al. [2005, 2006] emphasized on the capacity of the normal force

to control and affect the behavior of the bolted joint and therefore the vibrations

of the structure. In fact the normal force is the result of the tightening of the screw

and the different boundary conditions of the piezoelectric patches. In addition the

authors propose a health monitoring application with a low cost and a portable

technology for real structures.

Dupont et al. [1997] developed the ”bang-bang” control law adapted for friction,

based on Lugre friction model proposed by De Wit et al. [1995]. They confirmed

that the control laws can maximize the instantaneous damping induced by friction.

Based on two experiments their job consists in testing a three masses system to

model a turbine blade with a friction damper at the blade root. A SDOF model has

also been proposed for stationary vibrations. However the proposed control laws are
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effective for only low amplitudes and low velocities in the case of impulse excitation

for the first system and in the case of periodic excitation for the SDOF.

An improvement of Dupont and Stokes [1995] control law is realized by Gaul and

Nitsche [2000] by increasing the instantaneous dissipated energy.They simulate and

control a two-beams structure assembled with an active joint and conclude that the

normal force control can substantially improve the performance of the vibration re-

duction compared to the constant normal force, furthermore they propose to extend

the control law to an appropriate truss structure presented by Gaul et al. [1998].

The same control strategy has been adapted for a truss structure by the same au-

thors. They tested two control laws to reduce the vibrations (see [Gaul et al., 2004]

and [Gaul et al., 2005]). To obtain the friction control, L. Gaul et al. modified the

original truss nodes to allow relative slip between the rods. The authors extended

the concept of control previously defined for a SDOF or a 2-DOF to a multiple

DOF-Systems. They used a 24 DOF reduced order model that comes form a 2523

DOF original numerical model. The 24 DOF represent 9 modes and 3 additional

correction modes generated for each friction joint. In the same papers, the efficiency

of the approaches for multiple MDOF-Systems modal control is demonstrated for

impulse excitation.

Karim and Blanzé [2014] tested numerically two control laws for a 4-DOF system

which models two bolted beams. The first control law consists in reducing the normal

force of the structure in the critical frequencies vicinity. The second control law

consists in varying harmonically the normal force. Furthermore, they proved that the

dissipated energy maximization is an inopportune criterion and causes the highest

vibration amplitudes. They confirmed also that reducing the vibration amplitude

by a tightening control law could cause a global loss of the rigidity and affect the

integrity of the structure. Thus they proposed an interesting dynamic absorber

bolted (“add-on bolt”) to the structure in order to overcome these constraints.

However using the laws control cited previously for the “add-on bolt” is a difficult

challenge.

In this work, we work on a 2-DOFs model able to reproduce one of the vibration

modes of a real structure with an active connection. The first aim of this model is to

clarify the relationship between the vibration amplitudes, the critical frequencies,

the excitation levels and the tightening force. The second aim is to build a new

friction control law with a variable tightening force. For the 2-DOF model, three

laws are proposed in order to control forced and free vibrations. The joint between

both coupled masses is modeled by a spring-dashpot linear link and a Jenkins’ cell

governed by Dahl’s model [1968]. The control of the normal force (tightening force)

may be performed by electrically commanded piezoelectric devices. We propose two

new control laws for the steady state of the periodic vibration. Indeed we consider

only the vibration amplitudes at resonance since the vibrations elsewhere are very

low. The first control law consists in applying an optimum constant tightening

force which depends on the excitation level. This control law is an improvement
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of the one proposed by Karim and Blanzé [2014] witch is switching between two

levels of tightening force. A sinusoidal tightening law is introduced as the second

law so called ”phase control law”. The sinusoidal tightening aims to eliminate the

discontinuity of the square signal that leads to chattering. The limit values and the

frequency of the proposed control law depend on the excitation frequency and the

vibration level respectively. We propose to complete the control law designed for

steady state vibrations in order to also control transient vibrations by using the

study of Gaul and Nitsche [2000]. The paper starts by the formulation of a 2-DOFs

system and a design of experiments on its parameters that allows us to choose the

system parameters. Then, several control laws are discussed in term of efficiency for

both periodic and transient excitations.

2. Two DOF system with coupling Jenkins

2.1. Formulation

The 2-DOFs coupled with a Jenkins’ cell, Fig. 2, is the simplest model to study

the influence of friction induced damping in a jointed structure. This simple model

can be identified from the modal parameters of the Finite Element Model of a more

complex structure including the bolted joints, see [Festjens et al., 2014].

m1 m2

k1

c1

σ

µ

Fn

k12

c12

k2

c2

Fcos(2πfext) fnl

Fig. 2. Model of two degrees of freedom system

In this model, ki and ci (i = 1,2) are respectively the modal stiffness and the

viscous damping attached to the modal mass mi and to the ground. k12 and c12
are respectively the stiffness and the viscous damping attached to both masses.

fnl represents a modal Jenkins’ cell, as described by Deaner et al. [2015], whose

parameters are the coupling stiffness σ, the tightening force Fn and the friction

coefficient µ.

The Jenkins’ cell modelizes the partial and the total sliding phases in the inter-

faces of the bolted assembled structure. The stiffness k12 is added to the coupling

stiffness σ because even in the total sliding phase, there is always a stiffness which

connects both masses as demonstrated by Gaul and Lenz [1997]. Otherwise, the
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mode coupling tends to zero in full sliding. This is never observed for bending

modes. According to Fig. 2, the equation of motion is given by:

[
m1 0

0 m2

](
ẍ1
ẍ2

)
+

[
c1 + c12 −c12
−c12 c2 + c12

](
ẋ1
ẋ2

)
+

[
k1 + k12 −k12
−k12 k2 + k12

](
x1
x2

)
=(

F cos(2πfext)

0

)
+

(
−fnl
fnl

)
. (1)

xi , ẋi and ẍi are respectively the displacement, the velocity and the acceleration

of the mass mi and F cos(2πfext) is the excitation force applied to the first mass.

Dahl’s friction model [1968] is used for the jenckin’s cell because to our point of

view it can be easily implemented in time-integration algorithms and it includes

different aspects of friction such as partial and full sliding. fnl is thus defined by:

dfnl
dδ

= σ

(
1− fnl

Fc
sign

(
δ̇
))α

, (2)

where δ = x2 − x1 is the relative displacement between both masses, Fc = µFn
represents Coulomb’s sliding friction force and α is the constant that determines

the shape of the friction law, see Fig. 3. Bliman [1992] showed that the brittle or

ductile material type determines the magnitude of this parameter.

The force-displacement graph is independent from the modal parameters as

mentioned by Pennestri et al. [2007]. It only depends on Dahl’s parameters, Fig. 3.

Moreover, the hysteresis loop area and δmax are almost independent from the pa-

rameter α. On the other hand, the strain energy decreases following α increase. This

proves the influence of the parameter α, i.e. the interface topology, on the friction

induced damping.
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Fig. 3. fnl(α) when σ = 1 N/m,F = 1 N,Fc = 0.01 N
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Fig. 4. fnl(Fc) when σ = 1 N/m,F = 1 N,α = 1

The energy dissipated by friction can be estimated by the hysteresis loop area,

see Fig. 4. Raising the excitation frequency increases the dissipated energy until it

reaches a maximum then it decreases (see Fig. 10). fnl tends to be a simple spring

when the tightening force Fn is important. The evolution of the energy dissipated

by friction predicts that there is an optimum tightening force when the damping

induced by friction occurs is maximum.

In subsequent sections we adapt a symmetric 2-DOF system (k = k1 = k2,

m = m1 = m2 and c = c1 = c2) and we assume that σ = 1.5k12.

2.2. Coupling coefficient of a bolt connection

The coupling coefficient of a bolt connection might be seen as an energetic ratio that

indicates the ability of the joint to influence the vibration of the structure. It is very

similar to the notion of electromechanical coupling in active systems, see [Chevallier

et al., 2008] and to the notion of joint coupling level for viscoelastic materials, see

[Hammami et al., 2016]. This coefficient can also be used for structures with bolted

joints and can be helpful for the design of assemblies. In order to be influential, the

control law of the tightening force may induce a change of the resonance frequencies.

To highlight the coupling, the previous model, Eq. (1), is written assuming that the

slider is sticking. This leads to a linear set of equations where the stiffness matrix

is augmented by the friction linearized stiffness σ.

[
m 0

0 m

](
ẍ

ÿ

)
+

[
c+ c12 −c12
−c12 c+ c12

](
ẋ

ẏ

)
+[

k + k12 + σ −k12 − σ
−k12 − σ k + k12 + σ

](
x

y

)
=

(
0

0

)
. (3)

A modal viscous damping equal to 1% for both modes is added to the model

to take into account the other dissipation sources. There is no justification for
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this damping value except that it is often found experimentally fo this kind of

structure. Anyway, the results below do not lose generality if this value changes

moderately. Then the modal damping matrix is converted into viscous dampers

using the eigenmodes:

ξ = 1%⇒ C =

(
c+ c12 −c12
−c12 c+ c12

)
= ϕ′

(
2ξω0,1 0

0 2ξω0,2

)
ϕ. (4)

The eigenvalues, in Laplace domain, of the linearized system (3) are equal to:

si = −ξiω0,i ± jω0,i

√
1− ξ2i . (5)

According to the numerical values, the first pulsation ω0,1 is rather independent

from the coupling stiffness whereas the second pulsation ω0,2 strongly depends on

the coupling stiffness:

f0,2 =
ω0,2

2π
=

√
k+2k12
m

2π
. (6)

From a physical point of view, applying a large enough tightening force reduces

the system to a 2-DOFs linear system coupled by k12 + σ. However canceling the

tightening force reduces the system to a 2-DOFs linear system only coupled by k12.

Therefore the coupling coefficient K2 is defined as:

K2
2 =

∆f20,2
f20,2

=
2σ

k + 2k12
. (7)

The sensitivity of the coupling coefficient to the stiffnesses k and k12 is plotted

on Fig. 5, when the mass m is set to 1kg and σ = 1.5k12. A large value of k and a

small value for k12 and σ leads to the best compromise.

Fig. 5. Coupling coefficient of the 2nd mode according to k1 and k12 stiffnesses.
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Considering the nonlinear system, Eqn. 1, the resonance frequency fr,2 is very

sensitive to the tightening force Fc and to the excitation amplitude F , see Fig. 6.

The definition of the coupling coefficient is extended to the non-linear system to

the tightening and to the excitation force, see Fig. 7. The evolution of the second

resonance frequency Fig. 6, according to the excitation force is bounded by the

natural frequencies of the linearized system when σ = 1.5k12 and when σ = 0. For

each level of tightening, the resonance frequency decreases linearly until it reaches

the minimum value (i.e. when σ = 0), and then it stabilizes at this value. The

smaller the tightening force, the greater the downward slope and the greater effect

on the vibration amplitudes.
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Fig. 6. Frequency of the second resonance as a function of the excitation force F and the tight-
ening force Fc.
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3. Control strategies for steady state vibrations

Karim and Blanzé [2014] showed that the energy dissipated by friction tends to a

maximum when the displacement tends to its maximum. Thus, for this reason and

because it is easier to observe the vibration amplitude than the dissipated energy, the

vibration amplitude is chosen as the observation state. Three ideas are evaluated in

order to attenuate the vibration amplitude when the system is harmonically forced,

Fig. 8:

• From Fig. 9a, one can observe that the resonance frequency fr,2 strongly

depends on the tightening force. In this case, for a given excitation ampli-

tude, it shifts from 24Hz to 34Hz when the tightening force is respectively

equal to 2N and 200N . According to these observations, the first control

strategy is to change the tightening force according to the excitation fre-

quency in order to shift the resonant frequency and to avoid the resonance

phenomena. It is illustrated on Fig. 8a and b, where the first control law is

a constant tightening load over the time range equal to 200N for the lowest

excitation frequency and to 2N for the highest excitation frequency. This

control strategy has been used by Karim and Blanzé [2014] in their work.

• From Fig. 9a and from Fig. 1, one can observe that the vibration amplitude

depends on the excitation frequency and on the excitation amplitude. More-

over, for a given vibration amplitude, there is an optimal tightening load

available over the excitation frequency range. If F = 100N , Fc is equal to

60N . Thus, the second strategy consists in applying an optimum constant

tightening force Fcopt according to the vibration amplitude. This leads to

the lowest amplitude vibration at the resonance and the largest damping

rate at the resonance frequencies.

• The third strategy of control is very close to the switching control, see for

instance [Badel et al., 2006]. As the resonance frequency depends on the

tightening force, the idea is to change continuously the tightening load in

order to avoid the resonance phenomena. Practically, the tightening force

is harmonically changing. The parameters, frequency, phase, amplitude are

chosen in order to get the lowest vibration amplitude at each frequency and

amplitude of the excitation force.

3.1. First control strategy

The effect of the tightening force on the frequency response function is highlighted

on Fig. 9. Switching between Fc = 2N when the excitation frequency fex is greater

than the switching frequency, and Fc = 2000N when fex is lower than the switching

frequency, ensure the lowest amplitude of each excitation frequency. Unfortunately,

as presented by Karim and Blanzé [2014], the switching frequency depends on the

excitation amplitudes. Therefore it is necessary to provide either a numerical or
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Fig. 8. Comparison of the tightening forces within the three control strategies when F = 100 N
and (a) fex = 28 Hz and (b) fex = 34 Hz.

an analytical chart in order to give the optimal tightening force at each level of

excitation force.
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Fig. 9. (a) Vibration amplitude of the first mass around the second resonance frequency for
several tightening levels when the excitation force F is equal to 100 N , (b) zoom on the lowest
levels

3.2. Second control strategy

Knowing the first harmonic of the displacement field, the equivalent damping ratio

ξeq can be computed using the following definition:

ξeq =
Wdis

4π Ep
, (8)

where Wdis is the energy dissipated by friction in the joints under harmonic load-

ings. Graphically, Wdis is the area of the hysteresis loop in the force-displacement

map. Whereas Ep is the maximum strain energy over the cycle:

Ep =
1

2
k1x

2
1max

+
1

2
k2x

2
2max

+
1

2
(k12 + σ) (x2 − x1)

2
max . (9)

Considering the numerical values mentioned above, ξeq is plotted according to

the frequency fex and to the tightening force Fc, see Fig. 12. In the case Fc = 40N
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Fig. 10. Energy dissipated per cycle in steady state versus the excitation frequency for 4 tight-
ening levels when the excitation force F = 100 N .
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Fig. 11. Strain energy in steady state versus the excitation frequency for 4 tightening levels when
the excitation force F = 100 N

the frequencies where the strain energy reaches its maximum (Fig. 11) and where

the dissipated energy reaches its maximum (Fig. 10) are not exactly the same.

Indeed for the lowest values of the tightening force, the hysteresis shape changes.

The horizontal line corresponding to the total slip appears at the resonance peaks.
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Fig. 12. Equivalent damping rates for four tightening levels when the excitation force F = 100 N .

From this change results two peaks in the damping ratio.
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Fig. 13. Equivalent damping ratio for the second resonance frequency for F = [2N, 200N ] and
for several tightening forces.

Without further study, one can conclude that the damping rate at resonance

frequencies is higher when the tightening force is lower. But watching carefully to

the damping evolution according to the tightening and to the excitation amplitude



Vibration reduction of a bolted joint structure by a tightening laws control 13

highlights an optimum tightening force Fcopt for which the damping is higher. As

the excitation force incresases, Fcopt increases too, see Fig. 13. Therefore, it is neces-

sary to produce a chart that gives the optimum tightening force for each excitation

amplitude. The evolution of the friction induced damping at the second resonance

frequency ξeq(fr,2) is presented on Fig. 13. It is rather similar to experimentally

observed behavior of a two overlapped bolted beams [Heller et al., 2009] and nu-

merically computed on a lap joint [Vermot Des Roches and Balmes, 2014]. ξeq(f0,2)

increases linearly with the logarithm of the excitation force F , Fig. 13, until it

reaches a maximum. Then it logarithmically decreases with a greater downward

slope. Moreover ξeq(f0,2) is inversely proportional to the transfer function X1/F ,

see Fig. 15. The hysteresis loops at the resonance for the pointed conditions (1), (2)

and (3), Fig. 13, are plotted on Fig. 14:

• The increase of ξeq(f0,2)) corresponds to micro-slip as it is shown on Fig. 14

(1),

• The maximum of ξeq(f0,2)) occurs just before the macro-slip transition, see

Fig. 14 (2),

• The decrease of ξeq(f0,2)) corresponds to macro-slip, see Fig. 14 (3).

The evolutions of the Frequency Response Function X1(f0,2)/F , for a given

excitation frequency, around the second resonance frequency, according to the ex-

citation amplitude F , are related to the shape of hysteresis loops, see Fig. 14 and

Fig. 15:

• First Xi(f0,2)/F decreases linearly with the increase of F during micro-slip,

• then Xi(f0,2)/F increases quickly during the transition from micro-slip to

macro-slip,

• finally, Xi(f0,2)/F increases with a lower slope during macro slip.

From Figs. 13 and 15, ascending and descending slopes of ξeq(f0,2) and X1(f0,2)/F

are invariant for the different tightening force, so they are system characteristics

that can be generalized for all excitations and tightening levels. It may be tricky

to extract Fcopt from Figs. 13 and 15, thus Fig. 16 can be helpful for the program-

mation of the controller. This chart gives the first mass displacement amplitude

X1 according to the tightening force Fc for several excitation forces F . For each

excitation level, there is an optimum tightening force. The controller applies the

tightening force according to the vibration level or to the excitation level using the

chart defined on Fig. 16.

3.3. Third control strategy

The use of piezoelectric component allows applying a variable tightening force.

The Fourier series decomposition of Dahl friction model presented by Helmick and

Messner [2009] shows that the fundamental frequency is dominant in the spectrum.
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Fig. 14. Hysteresis loop at the resonance for the pointed conditions from Fig. 13.
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Fig. 15. FRF amplitude near the second resonance frequency according to the excitation force
between 2 N and 200 N for several tightening forces.

For this reason, the proposed control law is based on a sinusoidal variation of the

tightening force defined by four parameters:

• the frequency of the tightening force (fser) defined as a multiple of the

excitation frequency,

• the phase of the tightening force (φser ) according to the kinematics of the

joint,

• the limits of the tightening force (Fc,max and Fc,min ),

According to the previous remarks, the following definition is assumed:
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Fc(t) =
Fc,max + Fc,min

2
+
Fc,max − Fc,min

2
cos (2πfsert+ φser) . (10)

To initialize the control algorithm, the average tightening force is set to Fcopt
computed from the chart defined on Fig. 16, for instance Fcopt(F = 100N) ∼=
88.46N . To analyse the influence of the tightening frequency, the first three multiples

of the excitation frequency have been tested: fser = ifex with i = 1, 2 or 3. If the

excitation is sinusoidal and in steady state, the relative displacement is sinusoidal

too but there is a phase shift between the relative displacement and the excitation:

δ(t) = x2(t)− x1(t) = δ0 cos(2πfext+ φ12). (11)

The phase of the tightening force φser is defined according to the relative dis-

placement phase φ12. Four tightening phases have been studied:

• in phase (φser = φ12);

• advanced quadrature-phase (φser = φ12 + π/2);

• retarded quadrature-phase (φser = φ12 − π/2);

• in opposed phase (φser = φ12 + π).

The displacement magnitudes of the first mass are plotted on Figs. 17 and 18

according to the excitation frequency. fser and φser affect the vibration magnitudes

and the resonance frequency especially in the cases φser = φ12±π/2. The sensitivity

is higher for fser = 2fex. Thus, the suitable parameters of the law control are
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Fig. 17. First mass displacement magnitude according to the excitation frequency when, Fc,min =
68.5N , Fc,max = 108.5N , F = 100N and (Top) fser = fex (Middle) fser = 2fex, (Down)
fser = 3fex.

fser = 2fex and φser = φ12−π/2. The second step of the control algorithm is to set

the tightening frequency according to the vibration frequency and to set the phase

according to the vibration phase.

The third step of the control algorithm is to set the limits of tightening Fc,max
and Fc,min. Increasing the gap between the limit values of the tightening force re-

sults a vibration reduction for all the excitation domain (damping effect) and a

shift on the right of the resonance frequency (stiffening effect) (Fig. 19). For the

largest gap levels, a bifurcation occurs (see Figs. 19 and 23). This means that in a
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Fig. 18. First mass displacement amplitude according to the excitation frequency when, Fc,min =
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Fig. 19. Amplitude of the first mass in the neighborhood of the second resonance frequency for
an excitation force F = 100N and for a six level of gap between Fc,min and Fc,max in the case of
retarded-phase and quadrature components φser = φ12 − π/2 and fser = 2fex.

frequency bandwidth, two solutions are available. It may be caused by the compu-

tation of the phase φ12 as for a given excitation frequency, the phase is calculated

from the previous excitation frequency. The bifurcation can also be induced by the

nonlinearity itself and the occurrence of a bifurcation according to the excitation

frequency. Indeed, the large gaps between the tightening limits increase the non-

linearity effect. In this case the vibration amplitude oscillation can take one of two

values chaotically (see Fig. 23 ). The oscillations of the vibration amplitude are not

caused due an unstable source of the active control of the normal force. From the

same figure, one can observe that the hysteresis loop is strongly modulated for the

upper branch. Moreover, the area of the hysteresis loop, i.e. the energy dissipated is

lower, that can explain the fact that this branch corresponds to higher amplitudes.
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The system remains inherently passive or semi-active for each frequency and am-

plitude of excitation. Anyway, even if a bifurcation occurs, the amplitudes are still

lower than for the constant tightening case (see Figs. 19 and 24).

The proposed control law has shown its effectiveness for all the excitation levels,

(see Fig. 23). Figs. 20 and 21, show, the evolution of the tightening force, the relative

displacement and the resulting force of the Jenkins’cell, for two different gap values.

In order to compare the shapes of the curves, they are normalized. On the right

part of each figure, the hysteresis loop fnl versus δ is plotted. Compared to the

case of a constant tightening force (the usual shape of Dahl’s loop), the hysteresis

loop is significantly modulated mainly when the gap between the limit values of

the tightening force is great, see Fig. 22. For the highest gap (see Fig. 22), the

coupling stiffness increases, just after the sign of the relative velocity changes, until

the tightening force tends to zero; then the stiffness is lower up to the next sign

change.

Finally, the third control strategy is based on a sinusoidal tightening force char-

acterized by:

• a tightening frequency equal to twice the excitation frequency (fser = 2fex);

• a −π/2 phase between the tightening and the relative displacement (φser =

φ12 − π/2 );

• an average tightening amplitude force equal to the optimum tightening

force, see second control strategy ((Fc,max + Fc,min) /2 = Fcopt);

• a gap between the limits of tightening as large as possible without causing

a bifurcation (gapmax);

The tightening law is expressed as follows:

Fc(t) = Fcopt +
gapmax

2
cos (4πfext+ φ12 − π/2) . (12)

With this formulation the results are improved in comparison with those ob-

tained in the case of an optimum constant tightening force as it can be seen in

Fig. 22 and Fig. 24.

From Fig. 24, the vibration amplitudes (X1/F ) are presented for the two cases

of tightening force; constant and sinusoidal. For the excitation F = 100N , the

sinusoidal control law is more effective than the optimal tightening force for the

whole frequency band in the vicinity of the second resonant frequency. Another

advantage of this control law is that it is effective for all vibration levels (F = 1N

to 400N in Fig. 24). For all the excitation levels, the control of the tightening force

has the tendency to force the resonant frequency and the X1/F ratio to the same

values (see Fig. 24). Hence, knowing the amplitude vibration of a single level of

excitation, the vibration response can be estimated for any level of excitation when

the suitable parameters of the tightening force are applied.
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Fig. 20. (left) Comparison of the shapes of the tightening force (Fc(t)), the displacement relative
(δ(t)) and the resulting force of Jenkins’cell (fnl(t)). (right) Presentation of the hysteresis loop
fnl(δ) in case of Fc,min = 10N , Fc,max = 110N , F = 100N , φser = φ12 − π/2 , fser = 2fex and
fex = 28, 33Hz.
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Fig. 21. (a) Comparison of the shapes of the tightening force (Fc(t)), the displacement relative
(δ(t)) and the resulting force of Jenkins’cell (fnl(t)), (b) and presentation of the hysteresis loop
fnl(δ) in case of Fc,min = 59 N , Fc,max = 61 N , F = 100 N , φser = φ12 − π/2 , fser = 2fex and
fex = 28, 33 Hz.

3.4. conclusions

Three control strategies have been evaluated for the mitigation of steady state

vibrations under harmonic excitation. The two first ones are interesting because

they are based on a quasi constant tightening force calculated from the excitation

frequency and the excitation amplitude. However their efficiency is less interesting

than the the third control strategy which is based on a harmonic evolution of the

tightening force calculated from the frequency and the amplitude of the vibrations

and shifted of π/2 negative phase. If a piezoelectric actuator was used to change

the tightening force, as it behaves as a capacitance, the two first control strategies
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Fig. 22. Comparison of the hysteresis loop when the tightening force is sinusoidal (solid line)
and when it is constant (dot line) in case of F = 100 N , φser = φ12 − π/2 , fser = 2fex and
fex = 28, 33 Hz.

Fig. 23. Evolution of X1/F and the hysteresis loop when Fc follows our control law, F1 = 100N ,
Fcmax = 159N and Fcmin = 1N . Link between both bifurcation branches and the hysteresis loop

would consume less electric power. This last point should be assessed in a future

study.

4. Control strategies for transient vibrations

To test the efficiency of the control strategies on transient vibrations, the modal

damping is canceled (ξ = 0). Thus the 2-DOFs system is given by:
[
m1 0
0 m2

](
ẍ
ÿ

)
+

[
k1 + k12 −k12
−k12 k1 + k12

](
x
y

)
=

(
−fnl
fnl

)
x1(t = 0) = x2(t = 0) = 0
ẋ1(t = 0) 6= 0, ẋ2(t = 0) 6= 0

. (13)

The initial conditions are chosen in order to excite the second mode which is
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the more coupled, see section 2. Fig. 25 presents the amplitude decay for different

constant tightening forces. During the first time steps, the lowest tightening forces

are responsible for the highest amplitudes due to the lack of rigidity. While during

the last time steps, the smaller the tightening force, the smaller the amplitude. The

optimal tightening force is a good compromise but the magnitude tends to a finite

value when the time tends to the infinity. From this first observation, applying a

constant tightening force is not optimal for the transient vibrations. The simplified

law inspired from [Dupont et al., 1997] and [Gaul and Nitsche, 2000] works on the

impulse excitation, is as follow:

Fc(t) =

{
Fc,max if δ̇(t) > 0

Fc,min elsewhere
. (14)

This control strategy minimizes the feedback of frictional energy to the system.

The system is mainly sensitive to Fc,min. This means that the damping is higher

when Fc,min is low (see Fig. 26). In the initial phase, it is necessary to increase

the gap between the tightening levels to have the largest damping. Fc,max has no

effect on the long-term behavior. Finally, applying an alternated tightening force,

is more efficient than applying a constant tightening force particularly for the first

phase (large vibration amplitudes) and the stabilization phase (low vibration ampli-

tudes) (Fig. 27). In [Dupont et al., 1997] and [Gaul and Nitshe, 2000], the authors

introduced a ”boundary layer of thickness ε” to regularize the control discontinuity

introduced by the relative-velocity sign change. Increasing ε results a decreasing

of the induced frictional damping. However, as it is shown by the computation al-

gorithm in Fig. 29, increasing ε is desirable because in our case we aim the fast

zeroing of the relative displacement while avoiding the variation of the tightening

force. Inserting the constant boundary layer of thickness ε improves the law (14) as

follow:

Fc(t) =


Fc,max for δ̇(t) ≥ ε

Fc,max+Fc,min

2 +
Fc,max−Fc,min

2 cos
(
πδ̇
ε

)
for 0 < δ̇(t) < ε

Fc,min for δ̇(t) ≤ 0

. (15)

The intermediate layer level ε has no effect in the first phase of excitation and

even in the stabilized phase, the impact on amplitude vibration is very low. But it is

important to increase the intermediate layer level ε without exceeding the maximum

relative velocity value to reduce the modulation of the tightening force as shown

on Fig. 28. In a real system we cannot know the maximum relative speed, so we

can calculate the intermediate layer of each level ε only after the sensors signals

acquisition. Therefore, ε (t) is defined as a function of the relative displacement

ε (t) = G
(
δ̇ (t)

)
. The computation algorithm, see Fig. 29, is used to get the results
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Fig. 26. Comparison of the alternated tightening force effect on the attenuation of the vibration
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T ime (s)
0 0.5 1 1.5 2 2.5 3

x
1

(m
)

×10-3

-4

-2

0

2

4
Fc(t) : 200N − 1N
Fc = 200N

Fig. 27. Magnitude of the first mass displacement for: (solid line) alternated tightening force and
(dotted line) constant tightening force.

presented in Fig. 30.

Fc(t) =


Fc,max for δ̇(t) ≥ G

(
δ̇ (t)

)
Fc,max+Fc,min

2 +
Fc,max−Fc,min

2 cos

(
πδ̇

G(δ̇(t))

)
for 0 < δ̇(t) < G

(
δ̇ (t)

)
Fc,min for δ̇(t) ≤ 0

.

(16)

The implementation of a variable intermediate layer level ε(t), minimizes the

energy need for the control of the tightening force and eliminates unnecessary vari-

ation of the tightening force (Fig. 30b) without losing the effectiveness of the control

law (14) (Fig. 30a).
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Fig. 28. (a) The first mass vibration amplitude at the stabilization phase and (b) the evolution
of the tightening force for three intermediate layer level ?in the case of Fc,max = 200 N and
Fc,min = 1 N .

5. Conclusion

In this paper we define the ”joint coupling coefficient” as a performance indicator

of the joint ability to reduce vibrations. This coefficient highlights the sensitivity

of the structure to the joint tightening force and to the joint loading amplitudes.

The joint coupling coefficient has been evaluated in this work in order to choose the

most coupled mode and to define the best set of parameters.

Three tightening laws are proposed to control steady state vibrations under har-

monic load. The first one consists in switching between two values of the tightening

force. This kind of control is very close to the switching control proposed by Badel

et al. but the physics involved is different. This control is more efficient when the

joint coupling coefficient is great. The second law consist in applying an optimum

constant tightening force for each level of excitation. The third law is denoted as

”a phase control law”, and is more effective than the second law with an optimum

constant tightening force. This law depends on the amplitudes and frequencies of

the excitation and the relative displacement.
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Resolution of the 

equations system (13) 

and (15) 

i=i+1

ti=ti+step

(dδ/dt)(ti)

ε(i)=0.9(dδ/dt)(ti)

i=1

ε(i)=0.9 (dδ/dt)(t=0) 

ti=step

ε(i)<ε(i-1)

ε(i)=ε(i-1)

NoYes

Fig. 29. Compute algorithm.

For transient vibrations, we ameliorate the control strategy referenced in the

literature. The improvement avoids the periodic change in the tightening force and

thus the cyclic fatigue and the electrical energy consumption.
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