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Transverse instability of periodic and generalized

solitary waves for a fifth-order KP model

Mariana Haragus∗ & Erik Wahlén†

Abstract

We consider a fifth-order Kadomtsev-Petviashvili equation which arises as a two-dimensional

model in the classical water-wave problem. This equation possesses a family of generalized line

solitary waves which decay exponentially to periodic waves at infinity. We prove that these

solitary waves are transversely spectrally unstable and that this instability is induced by the

transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some

suitably chosen linear operators.
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1 Introduction

We consider a fifth-order Kadomtsev-Petviashvili (KP) equation

∂t∂xu = ∂2x

(
∂4xu+ ∂2xu+

1

2
u2
)
+ ∂2yu, (1.1)

in which the unknown u depends upon two space variables (x, y) ∈ R
2 and time t ∈ R. This equation

arises as a two-dimensional model for capillary-gravity water waves in the regime of critical surface

tension, when the Bond number is close to 1/3 [15]. While the exact values of the coefficients in

(1.1) are unimportant, their signs have been chosen corresponding to the case of Bond number less

than 1/3. We can also regard (1.1) as a two-dimensional version of the Kawahara equation

∂tu = ∂x

(
∂4xu+ ∂2xu+

1

2
u2
)
, (1.2)

just as the KP equation is a two-dimensional version of the well-known Korteweg-de Vries (KdV)

equation.
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The Kawahara equation (1.2) possesses a family of traveling generalized solitary waves [9]. In

contrast to the solitary waves of the KdV equation which tend exponentially to zero as |x| → ∞,

the generalized solitary waves of (1.2) decay exponentially to periodic waves as |x| → ∞. The

amplitude of these periodic waves may be exponentially small but not zero [16]. Our purpose is to

study the transverse stability of these generalized solitary waves, i.e., their stability as solutions of

the equation (1.1), for perturbations which depend upon both spatial variables x and y. While the

stability of solitary waves for the KdV equation has been intensively studied, very little is known

about the stability of the generalized solitary waves for (1.2). A key difference is that asymptotically

these generalized solitary waves tend to periodic waves, not to a constant, and the stability of these

periodic waves is not fully understood. We mention the result in [8] showing that these periodic

waves are spectrally stable as solutions of (1.2) provided their amplitude is sufficiently small.

Our main result shows that the generalized solitary waves of (1.2) are transversely spectrally

unstable. The starting point of our analysis is a formulation of the transverse instability problem in

terms of the spectrum of a suitably chosen operator. In particular, this allows to distinguish between

linear instability, due to point spectrum, and essential instability, due to essential spectrum. Next,

the key step is the spectral analysis of the operator found for the asymptotic periodic waves. We

prove that these periodic waves are transversely linearly unstable with respect to perturbations

which are co-periodic (i.e., they have the same period as the periodic wave) in the longitudinal

direction, and transversely essentially unstable with respect to perturbations which are localized in

the longitudinal direction. Finally, a rather general perturbation argument allows to conclude to

the essential instability of the generalized solitary waves.

It is interesting to compare these properties with known stability results for the KP equation.

Recall that the KP equation comes in two flavors: KP-I, which is valid for strong surface tension

(Bond number greater than 1/3), and KP-II, which is valid for weak or zero surface tension (Bond

number less than 1/3) [15]. Both equations reduce to the KdV equation in one dimension, but

display completely opposite transverse dynamics. While KP-I predicts transverse instability of both

periodic and solitary waves, KP-II predicts stability [1, 4, 6, 12, 13, 14, 17, 18, 20]. The latter may

at first sight seem to contradict our result, but note that the KP-II equation does not capture the

small periodic tails of the generalized solitary waves (nor is it uniformly valid in the limit of critical

surface tension).

Generalized line solitary waves with small amplitude are known to exist for the full capillary-

gravity water-wave problem in the regime of weak surface tension [10, 16]. When the surface tension

is close to critical, these are to leading order described by the Kawahara equation (1.2). The results

in this paper predict that these generalized solitary waves are transversely unstable and that this

instability is due to that of the asymptotic periodic waves. This prediction will make the object of

future work. We point out that the instability predictions based on the KP-I equation for the regime

of strong surface tension have been confirmed for the full water-wave problem for both periodic and

solitary waves [2, 7, 19]. Also notice that in the regime of weak surface tension, transverse instability

of solitary waves have been recently proved for a class of true solitary waves which appear in the

modulational regime, which is different from the long-wave setting studied here [3].

Finally, the question of nonlinear transverse instability for these generalized solitary waves re-
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mains open. This question has recently been solved in the positive for line solitary waves of the KP-I

equation [20], as well as the full water wave problem with strong surface tension [21]. Although it

would seem natural to expect a similar result for the fifth-order KP equation, the proof is far from

straightforward for generalized solitary waves, since the instability is due to essential spectrum (even

considering solutions which are periodic in the transverse direction).

The paper is organized as follows. In Section 2 we recall the existence results for both periodic

and generalized solitary waves of the Kawahara equation (1.2). The main results are presented in

Section 3, and the proofs are given in Section 4.

2 Existence of line traveling waves

In this section we recall the existence results for both periodic and generalized solitary traveling

waves of the equation (1.2).

We consider traveling waves moving with constant speed c. In a comoving frame, after replacing

x+ ct by x, these traveling waves are stationary solutions of the equation

∂tu = ∂x

(
∂4xu+ ∂2xu− cu+

1

2
u2
)
, (2.1)

and therefore satisfy the ODE

∂4xu+ ∂2xu− cu+
1

2
u2 = C,

obtained after integrating the right hand side of (2.1) once with respect to x. As a remnant of the

Galilean invariance of (1.2), we may set C = 0 and restrict to the solutions of the ODE

∂4xu+ ∂2xu− cu+
1

2
u2 = 0. (2.2)

2.1 Small periodic waves

The existence of small periodic solutions of (2.2) for small speeds c has been proved in [8] (see also

[16, Chapters 4 and 7]). We recall in the next proposition the result from [8] which also gives a

number of properties of these periodic solutions which are essential in our analysis.

Proposition 2.1 ([8, Theorem 1]) There exist positive constants c0 and a0 such that, for any

c ∈ (−c0, c0), the equation (2.2) possesses a one-parameter family of even, periodic solutions

(ϕa,c)a∈(−a0,a0) of the form

ϕa,c(x) = pa,c(ka,cx), ∀ x ∈ R,

with the following properties.

(i) The real-valued map (a, c) 7→ ka,c is analytic on (−a0, a0)× (−c0, c0) and

ka,c = k0(c) + ck̃(a, c), k0(c) =

(
1 +

√
1 + 4c

2

)1/2

, k̃(a, c) =
∑

n>1

k̃2n(c)a
2n,
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for any (a, c) ∈ (−a0, a0)×(−c0, c0), where |k̃2n(c)| 6 K0/ρ
2n
0 , for any n > 1 and some positive

constants K0 and ρ0.

(ii) The map (a, c) 7→ pa,c is analytic on (−a0, a0)× (−c0, c0) with values H6
per(0, 2π) and

pa,c(z) = ac cos(z) + c
∑

n,m>0,n+m>2
n−m6=±1

p̃n,m(c)ei(n−m)zan+m,

in which p̃n,m(c) are real numbers such that p̃n,m(c) = p̃m,n(c) and |p̃n,m(c)| 6 C0/ρ
n+m
0 , for

any c ∈ (−c0, c0) and some positive constant C0. (Here H6
per(0, 2π) is the space of 2π-periodic

functions defined in Section 3.2 below.)

(iii) The Fourier coefficients p̂q(a, c) of the 2π-periodic function pa,c,

pa,c(z) =
∑

q∈Z
p̂q(a, c)e

iqz , ∀ z ∈ R,

are real and satisfy p̂0(a, c) = O(ca2) and p̂q(a, c) = O(c|a||q|), for all q 6= 0, as a → 0.

Moreover, the map a 7→ p̂q(a, c) is even (resp. odd) for even (resp. odd) values of q, and in

particular p−a,c(z) = pa,c(z + π).

We collect below some properties of ka,c and pa,c which are needed in our proofs. First, a direct

calculation allows to compute the expansions of ka,c and pa,c, as a → 0. Without writing explicitly

the dependence upon c, for notational simplicity, we find

ka,c = k0 +
∑

n>1

k2na
2n, k20 =

1 +
√
1 + 4c

2
, k2(4k

3
0 − 2k0) = − c

4
+

c2

8X2
, (2.3)

in which we used the notation

Xn = k40n
4 − k20n

2 − c, ∀ n > 2. (2.4)

For pa,c, we write

pa,c(z) = ac

(
cos(z) +

∑

n>1

pn(z)a
n

)
, (2.5)

in which we find

p1(z) =
1

4
− c

4X2
cos(2z), p2(z) =

c2

8X2X3
cos(3z).

We point out that the Fourier coefficients ±1 of the functions pn(z) are zero by construction.

Next, notice that ka,0 = 1, pa,0 = 0, and we claim that

∂ck
2
a,c|c=0 = 1− q(a), ∂cpa,c|c=0 = a cos(z) + q(a), q(a) = 1−

√
1− 1

2
a2. (2.6)

Indeed, recall that

k4a,c∂
4
zpa,c + k2a,c∂

2
zpa,c − cpa,c +

1

2
p2a,c = 0. (2.7)
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Differentiating this equality with respect to c and taking c = 0 we find

(
∂4z + ∂2z

)
(∂cpa,c|c=0) = 0,

so that ∂cpa,c|c=0 belongs to the kernel of ∂4z + ∂2z . Since ∂cpa,c|c=0 is an even function, this implies

that ∂cpa,c|c=0 is a linear combination of cos(z) and 1, and taking into account the expansion in

Proposition 2.1 (ii), we obtain the second equality in (2.6). Next, we differentiate (2.7) twice with

respect to c and take c = 0. This gives

(
∂4z + ∂2z

) (
∂2c pa,c|c=0

)
+ 2a

(
∂ck

2
a,c|c=0 − 1 + q(a)

)
cos(z) + q(a)2 − 2q(a) + a2 cos2(z) = 0,

and the solvability conditions for this equation imply the first and the third equalities in (2.6).

2.2 Generalized solitary waves

The existence of generalized solitary waves is a consequence of the result in [16, Chapter 7, The-

orem 7.1.18] for general four-dimensional reversible ODEs in presence of a 02(iω) resonance. For

completeness, we give the proof of the following proposition in Appendix A.

Proposition 2.2 There exist positive constants a1 and M1 such that for any 0 < ℓ < π and 0 <

λ < 1, there exist c2(ℓ) > 0 and a2(ℓ) > 0 such that for all c ∈ (0, c2(ℓ)] and |a| ∈ [a2(ℓ)ce
−ℓ/

√
c, a1],

the equation (2.2) possesses an even solution

ua,c(x) = ha,c(x) + ϕa,c(x+ τa,c tanh(
√
cx/2)), (2.8)

with the following properties:

(i) |∂jxha,c(x)| 6M1ce
−λ

√
c|x| for j = 0, 1, 2, 3 and all x ∈ R;

(ii) ϕa,c is the periodic solution in Proposition 2.1;

(iii) the asymptotic phase shift is such that τa,c = O(1), as (a, c) → (0, 0).

3 Transverse instability: main results

In this section, we state the main instability results for both periodic and generalized solitary waves.

We give the proofs of these results in Section 4.

3.1 Formulation of the transverse instability problem

Assume that u∗ is a one-dimensional solution of (2.1), for instance a periodic wave (as in Proposi-

tion 2.1) or a generalized solitary waves (as in Proposition 2.2). Consider the linearized equation

∂t∂xu = ∂2x
(
∂4xu+ ∂2xu− cu+ u∗u

)
+ ∂2yu, (3.1)
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and set

A∗ = ∂2x
(
∂4x + ∂2x − c+ u∗

)
.

Roughly speaking, the wave u∗ is called transversely unstable if the equation (3.1) possesses solutions

of the form

u(t, x, y) = eλtv(x, y),

for some Reλ > 0 and v a time-independent function which belongs to the set of the allowed

perturbations. Since u∗ does not depend upon the transverse spatial variable y, the operator A∗+∂2y
in the right hand side of (3.1) has y-independent coefficients, so that using Fourier transform in y

we can reformulate the instability statement and say the u∗ is transversely unstable if the linearized

equation

∂t∂xu = A∗u− ω2u,

has solutions of the form

u(t, x) = eλtv(x),

for some Reλ > 0, ω ∈ R, and v in some space H of functions depending upon the longitudinal

spatial variable x, only. In this setting, perturbations are bounded in the transverse variable y and

determined by the choice of H in the longitudinal variable x (e.g., localized if H = L2(R) or periodic

if H = L2(0, L)).

We can now reformulate the transverse instability problem and say that u∗ is transversely spec-

trally unstable if the linear operator λ∂x − A∗ + ω2, is not invertible in H for some λ ∈ C with

Reλ > 0 and ω ∈ R. The particular form of this operator allows to further say that u∗ is trans-

versely spectrally unstable if the spectrum of the linear operator λ∂x−A∗ contains a negative value

−ω2 for some Reλ > 0. Notice that if −ω2 is an isolated eigenvalue of λ∂x−A∗ then this definition

implies transverse linear instability. If −ω2 belongs to the essential spectrum of λ∂x −A∗,

σess(λ∂x −A∗) = {ν ∈ C ; λ∂x −A∗ − ν is not Fredholm with index 0}, (3.2)

we may say that u∗ is transversely essentially unstable. Our main results show that the periodic

waves ϕa,c are transversely unstable with respect to co-periodic longitudinal perturbations (Theo-

rem 1), and that both the periodic waves ϕa,c and the generalized solitary waves ua,c are transversely

essentially unstable with respect to localized longitudinal perturbations (Theorem 2 and Theorem 3,

respectively).

3.2 Periodic waves

Consider the small periodic waves ϕa,c constructed in Proposition 2.1, and the linear operator

λ∂x −Aa,c, Aa,c = ∂2x
(
∂4x + ∂2x − c+ ϕa,c

)
.

Since the period 2π/ka,c of ϕa,c depends upon a and c, it is convenient to rescale x and λ by taking

z = ka,cx, λ = ka,cΛ,
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and work with the rescaled operator

Λ∂z − Ba,c, Ba,c = ∂2z (k
4
a,c∂

4
z + k2a,c∂

2
z − c+ pa,c),

which has 2π-periodic coefficients.

First, for co-periodic perturbations we take H = L2(0, 2π) and as domain of definition for Ba,c

the subspace H6
per(0, 2π) consisting of 2π-periodic functions,

Hj
per(0, 2π) = {f ∈ Hj

loc(R) ; f(z + 2π) = f(z), ∀ z ∈ R},

for j > 1. Then Ba,c is closed in H, and our main result is the following theorem which is proved in

Section 4.1.

Theorem 1 There exist positive constants c3 and a3 such that for any c ∈ (−c3, c3) and a ∈
(−a3, a3), there exists Λa,c > 0 such that for any Λ ∈ (0,Λa,c) the linear operator Λ∂z − Ba,c acting

in L2(0, 2π) with domain H6
per(0, 2π) has a simple negative eigenvalue. Consequently, the periodic

wave ϕa,c is transversely linearly unstable with respect to co-periodic longitudinal perturbations.

Next, for localized perturbations we take H = L2(R) and as domain of definition of Ba,c, and

also Λ∂z − Ba,c, the subspace H6(R). The spectral analysis in this space is based on a Bloch-wave

(or Floquet in this case) decomposition, which shows that the spectrum of Λ∂z − Ba,c in L2(R) is

the union of the spectra of the operators

Λ(∂z + iγ)− Ba,c,γ , Ba,c,γ = (∂z + iγ)2
(
k4a,c(∂z + iγ)4 + k2a,c(∂z + iγ)2 − c+ pa,c

)
,

acting in L2(0, 2π) with domain H6
per(0, 2π), for γ ∈ (−1/2, 1/2] (e.g., see [5, 11]). Then the trans-

verse spectral instability of ϕa,c with respect to localized perturbations is an immediate consequence

of Theorem 1. Moreover, from [5, 11] we deduce that the spectrum is purely essential spectrum, in

the sense of definition (3.2), so that the instability is essential. Summarizing, we have the result

below.

Theorem 2 For any a, c, and Λ as in Theorem 1, the linear operator Λ∂z−Ba,c acting in L
2(R) with

domain H6(R) has negative essential spectrum. Consequently, the periodic wave ϕa,c is transversely

essentially unstable with respect to localized longitudinal perturbations.

3.3 Generalized solitary waves

Consider the generalized solitary waves found in Proposition 2.2 and the linear operator

λ∂x − Ca,c, Ca,c = ∂2x
(
∂4x + ∂2x − c+ ua,c

)
,

acting in L2(R) with domain H6(R) (localized perturbations). The key observation in the spectral

analysis of λ∂x − Ca,c is that it is a relatively compact perturbation of the asymptotic operator

λ∂x − C∞
a,c =

{
λ∂x −A+

a,c, for x > 0

λ∂x −A−
a,c, for x < 0

, A±
a,c = ∂2x

(
∂4x + ∂2x − c+ ϕa,c(· ± τa,c)

)
.
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Since the essential spectrum is stable under relatively compact perturbations, the generalized solitary

wave ϕa,c is transversely unstable provided the asymptotic operator has negative essential spectrum.

The latter property is a consequence of Theorem 1, just as Theorem 2. This leads to the following

result, which is proved in Section 4.2

Theorem 3 For any a, c, and Λ as in Proposition 2.2 and Theorem 1, the linear operator ka,cΛ∂x−
Ca,c acting in L2(R) with domain H6(R) has negative essential spectrum. Consequently, the gener-

alized solitary wave ua,c is transversely essentially unstable.

4 Proofs

4.1 Proof of Theorem 1

We claim that it is enough to prove that the operator Ba,c has a simple positive eigenvalue, or

equivalently, that the operator −Ba,c has a simple negative eigenvalue, for sufficiently small a and c.

Indeed, notice that the operator Λ∂z −Ba,c is a small relatively bounded perturbation of −Ba,c, for

any sufficiently small Λ ∈ C. If −Ba,c has a simple negative eigenvalue, then a standard perturbation

argument implies that Λ∂z − Ba,c has a simple eigenvalue in some open disk centered on the real

axis and contained in the open left half complex plane. For real values Λ, the operator Λ∂z −Ba,c is

real, so its spectrum is symmetric with respect to the real axis. Consequently, the simple eigenvalue

above is necessarily real and negative, which proves the claim.

For small a and c, the operator Ba,c is a small relatively bounded perturbation of the operator

B0,0 = ∂2z
(
∂4z + ∂2z

)
,

which has constant coefficients. We can compute the spectrum of B0,0 using Fourier series, and find

σ(B0,0) = {−n2(n4 − n2), n ∈ Z},

where 0 is a semi-simple triple eigenvalue and all other eigenvalues are negative. Then a standard

perturbation argument shows that there exists a neighborhood V of 0 in the complex plane and a

positive constant m such that V ⊂ {ν ∈ C ; |Re ν| < m/2} and for sufficiently small a and c, the

spectrum of Ba,c decomposes as

σ(Ba,c) = σ1(Ba,c) ∪ σ2(Ba,c), σ1(Ba,c) ⊂ V, σ2(Ba,c) ⊂ {ν ∈ C ; Re ν < −m},

and σ1(Ba,c) contains precisely three eigenvalues, not necessarily distinct, counted with multiplicities.

We show that one of these eigenvalues is positive when a 6= 0 and that the other two eigenvalues

are equal to 0.

For a = 0, the operator B0,c has constant coefficients and using Fourier series, again, we can

compute its spectrum,

σ(B0,c) = {−n2(k20n4 − k20n
2 − c), n ∈ Z},

8



where k0 is the constant in the expansion (2.3) of ka,c. In particular, 0 is a triple eigenvalue of B0,c

with associated eigenfunctions 1, cos(z), and sin(z).

For a 6= 0, we write

Ba,c = ∂2zLa,c, La,c = k4a,c∂
4
z + k2a,c∂

2
z − c+ pa,c.

The spectrum of ∂zLa,c has been studied in [8]. According to [8, Remark 3.5 (ii)], the kernel of

∂zLa,c is two-dimensional, spanned by the odd function ∂zpa,c and an even function ξea,c which is

equal to 1 when a = 0. Since the kernel of Ba,c contains the kernel of ∂zLa,c, 0 is at least a double

eigenvalue of Ba,c with two associated eigenfunctions ξoa,c and ξea,c which are smooth continuations,

for small a, of the vectors sin(z) and 1, and are odd and even functions, respectively.

In order to compute the third eigenvalue in σ1(Ba,c), we consider a basis for the associated three-

dimensional spectral subspace which is a smooth continuation of the basis {1, cos(z), sin(z)} found

for a = 0. Since Ba,c leaves invariant the subspaces consisting of even and odd functions, two vectors

in this basis are even functions and the third one is an odd function. Clearly, the two eigenfunctions

ξoa,c and ξea,c above belong to this basis, and a third vector is an even function that we denote by

ψa,c. Since ξ
e
a,c = 1+O(|a|) and ψa,c = cos(z) +O(|a|), upon replacing ψa,c by a linear combination

of ψa,c and ξ
e
a,c, we can always choose ψa,c to be orthogonal to 1. Then, writing

Ba,cψa,c = νa,cψa,c + µa,cξ
e
a,c,

for small a, and taking the scalar product with 1 we conclude that µa,c = 0. This implies that we

can determine ψa,c and the third eigenvalue νa,c by solving the eigenvalue problem

Ba,cψa,c = νa,cψa,c, (4.1)

in which νa,c and ψa,c depend smoothly upon a and c, and

νa,c = O(|a|), ψa,c = cos(z) +O(|a|).

To complete the proof, we show that νa,c is positive.

First, recall that p−a,c(x) = pa,c(x + π) which implies that ν−a,c = νa,c, and in particular

νa,c = O(a2), as a → 0. Next, we claim that νa,c = O(c2), as c → 0, so that νa,c = O(a2c2). Since

Ba,0 = B0,0, we have that

νa,0 = 0, ψa,0 = cos(z). (4.2)

Differentiating (4.1) with respect to c and taking c = 0 we find

B0,0 (∂cψa,c|c=0) + ∂2z
(
2∂ck

2
a,c|c=0∂

4
z + ∂ck

2
a,c|c=0∂

2
z − 1 + ∂cpa,c|c=0

)
cos(z) = ∂cνa,c|c=0 cos(z).

The solvability condition for this equation gives

∂cνa,c|c=0 = −∂ck2a,c|c=0 + 1− [∂cpa,c|c=0 cos(z)]1 ,

in which the bracket [u]1 represents the coefficient of cos(z) in the Fourier expansion of u. Taking

into account the equalities (2.6), we conclude that ∂cνa,c|c=0 = 0 which proves the claim.
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Next, consider the expansions

νa,c = ν2a
2 +O(a4), ψa,c(z) = cos(z) + ψ1(z)a+ ψ2(z)a

2 +O(a3),

for small a. Inserting these expansions into (4.1), at order O(1) we find the eigenvalue problem at

a = 0, which holds, and at order O(a) the equality

∂2zL0ψ1 + ∂2zL1 cos(z) = 0,

in which

L0 = k40∂
4
z + k20∂

2
z − c, L1 = c cos(z).

A direct calculation gives

ψ1(z) = − c

2X2
cos(2z),

with X2 given by (2.4). At order O(a2) we obtain

∂2zL0ψ2 + ∂2zL1ψ1 + ∂2zL2 cos(z) = ν2 cos(z),

in which

L2 = c

(
1

4
− c

4X2
cos(2z)

)
+ 2k0k2

(
2k20∂

4
z + ∂2z

)
,

and k2 is given by (2.3). The solvability condition for this equation gives

ν2 =
c2

4X2
> 0

which together with the fact that νa,c = O(a2c2) implies that νa,c > 0 and completes the proof of

Theorem 1.

4.2 Proof of Theorem 3

Consider a, c, and Λ such that the results in Proposition 2.2 and Theorem 1 hold, and set λ = ka,cΛ.

First, we claim that the operator λ∂x−Ca,c is a relatively compact perturbation of the asymptotic

operator λ∂x − C∞
a,c, when both operators act in L2(R) with domains H6(R). Indeed, the difference

Ga,c =
(
λ∂x − C∞

a,c

)
− (λ∂x − Ca,c) =

{
∂2x(g

+
a,c·), for x > 0

∂2x(g
−
a,c·), for x < 0

where

g±a,c(x) = ua,c(x)− ϕa,c(x± τa,c)

defines a closed operator in L2(R) with domain H2(R). Since g±a,c is a smooth function on R
± with

limx→±∞ ∂jxg±a,c(x) = 0, 0 ≤ j ≤ 4, by Proposition 2.2, using the compact embedding of H4(I) into

L2(I) for any bounded interval I and the continuity of Ga,c as an operator from H6(R±) to H4(R±),
we conclude that for any bounded sequence (fn)n>1 ⊂ H6(R), the sequence (Ga,cfn)n>1 ⊂ L2(R)

contains a convergent subsequence. This implies that Ga,c is relatively compact with respect to
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λ∂x − C∞
a,c and proves the claim. As a consequence, the operators λ∂x − C∞

a,c and λ∂x − Ca,c have

the same essential spectrum, so that it is enough to show that λ∂x − C∞
a,c has negative essential

spectrum.

According to Theorem 1, there exists ν∗ < 0 and a nontrivial 2π-periodic smooth function u∗
such that

(Λ∂z − Ba,c) u∗ = ν∗u∗.

We set v∗(x) = u∗(ka,cx+ τa,c), which solves the eigenvalue problem

(
λ∂x −A+

a,c

)
v∗ = k2a,cν∗v∗,

and consider a cut-off function φ ∈ C∞
0 (R) such that

φ(x) =

{
1, if x ∈ [1, 2]

0, if x ∈ (−∞, 0] ∪ [3,∞)
.

We define the sequence

vn(x) = v∗(x)φn(x), n > 1,

where φn is the smooth function defined by

φn(x) =





φ(x), if x ∈ [0, 1]

1, if x ∈ [1, n + 1]

φ(x− n+ 1), if x ∈ [n+ 1, n + 2]

0, if x ∈ (−∞, 0] ∪ [n+ 2,∞)

.

Since v∗ is a periodic function we have that ‖vn‖ → ∞ as n→ ∞, and for N∗ = λ∂x − C∞
a,c − k2a,cν∗

we find

‖N∗vn‖2 =
∫ 1

0
|N∗(v∗(x)φ(x))|2dx+

∫ n+2

n+1
|N∗(v∗(x)φ(x− n+ 1))|2dx 6 C∗,

for any n > 1, and some positive constant C∗ which does not depend on n. As a consequence, the

operator N∗ is not Fredholm, which implies that k2a,cν∗ < 0 belongs to the essential spectrum of

λ∂x − C∞
a,c. This completes the proof of Theorem 3.

A Existence of generalized solitary waves

In this appendix we show how the results in Proposition 2.2 follow from the general result in [16,

Chapter 7, Theorem 7.1.18]. In particular, this will also allow to recover the results in Proposi-

tion 2.1.

We start by writing the equation (2.2) as a first order system

dU

dx
= V(U, c), (A.1)

11



in which

U =




u

u1
u2
u3


 , V(U, c) =




u1
u2
u3

−u2 + cu− 1
2u

2


 .

Notice that the system (A.1) is reversible, i.e., the vector field V anti-commutes with the reflection

S = diag(1,−1, 1,−1).

For any c ∈ R, the system (A.1) possesses the equilibrium U = 0. By linearizing at U = 0 we

find the Jacobian matrix

Jc =




0 1 0 0

0 0 1 0

0 0 0 1

c 0 −1 0


 ,

with eigenvalues ν satisfying

ν4 + ν2 − c = 0.

At c = 0, we find the double non-semi-simple eigenvalue 0 and the simple eigenvalues ±i. We

consider a basis {ϕ0, ϕ1, ϕ+, ϕ−} consisting of eigenvectors and generalized eigenvectors of J0,

ϕ0 =




1

0

0

0


 , ϕ1 =




0

1

0

0


 , ϕ+ =




−1

−i

1

i


 , ϕ− =




−1

i

1

−i


 ,

satisfying

J0ϕ0 = 0, J0ϕ1 = ϕ0, J0ϕ+ = iϕ+, J0ϕ− = −iϕ−, Sϕ0 = ϕ0,

together with the dual basis

ϕ∗
0 =




1

0

1

0


 , ϕ∗

1 =




0

1

0

1


 , ϕ∗

+ =
1

2




0

0

1

i


 , ϕ∗

− =
1

2




0

0

1

−i


 .

Following [16, Chapter 7], we compute the scalar products

d10 = 〈D2
UcV(0, 0)ϕ0, ϕ

∗
1〉 = 1, d20 = 〈D2

UUV(0, 0)[ϕ0, ϕ0], ϕ
∗
1〉 = −1,

which are both non-zero. This shows that we are in the presence of a 02(i) resonance and that the

quadratic vector field is not degenerate.

The starting point in the construction of generalized solitary waves is a normal form trans-

formation of (A.1), followed by a scaling transformation [16, Section 7.1.1]. First, there exists a

close to identity polynomial change of coordinates, analytically depending upon c, and preserving

reversibility,

U = α̃ϕ0 + β̃ϕ1 + Ã(Imϕ+) + B̃(Reϕ+) + Φ(Ỹ , c),
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in which Ỹ = (α̃, β̃, Ã, B̃) and Φ is a polynomial in Ỹ with coefficients depending analytically upon

c, such that the system (A.1) is equivalent in a neighborhood of the origin to

dỸ

dx
= Ñ(Ỹ , c) + R̃(Ỹ , c),

where R̃(Ỹ , c) = O(|Ỹ |3) and Ñ is the normal form of order 2,

Ñ(Ỹ , c) =




β̃

d1(c)cα̃ + d2(c)α̃
2 + d3(c)

(
Ã2 + B̃2

)

−B̃ (1 + cω1(c) +m(c)α̃)

Ã (1 + cω1(c) +m(c)α̃)



.

Here d1, d2, d3, ω1 and m are analytic functions of c and

d1(0) = d10 = 1, d2(0) = d20 = −1.

Next, for c > 0, we introduce the scaling

x = c−1/2y, α̃ =
3

2
cα, β̃ =

3

2
c3/2β, Ã = cA, B̃ = cB,

which leads to the system
dY

dy
= N(Y,

√
c) +R(Y,

√
c), (A.2)

with

N(Y,
√
c) =




β

α− 3
2α

2 − 2
3d3(0)

(
A2 +B2

)

−B
(

1√
c
+ ω1(0)

√
c+m(0)

√
cα
)

A
(

1√
c
+ ω1(0)

√
c+m(0)

√
cα
)



,

and R(Y,
√
c) representing higher order terms.

The result in [16, Theorem 7.1.4] shows the existence of periodic orbits for (A.2). Transforming

back to the equation (2.2) this result is precisely the one stated in Proposition 2.1, when restricting to

positive values c ∈ (0, c0]. Next, the result in [16, Theorem 7.1.18] shows the existence of reversible

homoclinic orbits to small periodic orbits for the system (A.2), provided the size of the periodic

orbits is larger than an exponentially small critical size. For the equation (2.2) this leads to the

result in Proposition 2.2.
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