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Abstract— This paper addresses the design of a partitioned
vision-guided scheme for repetitive optical biopsies. More pre-
cisely, our approach uses two image modalities to perform 6
degrees of freedom (DOF) positioning task. The development
aims to partition the control into 3 DOF controlled by the
B-scan images acquired with an optical coherence tomography
(OCT) system and the remaining 3 DOF controlled by the white
light images provided by a CCD camera. Moreover, for the
control and instead of conventional visual features (e.g., points,
lines, moments, etc.) extracted using algorithms combined with
visual tracking approaches, our visual servoing method uses the
multiresolution wavelet coefficients. The developed method was
experimentally validated using a parallel kinematic structure
equipped with a Telesto-II OCT benchtop. The validation task
consisted of an automatic spatial repositioning of the robotic
structure to precisely retrieve the position of an initial optical
biopsy. Several tests are achieved, which clearly demonstrate
the reliability of the proposed controller.

I. INTRODUCTION

A biopsy procedure is the sampling of suspicious cells or
tissues for ex-situ examination under an optical microscope
by a pathologist or analyzed chemically. The tissue removal
can be achieved with different techniques, e.g., puncturing
needle, endoscopic system, or during surgical interventions.
However, the removal of tissues is a complicated proce-
dure which can be even dangerous (e.g., risk of malignant
degeneration) or medically contraindicated in some cases
(e.g., inflammatory tissue disorganization). During the last
two decades, alternative non-invasive techniques have been
carried out, commonly known as optical biopsies [1]. The
aim of those techniques is to reduce the need for surgical
tissue removal and replace ex-situ histological examination
with in-situ real-time optical measurements. To achieve that,
optical biopsy technologies have been developed thanks to
recent advances in fiber-optics, light sources and detectors,
such as fluorescence endoscopy, confocal microendoscopy
and optical coherence tomography [2].

OCT has the advantages compared to conventional
histopathology as well as to the other optical biopsies to
acquire an image with better resolution than ultrasound (US)
images, and with large depth compared to the confocal
microscopy. This makes OCT as the gold standard for the
diagnosis of many diseases [3]. Also, OCT images can be
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used during surgical procedures as a visual sensor in aim to
guide the surgical instruments.

OCT is based on the principle of low coherence inter-
ferometry providing very good lateral and axial resolutions
depending on the design (between 4 to 10 µm and 5 to
15 µm, respectively). It also has the ability to reach rather
high penetration depths, between 1 to 5 mm [4]. OCT
was firstly applied in ophthalmology due to the transparent
nature of eyes, their minimal scattering and high light
penetration. Recently, imaging of non-transparent tissues has
been achieved using longer wavelengths, near infrared, where
optical scattering is reduced. Therefore, OCT is now used
in several fields, such as: cardiology, gastroenterology, or
urology. Although many OCT endoscopic probes have been
reported in the literature [5], [6], none of these systems use
OCT images to servo the endoscope system. Indeed, vision-
based control (known as visual servoing) is a very useful
approach for robotic control, especially when flexibility,
accuracy and repeatability are required [7], [8].

Visual servoing has been widely investigated for differ-
ent robotic applications as well as using various image
modalities. In the late 2000s, a new type of visual con-
trol has emerged known as visual servoing set free from
image processing. It consists of removing completely the
visual information extraction and matching as well as the
visual tracking. These new paradigms use pure image signal
such as pixel intensity [9], [10], mutual information [11],
Fourier transform [12], [13], etc. These methods demonstrate
more accuracy and robustness due to the redundancy of
the information, comparing to the traditional visual servoing
techniques.

In the literature, visual servoing is applied for various
imaging modalities in the case of optical biopsy such as:
ultrasounds (US) [14], confocal microscopy [15], OCT [16],
etc. In opposition to the previous methods where only one
modality is used during the process, this paper focuses
on the development of a new partitioned visual servoing
approach as the vision/force visual servoing scheme [17].
This partitioned approach combines 3 DOF controlled by
the OCT B-scan and the remaining 3 DOF controlled with
the CCD camera mounted on the same benchtop. This
approach is chosen due to the very long time volumetric
OCT image acquisition. Furthermore, the final goal is the
repetitive optical biopsy repositioning in SE(3) (i.e., 3D) for
the diagnostic monitoring.For instance, the physician can
retrieve the excat position of a previous biopsy using an
OCT-based visual servoing. In this work, the control law



follows the method proposed in [18] for wavelet-based visual
servoing, but unlike the paper [16], where we control only
the positioning task of the OCT B-scan, the paper extends the
control to the volumetric positioning thanks to the partitioned
(OCT/CCD camera) approach. The proposed controller is
experimentally validated on a set-up composed by a benchtop
(i.e., OCT probe + CCD camera) placed over a robotic
platform (sample holder). The validation tests consist of
an in-vitro SE(3) positioning task representing an automatic
retrieval of the 3D pose of an initial optical biopsy.

The paper is organized as follows: Section II defines
the positioning task studied in this paper as well as the
introduction of the proposed visual servoing controller. Sec-
tion III describes both experimental materials used to validate
the control law and the obtained results, while Section IV
emphasizes the key points of the paper with a conclusion
and perspectives.

II. METHODOLOGY

A. Positioning Task Problem

The typical problem consists of an SE(3) positioning task
as can be seen in Fig. 1 where the B-scan OCT image Ioct is
perpendicular to the white light image Icam. To perform an
optical biopsy, the operator defines, on the white light image,
a line to be scanned by the OCT laser (Fig. 1). To monitor the
evolution (texture, shape, etc.) of a pathological tissue, the
clinician/biologist needs to perform new optical biopsy at the
same initial position. Due to the optical biopsy micrometric
resolution, vision-based control is more than necessary in
order to be able to retrieve the initial position. Indeed, for this
work, we propose partitioned (i.e., OCT and CCD camera)
wavelet-based visual servoing to perform the position task
on biological sample (e.g., a fly).
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Fig. 1. Representation of SE(3) positioning task used to validate experi-
mentally our controller.

B. Wavelet-based Visual Servoing

Let us consider an image I(x, y) represented in time
domain which can be also represented in the frequency
domain using Fourier transform. Otherwise, using wavelet
transform allows a time-frequency representation of the
signal, better suited for studying subtle details, and providing
higher precision when modeling a signal. In other words,
Fourier transform provides a frequency analysis, but does not
allow the temporal location of sharp changes of the signal. A

wavelet transform can be defined as an inner product between
a 2D signal F (x, y) and a wavelet function G (x, y).〈
F (x, y) ,G (x, y)

〉
=

∫ ∫ +∞

−∞
F(x, y) G(x, y) dxdy (1)

Different wavelet transforms were reported in the literature
as continuous and discrete [19], multiresolution [20], etc.
However, this paper is only based on the wavelet multires-
olution analysis. Indeed, wavelet coefficients represent very
interesting visual features for carrying out an accurate and
robust visual servoing controller. This is true because using
these coefficients allow to select redundant and pertinent
(automatic filtering of high frequencies) visual features from
the image. More precisely, our approach uses the approxima-
tive coefficients of the wavelet transform to build the down
sample image I2j and the detail coefficients to compute the
interaction matrix Lw(2j) that links the coefficients time-
variation of resolution j to the camera/robot instantaneous
velocities vc.

Based on the optical flow constraint equation (OFCE)
applied to wavelet coefficients time-variation [21], and our
preliminary work [18], it is possible to write

�
I2j = Lw(2j)v (2)

where

I2j = vec(I2j ) =
(
I(2j)(1,1), I(2j)(1,2), · · · , I(2j)(M,N)

)>
(3)

is the visual signal, and

Lw(2j) =
[
Lw(2j)(1,1),Lw(2j)(1,2), · · · ,Lw(2j)(M,N)

]>
(4)

is the compound multiresolution interaction matrix that links
the variation of I2j to the camera velocity v. It is built by
stacking, each multiresolution interaction matrix Lw(2j)(x,y)

for each pixel p = (x, y)>

Lw(2j)(x,y) = −
[
gH

(2j)(x,y) gV
(2j)(x,y)

]
L2D(x,y) (5)

where

L2D(x,y) =

(
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z −(1 + y2) −xy −x

)
(6)

is the 2D point interaction matrix reported in [7], where Z
is the depth, and

gH
(2j) ,

〈
I(2j+1),

∂ΓH

∂x

〉
(7)

gV
(2j) ,

〈
I(2j+1),

∂ΓV

∂y

〉
(8)

I(2j) =
〈
I(2j+1),Γ

0
〉

(9)

where gH
(2j) and gV

(2j) are the horizontal and vertical
wavelet coefficients, respectively. The image I(2j) is the new
image with resolution j.
Γ0, ∂ΓV

∂y and ∂ΓH

∂x are the functions used to convert image
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Fig. 2. Global view of the proposed partitioned visual servoing block diagram.

I(2j+1) to image I(2j) and generate detail coefficients (for
more information, please refer to [18]).

Finally, in order to ensure a stable and smooth control,
we use the Levenberg-Marquardt method [22]. Otherwise,
the robot spatial velocity is expressed in the camera frame
Rc as

v = − λ
(
µ I6×6 + L̂w(2j)

>
L̂w(2j)

)−1

L̂w(2j)

+ (
I2j − I

∗
2j

)
(10)

where λ and µ are the controller gains, and I6×6 is an identity
matrix.

C. Control Law

The partition of our controller is inspired by the well-
known vision/force coupling approaches reported in the
literature [17]. In our work, instead of using force and vision
sensors, we use OCT and CCD camera as a multimodal
imaging system. Thereby, the controller is divided two sep-
arate paths, as shown in Fig. 2. Indeed, white light images
were used to control 3 DOF (i.e., x, Ry , and Rz) when
OCT images were used for the other 3 DOF (i.e., y, z,
and Rx) (where Rx, Ry and Rz are the rotations carried
by x, y and z respectively). However, the orthogonality of
the two controllers is required to avoid the conflict during
the positioning task. Furthermore, a selection matrix S and
its complementary I − S are introduced in the control loop
(Fig. 2) to avoid any conflict problem. Thus, both image
modalities are combined as follows:

v = Svcam +
(
I− S

)
voct (11)

where vcam = (vx, ωy, ωz)> are the output camera veloci-
ties, and voct = (vy, vz, ωx)> are those of the OCT system,
v is the combined velocities send to the robot motors, and
the selection matrix is set to S = diag

(
1, 0, 0, 0, 1, 1

)
.

In the experimental scenario, both OCT system and CCD
camera are mounted in an eye-to-hand configuration system.
The CCD images are traditionally used to define the OCT
working distance (i.e., sharp image means the perfect OCT
working distance) as well as the bounding box to be scanned

by the OCT laser. This combination provides an original
configuration to design a hybrid vision-based control law.

III. EXPERIMENTAL VALIDATION

A. Experimental Set-up

To evaluate the performances of the proposed controller,
an experimental set-up was built. It includes two main parts:

Fig. 3. (a) photography of the experimental set-up, (b) inner architecture
of the multimodal imaging system, and (c) the kinematic structure of the
parallel robotic system.

• an OCT imaging system (a Telesto-II 1325 nm spectral
domain) from ThorLabs1 (Fig. 3(a)) providing 1D depth
(A-scan), 2D cross-sectional (B-scan) or 3D volumetric
(3D scan) images with micrometric resolution (5.5 µm
and 7 µm for axial and lateral resolutions, respec-
tively) and millimeters depth (3.5 mm of penetration).
The Telesto-II allows a maximum field-of-view of
10 × 10 × 3.5 mm3 with a maximum A-Scan line rate
of 76 kHz. The studied sample is also viewed through a

1www.thorlabs.de



CCD camera (640 × 480 pixels of resolution) placed in
the same axis as the OCT one. Both are positioned, in
an eye-to-hand configuration, on the top of the robotic-
based sample holder (Fig. 3(a)).

• a 6 DOF parallel robotic structure (Fig. 3(c)) which
consists of 3PPSR robot SpaceFAB SF-3000 BS from
Micos2. This robot is characterized by the follow-
ing features: translation range (∆Tx,∆Ty,∆Tz)>max

= (50, 100, 12.7)> (mm) and rotation range
(∆Rx,∆Ry,∆Rz)>max = (10, 10, 10)> (deg), a linear
resolution of 0.2 µm (repeatability of ±0.5 µm) and
an angular resolution of 0.0005 deg (repeatability of
±0.0011 deg).

In addition, two computers equipped the testbench: a
3.2 GHz i5 core Intel CPU with a Linux OS dedicated to the
computer vision and control algorithms and a 2.33 GHz Xeon
Intel CPU with Windows 7 OS is used for the robot inner
control laws (inner PID loop, static and differential kinematic
models). The computers communicate between them with an
asynchronous TCP/IP protocol.

B. Validation Scenarios

In this section, we address the different scenarios used
to demonstrate the functioning of the proposed vision-based
controller.

1) The first scenario consists of 3 DOF positioning task
using only the translation stages i.e., Tx, Ty and Tz
of the robotic platform in order to: firstly evaluate the
potential for convergence, secondly the precision rate
of our controller without rotation.

2) The second one is the extension of the first scenario to
an SE(3) positioning task including the rotations Rx,
Ry , and Rz .

3) The third one consists of several SE(3) positioning tests
under different conditions of use in aim to judge the
repeatability of the controller.

The SE(3) positioning task is performed as follows: the
operator defines, using the OCT image, an optical biopsy
at a desired pose r∗. Afterwards, from any initial position
r, the robot must move back towards the desired position.
During the task, the error ei (i represents the different robot
DOF), the norm of the error ‖e‖ as well as the robot joint
velocities

�
qi are recorded and plotted.

C. Experimental Results

1) Scenario 1: Fig. 4 shows some images captured during
the 3 DOF positioning task achievement. First, the left
column represents the CCD camera image sequence i.e.,
Fig. 4(1-a) the desired image, Fig. 4(1-b) the initial one,
Fig. 4(1-c) the initial difference between the initial and
desired images, and Fig. 4(1-d) the final error. Second, the
right column depicts the B-scan images grabbed during the
positioning task. Likewise, Fig. 4(2-a) is the desired OCT
image, Fig. 4(2-b) the initial one, Fig. 4(2-c) is the initial
error and Fig. 4(2-d) is the final error. As can be seen on

2www.pimicos.com
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Fig. 4. Image sequence captured during the translation positioning task (i.e.,
3 DOF): (a) desired image, (b) initial image, (c) initial image difference,
and (d) final difference when the controller reaches the target.

the final image error (totally gray), the controller reaches
accurately r∗.

Fig. 5(a) depicts the Cartesian error ei decay in each
translation stage as well as the decay of the norm of the error
(Fig. 5(b)). Thereby, it can be underlined that the different
components converge, simultaneously, to their respective
desired values. The presence of some oscillations on the
actuators controlled from the OCT B-scan images is due to
the unfavorable signal to noise ratio.

TABLE I
NUMERICAL VALUES OF TRANSLATION POSITIONING TASK ((Ti, ei) IN

mm) AND (Ri, eRi
) IN deg).

stages Tx Ty Tz Rx Ry Rz

r 0.80 0.80 75.00 x x x
r∗ 0.00 0.00 74.40 x x x
rf -0.012 0.014 74.381 x x x

ex ey ez eRx eRy eRz

e0 0.80 0.80 0.60 x x x
ef 0.010 0.011 0.019 x x x

TABLE I summarizes the numerical values of the initial,
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desired, final positions, as well as the final error measured
when the controller reaches the desired position using the
high resolution robot encoders supplied by the robot soft-
ware. For instance, the initial error is estimated to e0trans

=
0.733 mm when the final error is eftrans

= 0.0133 mm
which represents only 1, 81% of the initial error.

2) Scenario 2: In the second experiment, we extended
the previous test to the whole robotic stages, i.e., 6 DOF.
Fig. 6 presents an image sequence (left column depicts the
white light images and right column those corresponding to
OCT B-scan images) grabbed during the SE(3) positioning
task. Fig. 6 (1-a) to (1-d) show the initial r, desired r∗, initial
difference image and final error, respectively. As can see, the
controller reaches accurately the desired position. Similar to
the first validation test, we recorded the error ei decay in
each DOF, the norm of the error ‖e‖ as well as the 6 joint
robot velocities

�
qi. Therefore, Fig. 7(a)-(b) illustrates both

the Cartesian error decay in each robotic DOF and norm
of the error. It can be underlined that despite the presence
of some small oscillations, the robot reaches accurately the
desired position. Otherwise, Fig. 7(c)-(d) depict the evolution
of the joint velocities sent to the robot during the positioning
task performing. The camera 3D trajectory recorded during
the positioning task is plotted in Fig. 7(e).

TABLE II
NUMERICAL VALUES PERFORMED FOR AN SE(3) POSITIONING TASKS

((Ti, ei) IN mm AND (Ri, eRi
) IN deg).

stages Tx Ty Tz Rx Ry Rz

r 0.953 0.804 75.1 2.497 2.001 3.002
r∗ 0.00 0.00 74.4 0.00 0.00 0.000
rf -0.006 0.023 74.371 0.485 0.176 -0.032

ex ey ez eRx eRy eRz

e0 0.953 0.804 0.70 2.497 2.001 3.002
ef 0.006 0.023 0.029 0.437 0.181 0.120

TABLE II summarizes numerical values of the initial r0,
desired rd and final rf in the Cartesian space. The mean
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Fig. 6. Image sequence captured during SE(3) (i.e., 6 DOF) positioning
task: (a) desired image, (b) initial image, (c) initial image difference, and
(d) final difference when the controller reaches the target.

translation (x, y and z axes) error is eftrans = 0.019 mm,
where the mean rotation (Rx, Ry and Rz axes) error is
efrot = 0.246 deg.

3) Scenario 3: The SE(3) positioning task was repeated
several times using different initial positions in aim to avoid
biased results. It was experimentally demonstrated that in
each test, the controller reaches successfully the desired
position. TABLE III gives some samples of positioning tasks
performed by the proposed controller. The mean Cartesian
pose error in translation is estimated to eftrans

= 0.048 mm
(with a standard deviation (STD) of 0.042 mm) when the
rotation error is efrot = 0.417 deg (with a STD of
0.393 deg).

IV. CONCLUSION AND FUTURE WORK

In this paper the efficiency of the developed partitioned
(OCT/CCD camera) wavelet-based 6 DOF visual servoing
controller was demonstrated. The latter uses two image
modalities i.e., CCD camera and OCT imaging system. The
designed interaction matrix links the time-variation of the
wavelet coefficients to the robot spatial velocity. The parti-
tioned controller was experimentally validated using a 6 DOF



parallel robotic kinematic structure placed under the imaging
systems in an eye-to-hand configuration. The ground-truth
validations were consisted of several SE(3) positioning tasks
which were successfully performed. The obtained results
have demonstrated the efficiency of the controller in terms
of accuracy (some tens of micrometers and few hundred of
millidegree in the translation and rotation Cartesian space,
respectively), convergence, and repeatability.

In future work, we will aim to perform more realistic tests
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TABLE III
NUMERICAL VALUES OF REPETITIVE SE(3) POSITIONING TASKS

((Ti, ei) IN mm AND (Ri, eRi
) IN deg).

stages Tx Ty Tz Rx Ry Rz

r 0.80 0.80 75.00 2.00 2.00 3.00
r∗ 0.00 0.00 74.40 0.00 0.00 0.00
rf (1) -0.011 0.045 74.33 1.016 0.233 -0.025
rf (2) -0.035 -0.076 74.306 0.197 0.581 -0.078
rf (3) -0.185 -0.038 74.382 0.793 -0.100 -1.672
rf (4) -0.021 -0.006 74.371 0.459 0.278 -0.053
rf (5) -0.038 0.004 74.375 -0.183 0.471 -0.087
rf (6) -0.039 0.071 74.324 0.680 0.527 -0.077

ex ey ez eRx eRy eRz

e0 0.80 0.80 0.60 2.00 2.00 3.00
ef (1) 0.011 0.045 0.070 1.016 0.233 0.025
ef (2) 0.035 0.076 0.094 0.197 0.581 0.078
ef (3) 0.185 0.038 0.018 0.793 0.1 1.672
ef (4) 0.021 0.006 0.029 0.459 0.278 0.053
ef (5) 0.038 0.004 0.025 0.183 0.471 0.087
ef (6) 0.039 0.071 0.076 0.68 0.527 0.077
ef 0.055 0.040 0.052 0.555 0.365 0.332
STD (ef ) 0.065 0.031 0.032 0.335 0.189 0.657

using biological tissues include time variations of the sample
(biological degradation, deformation, inflammation, etc.) as
well as improving the controller frame rate especially for
the wavelet computation. Also, it will concern the use of
only OCT volumetric images as signal inputs instead B-scan
images on the vision-based controller.
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nanopositioning scheme for SEM,” in IEEE Trans. on Automation
Science and Engineering, DOI: 10.1109/TASE.2016.2580660, 2016.

[14] R. Mebarki, A. Krupa, and F. Chaumette, “2d ultrasound probe
complete guidance by visual servoing using image moments,” IEEE
Trans. on Rob., vol. 26, no. 2, pp. 296–306, 2010.

[15] B. Rosa, M. S. Erden, T. Vercauteren, B. Herman et al., “Building large
mosaics of confocal edomicroscopic images using visual servoing,”
IEEE Trans. on Biomedical Eng., vol. 60, no. 4, pp. 1041–1049, 2013.

[16] M. Ourak, A. De Simone, B. Tamadazte, G. J. Laurent et al.,
“Automated in-plane oct-system positioning towards repetitive optical
biopsies,” IEEE Int. Conf. on Rob. and Auto., p. 6, 2016. (in press)

[17] Y. Mezouar, M. Prats, and P. Martinet, “External hybrid vision/force
control,” in Int. Conf. on Advanced Rob., 2007.

[18] M. Ourak, B. Tamadazte, O. Lehmann, and N. Andreff, “Wavelets-
based 6 dof visual servoing,” IEEE Int. Conf. on Rob. and Auto., p. 6,
2016. (in press)

[19] Y. Meyer, “Wavelets-algorithms and applications,” Society for Indus-
trial and Applied Mathematics, vol. 1, p. 142, 1993.

[20] S. Mallat, “A theory for multiresolution signal decomposition : The
wavelet representation,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 11, no. 7, pp. 674–693, 1989.

[21] C. Bernard, “Wavelets and ill posed problems: optic flow and scat-
tered data interpolation,” Ph.D. dissertation, Centre de mathématiques
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