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Email: lilia.arapan@femto-st.fr
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Abstract—This paper presents the investigation of the influ-
ence of wafer-level packaging (WLP) on the stress–sensitivity
of 100 and 200 MHz delay lines aimed to wireless sensing of
stresses. The devices were fabricated on YXl/128°cut of lithium
niobate. The investigated WLP achieves the assembly of two
wafers by a 50µm–thick layer of SU-8 photoresist. The delay
line is micro-machined on top of the first wafer while the second
wafer realizes the function of protective cap in a way that should
not be detrimental to the stress-sensitivity of the device. The paper
gives a comparison between the theoretical and experimental
phase sensitivity of both packaged and raw devices submitted
to a three–points bending test.

I. INTRODUCTION

Controlling the shift of parameters induced by the packag-
ing is a key issue for the actual production of MEMS and SAW
sensors initially developped in the laboratory. Here-studied
devices are 100 MHz and 200 MHz delay lines on YXl/128°
LiNbO3. These devices are proof–of–concept samples close to
higher–frequency sensors aimed to the wireless measurement
of stresses in various kinds of structures. The actual wireless
sensors are designed to operate in the 434 MHz and 2.45 GHz
ISM bands. This circumstance puts significant constraints upon
the microfabrication of the devices: wireless reading of SAW
sensors is better achieved with high coupling piezoelectric sub-
strate such as lithium niobate (LNO). The YXl-/128° orienta-
tion, suitable for this purpose, fixes the Rayleigh wave velocity
around 3990 m/s on a free surface, yielding a wavelength
about 9 µm at 434 MHz and 1.6 µm at 2.45 GHz. Then the
devices are fragile and must be encapsulated to protect them
from external agents. Wafer Level Packaging (WLP) is a more
efficient approach than Die Level Packaging (DLP), especially
in view of stress sensing because standard ceramic enclosures
used to encapsulate RF devices are essentially designed from
electrical viewpoint, are not aimed to transmit the strain of the
analyzed external structure to the SAW device, and induce
strong thermally–induced differential stresses in the sensor.
This issue is solved by the WLP technique consisting of
assembling two wafers from the same material and dicing the
chips at the very end of the fabrication process. The most
common wafer-bonding techniques used in RF MEMS are
direct surface bonding, glass frit and metallic layer bonding,
achieving a rigid contact between the wafers. In case of
bending, this features minimizes the extensional stresses at
the interface, close to the neutral fiber of the assembly. Since

it coincides with the region of acoustic energy localization,
such Wafer-Level Packaging (WLP) results into poor stress
sensitivity of the sensors. Then, here–presented research was
motivated by the need to reach a good compromise between
the protection and the preservation of the stress sensitivity of
the packaged delay lines.

II. DESIGN OF WAFER LEVEL PACKAGING

The most simple and generic WLP strategy relies on the
assembly of 2 wafers of the same material and thickness. In
such structure, traction-extension can be effectively transmitted
along the entire cross-section of the assembly, but a flexural
bending imposed by the monitored external structure has little
chance to induce significant extensional strain and stress in the
sensor if the surface acoustic wave propagates in the vicinity
of the neutral fiber of the assembly. Conversely, by principle,
the maximum longitudinal stress on the internal surface of
a 2 wafers assembly is obtained when the sealing allows a
perfect sliding between the wafers, as can be checked on Fig. 1
showing the FEA–computed distribution of the extensional
strain εxx in the entire structure.

Fig. 1. Schematic distribution of extensional strain εxx for a three–points
bending experiment applied to a typical two–wafers assembly with a sliding
contact at the periphery. A 20N net transverse force induces a value of εxx
about 5.6 10−4 at the upper surface of the base layer. Upon applying rigid
contact conditions, the longitudinal strain drops to 1.8 10−4.

We investigated the possibility to improve the stress–
sensitivity of the packaged devicess by realizing a soft polymer
seal between the two wafers of the assembly. The moderate
stiffness of the polymer joined with a sufficient thickness is
expected to significantly soften the mechanical link between
the two LNO layers, thereby increasing the longitudinal strain
and stress at the free surface of the delay line wafer, in order
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to improve the stress–sensitivity of the packaged device. In
this purpose, a seal consisting of a 50µm–thick layer of SU–
8 photoresist was found worth investigating, while eliminating
the need of any additional etching operation to permit the free
propagation of the SAW on top of the base wafer. The delay
line systems consisted of one IDT transducer with 10 finger
pairs plus two short reflectors on the measurement path and
another one on the opposite side of the IDT for calibration of
the time delay. The period of the IDT is 40 µm for the test
samples operating near 100 MHz, and 20 µm for the samples
operating near 200 MHz.

Fig. 2. Principle of soft polymer assembly for here–studied WLP design.

The fabrication process of the devices is illustrated on
Fig. 2. Its main steps are the following:

a) Processing of Wafer 1 (device):

• Patterning the delay lines (Au deposit).

• Sputtering a thicker layer for the contat pads aimed to
receive antennas after processing the WLP.

• Patterning of crosses to guide the dicing operation to
separate the packaged die at the final step.

• Deposit and patterning of the 50µm–thick layer of
SU-8 2075 polymer photoresist.

b) Processing of Wafer 2 (cap):

• Patterning dicing crosses (Au) to guide the dicing of
the cap layer, aimed to provide access to the antennas
contact pads.

• Spin-coat a thin layer of SU-8 2002 on the entire
surface, in order to permit mutual adhesion by pressure
and moderate heating.

c) Assembly and final operations:

• Wafers alignment and bonding.

• Dicing of wafer 2 to expose the contact pads.

• Dicing the entire thickness of the assembly in order
to separate the chips.

III. PHASE-SHIFT MEASUREMENT UNDER 3-POINTS
BENDING LOAD EXPERIMENT

Three–points bending tests were performed on both pack-
aged and unpackaged chips with a traction machine of the

Fig. 3. Three–points bending experiment of a packaged chip (inside the
ellipse mark).

Applied Mechanics Dpt. of FEMTO-ST. The electrical re-
sponse was recorded during various transverse load cycles back
and forth between 0 and 40 N . The packaged samples broke
upon application of a transverse load threshold near 45 N .
Fig. 4 shows typical response of a 200 MHz packaged device.
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Fig. 4. |s11| electrical response of a 200 MHz packaged delay line.

The echoes correspond to the successive reflexions on the 3
reflectors present on the devices, including multiple reflexions
along the acoustical path. The corresponding phase response
is shown on Fig. 5. The phase behavior is altogether linear
in the vicinity of the amplitude peaks. Then we selected the
stress–induced phase change at 1.2 µs, 1.4 µs, 2.1 µs, and
2.7 µs to plot the force–sensitivity characteristics shown on
Fig. 6.

IV. ANALYSIS OF RESULTS

The relative phase shift is related to the bias–induced
velocity shift and the time delay by the following chain of
relationships:

δϕ = ωδτ = ωδ

(
L

V

)
= −ωL

V 2
δV = −ωτ δV

V
(1)

where ϕ denotes the phase of the response at a fixed observa-
tion point, V denotes the phase velocity of the surface wave,
τ is the time delay and L is the distance travelled by the wave.
Since velocity is scalar and static strain and stress as well are
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Fig. 5. Phase response of a 200 MHz packaged delay line.

Fig. 6. Phase–shift v.s force characteristics of different echoes.

second rank tensors, the velocity shift is related to strain and
stress by second rank pseudo–tensors1, for instance:

δV

V
= αKLσKL or

δV

V
= βKLEKL (2)

where σ and E respectively denote the static stress and
strain, whereas α and β merely define the stress– and strain–
sensitivity coefficients of the surface wave. These formulas
hold only for uniform biases. The calculation of stress–
sensitivity coefficients coefficients can be found in [1], [2]
for the purely elastic problems but can also be derived for
piezoelectric problems. Before proceeding further, we find
enlightening and even necessary to consider the global context
of the so–called acousto–elastic effect ruling the propagation of
small–amplitudes elastic waves in a biased structure. Acousto–
elastic effect and related problems were the subject of an

1Although the value of the wave velocity is scalar, it is defined as the
norm of the vector ∂~u/∂t where ~u is the particular displacement. Then V
depends on the orientation of the propagation on the semi–infinite substrate
and this must be taken into account when calculating the stress–sensitivity
coefficients. Thus α is not a tensor. . . unless we consider it is defined for the
unique problem of the YXl-/128°SAW propagation in lithium niobate.

abundant litterature in the second half of the 20–th century
and constitute a particular application of the non linear theory
of thermo–electro–elasticity in finite deformation. We illustrate
below some of its aspects of interest for our purposes, while
restricting here–presented formulas to the purely elastic case,
for the sake of clarity and simplicity. Actually we performed all
our numerical computations by taking into account the effect
of the bias on the elastic part of the complete piezoelectric
problem. In other words, we ignore bias–induced effects on the
piezoelectric and dielectric behavior, although Rayleigh waves
velocity is computed in the framework of piezoelectricity. Here
we follow the well–established Lagrangian approach of small
fields superimposed onto a bias [3], [4]. Then the propagation
equations of surface waves [5] on a semi–infinite substrate of
normal ~n2 in a current frame, rotated w.r.t crystallographic
axes, can be mapped onto the set of fixed and known material
coordinates (XL) of the structure defined prior exertion of any
bias:

K̃1γ,1 + K̃2γ,2 = ρ0üγ , γ ∈ [1, 2, 3]

K̃Lγ = GLγ1εuε,1 +GLγ2εuε,2

GLγMε = cLγMε + ĉLγMε (wP,Q)

ĉLγMε (wP,Q) = TLMδγε + c3LγMεPQEPQ

+c2LγMKwε,K + c2LKMεwγ,K

TLM = cLMNPwN,P = cLMNPENP

(3)

where ~u (XL, t) is the dynamic displacement field, ~w (XL) is
the static displacement field (bias) and ρ0 is the mass density
of the undeformed body since the problem is mapped onto the
fixed material coordinates. Also K̃Lγ denotes the first Piola–
Kirchhoff stress tensor and GLγMε indicates a component of
the effective elastic coefficients in the so–called Lagrangian
configuration. Then one should solve these equations together
with the associated boundary conditions prescribed on the free
surface of normal ~n02 that we consider located at X2 = 0:

K̃2γ(X1, 0) = 0, γ ∈ [1, 2, 3] . (4)

Although Eq. (3) initially puts the bias–induced incremental
elastic constant ĉLKMε as a function of the static displacement
gradients wM,N it is possible to reformulate ĉ as a function
of the static strain

ĉLγMε = TLMδγε + c3LγMεABEAB

+c2LγMNEεN + c2LNMεEγN .
(5)

Because the static stress tensor is easily deduced from the
static strain by inverting the tensor of second order elastic
constants c2, it is easy to further rewrite the ĉ increment
of elastic constants as a linear combination of the static
stresses, which we find unnecessary to explicitly reproduce
here. Because its linear expansion must be performed in terms
of the displacement gradients which are non–symmetrical,
instead of the classical strains which are symmetrical, the
first Piola–Kirchhoff tensor K̃Lγ is asymmetric by nature.
Then it must be stored in a matrix of dimension [9 × 9].
In case of stress–free bias such as free thermal expansion, it
has been demonstrated that this matrix remains symmetric [6]
provided that the notations be properly chosen. Nevertheless,
the expression of the bias–induced increments ĉLγMε clearly



indicates that in case of a stress–generating or simply non–
uniform bias, the resulting G matrix is no more symmetrical.
Then, two approaches can be followed to compute the velocity
of the surface acoustic waves from the incremental equations
of motion:

• For uniform biases and some cases of non–uniform
but rather simple biases, it is still possible to directly
solve the equations following the same procedure as
in linear elasticity problems, as long as the [9×9] size
of the [G] matrix and its eventual asymmetry induce
relatively small changes in the classical procedure.

• A first order perturbation procedure [7] involving the
computation of integrals relying on the knowledge of
the partial derivatives of the unperturbed (unbiased)
displacement field and of the static (biasing) displace-
ment field.

The problem of SAW propagation in rectangular plates sub-
mitted to pure extensional or pure bending biases can be
solved with either one approach. Ref. [5] provides with a
detailed comparison of the direct and perturbation approaches
to compute the velocity shift of Rayleigh waves in a purely
bended structure. For here–presented work, we designed a
computer program able to numerically determine the velocity
of the SAW for the Y Xl/128° orientation of a LiNbO3 plate
submitted to a uniform bias, and in particular in the case of
a pure longitudinal stress. Despite of the bias, the structure
of the Rayleigh waves could still be assumed to comply with
the classical combination obtained in case of propagation on
a unbiased substrate:

ui =

(
4∑

n=1

Cnβ
(n)
i ejωs

(n)
2 x2

)
ejω(s1x1−t), (6)

where Cn represents the weight of a given partial wave in the
combination, β(n)

i is a component of the normalized amplitude
vector of the n-th partial wave, s1 is the slowness of the guided
propagation and s2(n) is the slowness of the partial wave
in the vertical direction. We intend to provide more details
about the direct approach in a further paper. The obtained
value of the velocity–shift was found about 80% of the value
provided by an earlier program elaborated at LPMO laboratory
at the end of the nineties [1], [2]. The latter program is based
on simplifications occuring in Tiersten’s perturbation integral
for the computation of Rayleigh velocity [8] in the case of
uniform elastic bias. The perturbation formula for the two–
dimensionnal problem of the proagation of Rayleigh waves of
quasi–infinite aperture is the following:

δV

V0
≈

∫
S0

ĉLγMε (wM,N )R
(
u0ε,Mu

0∗
γ,L

)
dS0

2ρ0ω
2

∫
S0

R
(
u0αu

0∗
α

)
dS0

, (7)

where R denotes the real part, the superscript ∗ denotes the
complex conjugate, S0 being the sagittal plane. In case of a
uniform bias, the integrals can be reduced to simpler integrals

over the depth of the semi–infinite substrate:

δV

V0
=

ĉLγMε

∫ 0

−∞
u0ε,Mu

0∗
γ,L dx2

2ρ0ω2

∫ 0

−∞
u0αu

0∗
α dx2

. (8)

Because of the exponential character and the convergence in
the depth of the substrate of the partial waves (6) entering the
structure of Rayleigh waves, the integrals are easily calculated,
leading to the final result:

δV

V0
=

2∑
L=1

3∑
γ=1

2∑
M=1

3∑
ε=1

ĉLγMε

4∑
n=1

4∑
m=1

CnC
∗
mβ

(n)
ε β(m)∗

γ s
(n)
M s

(m)∗
L

s
(n)
2 − s

(m)∗
2

2ρ0

3∑
α=1

4∑
n=1

4∑
m=1

CnC
∗
mβ

(n)
α β(m)∗

α

s
(n)
2 − s

(m)∗
2

(9)
The stress–sensitivity coefficients αLM introduced at Eq. (2)
are easily computed from both this expression and (5). Using
the set of elastic constants provided by Ref. [9] gives the fol-
lowing value of σxx stress–sensitivity coefficient of Rayleigh
wave velocity for the considered problem:

α11 ≈ −4.257 10−11/Pa (10)

The FEA–computed stress for the 3 points bending test on
top of the packaged delay line wafer was found close to
−3.2 107 Pa when the net transverse force reached 20 N
and assuming a rigid contact of the polymer with the 2 layers
of niobate. Substituting this value together with (10) into (2)
and the obtained result back into (1) yielded a phase–shift of
20° for the fourth echo (τ ≈ 2.7µs) of the phase–response.
The corresponding measurement of δϕ observed on Fig. 6
for this point was 23°. Then the agreement between theory
and experiment was found good. Assuming that the polymer–
niobate contact allows a free sliding, which corresponds to
the “ideal” case of Fig. 1 yielded a FEA–computed value
σxx ≈ 1.47 108 Pa at the surface of the chip. Then the
corresponding predicted sensitivity becomes nearly 5 times
larger than the one that we actually observed. Nevertheless
a further experiment was required, given the variablity of
results between direct and perturbation approach, the even
larger variability induced by the values of elastic constants
(nearly a factor 2 between the results calculated from [10] and
[9]) and the expectable unaccuracy arising from the simplifying
assumption of the essential contribution of the stresses near the
surface. Then another three–points bending test was performed
with a raw (unpackaged) chip. In that case the chip was flip-
flopped in the traction apparatus in order to permit the free
propagation of the SAW. The force had to be reduced since
the chip broke at a much smaller transverse load (near 25 N ),
as expected. We performed the calculation for the same echo
at 2.7µs as previousy and for a transverse force equal to 9 N ,
giving a FEA–computed longitudinal stress σxx ≈ 2.4 108 Pa.
Then, using the same computation procedure as previously,
we obtained a theoretical phase–shift close to −180°, whereas
the measured value was found close to −195°. The similar
agreement between theory and experiment for the cases of the
packaged and the raw chips confirms to a large extent the
validity of the approach and the conclusion drawn about the
rather adhesive link between the polymer layer and the lithium
niobate wafers.



V. CONCLUSION

Here–presented study indicated a satisfactory agreement
between calculated and measured values of the phase–shift
of the response of packaged and raw delay lines under a
transverse load, assuming that the polymer used to perform the
WLP assembly achieves a rigid link with the two wafers of
lithium niobate. The loss of sensitivity between a firm contact
and a sliding contact at the interfaces is about 5, and the
sliding contact case would still represent a loss of a factor 2
with respect to the raw chip, which seems unavoidable if the
two wafers have the same thickness, since two identical plates
in parallel double the stiffness with respect to a single plate.
Then a further optimization of the packaging is still needed to
improve the stress–sensitivity of the device in case of bending
imposed by the supporting structure. Nevertheless, this WLP
design is promising since the stress–sensitivity is still largely
measurable in case of pure bending of the chip. In addition,
one must point out that the actual biasing states imposed to the
SAW sensor by the monitored structures are combinations of
bending and extension–compression rather than pure flexure.
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