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Abstract. In the context of several pathologies, the presence of lym-
phocytes has been correlated with disease outcome. The ability to au-
tomatically detect lymphocyte nuclei on histopathology imagery could
potentially result in the development of an image based prognostic tool.
In this paper we present a method based on the estimation of a mixture
of Gaussians for determining the probability distribution of the princi-
pal image component. Then, a post-processing stage eliminates regions,
whose shape is not similar to the nuclei searched. Finally, the Transfer-
able Belief Model is used to detect the lymphocyte nuclei, and a shape
based algorithm possibly splits them under an equal area and an eccen-
tricity constraint principle.

1 Introduction

Recently, there is an increasing activity on analysing histopathological images,
as a potential prognostic tool for cancer patients. One important step for the
diagnosis is the cell segmentation. Demir and Yener [1] review the different ap-
proaches classified in two categories: region-based and boundary-based methods.
Our method addresses the problem of lymphocyte detection and should be con-
sidered as a region-based approach. Lymphocyte segmentation in histopathology
images is complicated by the similarity in appearance between lymphocyte and
cancer nuclei in the image.

In [2], a segmentation scheme, Expectation Maximization driven Geodesic
Active Contour with Overlap Resolution (EMaGACOR), is proposed for au-
tomatically detecting and segmenting lymphocytes on HER2+ Breast Cancer
histopathology images. EMaGACOR utilizes the Expectation-Maximization (EM)
algorithm for automatically initializing a geodesic active contour and includes
a scheme for resolving overlapping structures. EMaGACOR was evaluated on
a total of 100 HER2+ breast biopsy histology images and was found to have a
detection sensitivity of over 86% and a positive predictive value (PPV) of over
64%.

The first step of our method consists of a likelihood classification based on
the estimation of the parameters of a mixture of Gaussians. A post-processing
step eliminates regions with size or shape that differ greatly from a typical
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shape of lymphocyte nuclei. For the remaining regions the following features
are extracted: mean value, variance, eccentricity and size. A Transferable Belief
Model is then trained and used in order to detect the lymphocyte nuclei. Finally,
a shape based algorithm possibly splits the detected regions under an equal area
and an eccentricity constraint principle.

2 Segmentation

There are three possible classes corresponding to stroma, cancer nuclei and lym-
phocyte nuclei. We admit Gaussian distributions for the three classes and use
the EM algorithm for estimating the parameters of the model. We observe that
the three colour channels are strongly correlated. Therefore we start by applying
principal component analysis (PCA) in order to select only one image compo-
nent. Let us note x(s) this component at a site s of the image grid. Let p(x) be
the probability density function for the principal image component. According
to the mixture of Gaussians model we have:

p(x) =

3∑
k=1

Pk√
2πσk

e
− (x−µk)2

2σ2
k (1)

The unknown parameters are the a priori probabilities, the mean and the vari-
ance values.

At first, the Max-Lloyd algorithm is used for obtaining initial parameter
values. The empirical probability density function is used for the estimation. At
i-th iteration of the EM algorithm we have:

– E-step: calculate the posterior probabilities

P (i+1)(ωk|x) = P
(i)
k e

− (x−µ
(i)
k

)2

2σ
2(i)
k

p(i)(x)
(2)

– M-step: estimate the parameters as follows

P
(i+1)
k =

1

N

∑
s∈G

P (i)(ωk|x(s)) (3)

µ
(i+1)
k =

1

NP
(i)
k

∑
s∈G

P (i)(ωk|x(s))x(s) (4)

σ
2(i+1)
k =

1

NP
(i)
k

∑
s∈G

P (i)(ωk|x(s))(x(s)− µ
(i)
k )2 (5)

The above steps are implemented using the empirical probability density for
limiting the computational time. A stopping threshold of 10−6 is given on the
relative gain per iteration for the log likelihood value.
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Having the estimation of the probability density functions for the three classes
the image sites are classified according to the maximum likelihood principle.

Then, a post-processing stage follows on the regions detected as candidate
lymphocyte nuclei, which being darker are identified by the mean value. Three
region parameters are measured: the area, the eccentricity and the solidity. The
eccentricity criterion is intended to filter line segments. Very small regions are
also eliminated. The solidity criterion measures the proportion of the pixels in
the convex hull of the region that are also in the region. Therefore, it is relevant to
the region shape. In our implementation a value of 2/3 is required for accepting
a region as lymphocyte nucleus candidate.

3 Transferable Belief Model

Image and shape features are computed for each candidate region. The mean
value Mi and the variance Vi of the image of a candidate region i are extracted.
In order to be independent from scaling and variability in appearance, the mean
and the variance of each region are normalized by division with the corresponding
median values of obtained on the set of all regions.

The two extracted features are combined within the Tranferable Belief Model
(TBM) framework [3] [4] in order to perform lymphocyte nuclei detection. The
TBM is an alternative to probability measure for knowledge modelling and the
main advantage and power of the TBM is the capacity to explicitly model doubt
and conflict. TBM has been successfully applied on object detection and tracking
problems [5] combined with shape and motion based features.
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Fig. 1. From numerical features to belief. (a) Mean value, (b) Variance.

The mean value and the variance can be easily converted into beliefs (sym-
bolic representation). This is the first step of the TBM framework. We have pro-
posed the numeric-to-symbolic conversion presented in Fig. 1, where L is used
for low value,M for medium values and H for high values. Let us note fk(m) and
gk(v) the two belief functions, where k = 1, 2, 3 corresponds respectively to low,
medium and high values. Using symbolic representation, the lymphocyte nuclei
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detection can be performed based on appropriate table rules (see Table 1). The
values of Table 1 (values of T (k, l)) have been estimated using the ground truth
images of the ICPR 2010 contest, by estimating the probability of lymphocyte
nuclei detection for each belief pair.

LV MV HV

LM 0.999 0.988 0.958

MM 0.565 0.669 0.701

HM 0.052 0.1 0.032

Table 1. Table rules providing T (a, b) used in Eq. 6.

Having estimated the table of rules, we compute the the plausibility Pi of
each candidate lymphocyte nucleus region i as follows:

Pi =
3∑

k=1

3∑
l=1

fk(m)gl(v) · T (k, l) (6)

A region i will be detected as lymphocyte nuclei, if Pi > 0.55.

4 Region Splitting

Having detected the lymphocyte nuclei based on appearance features, we have
to resolve possible overlaps using shape features. Finally, the area (Ai) and
the eccentricity (Ei) [5] are used in the decision of splitting of a lymphocyte
nuclei detected region to more than one regions. The area and the eccentricity
are normalized with report to their respective median values. According to the
feature Ai, the region i can be splitted into Ni regions, where Ni ∈ {1, . . . , �Ai�}.
We split a region i into Ni possible sub-regions selecting the more appropriate
splitting as described hereafter.

The proposed algorithm splits the region i into Ni equal area regions mini-
mizing the maximum eccentricity of the resulting sub-regions j, j ∈ {1, . . . , Ni},
since the lymphocyte nuclei are circular-like regions. A circular-like region has
minimum eccentricity, close to one. Similar to the minimization of maximum
error on polygonal approximation problem using equal errors criterion [6], the
problem of minimizing the maximum eccentricity can be sub-optimally solved
under the equal area criterion under the above eccentricity constraint. We have
implemented this criterion using the following algorithm.

Initially, we sequentially select Ni seed-points pj , j ∈ {1, . . . , Ni} of region
i from which Ni parallel region growing algorithms start. The seeds should fol-
low the next constraint so that the growing algorithms start from the farthest
sub-regions: the minimum distance between all pairs of these points should be
maximized. The optimal algorithm that solves this problem has O(

(
Ri

Ni

)
) com-

putation cost, where Ri denotes the number of pixels of region i. We have used
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the next approximate algorithm that sub-optimally solves this problem in O(R2
i )

based on the optimal solution for two regions. p1 and p2 are given as the two
farthest points of region i (optimal solution for two regions). The next points
pj , j ∈ {3, . . . , Si} are sequentially computed by getting the point p of region i
that maximizes the minimum of distances from p to pj−1, pj−2,. . . , p1. Then Ni

parallel growing algorithms start from seeds pj , j ∈ {1, . . . , Ni}. In each step,
the growing algorithm j, j ∈ {1, . . . , Si} adds the most close point to pj from the
set of non-visiting boundary points of sub-region j that minimizes eccentricity of
sub-region j, yielding equal area regions that uniformly grow with a circular-like
shape having minimal eccentricity.

Finally, we select splitting to Ni regions, where Ni maximizes the following
criterion:

C(Ni) =




Pi√
max(Ai,

1

Ai
) · Ei

, Ni = 1

(1− b(Ni))maxj∈{1,...,Ni} Pi,j√
max(Ā,

1

Ā
) · Ē

,Ni > 1
(7)

where Ā and Ē denote the mean area and the mean eccentricity of the Ni splitted
regions. b(Ni) denotes the percentage of boundary pixels between the resulting
sub-regions (intrinsic boundary pixels) of splitting. Pi,j denotes the probability
of lymphocyte nuclei sub-region for the sub-region j of region i estimated by
TBM framework. This criterion is maximized when the mean area and mean
eccentricity is close to one (that corresponds to most appropriate shape for
lymphocyte nucleus region) and the maximum probability of lymphocyte nucleus
sub-region is high.

Fig. 2 illustrates an example of region splitting algorithm execution forNi = 2
and Ni = 3. According to ground truth, the algorithm successfully gives three
partitions, since for Ni = 3 the proposed criterion was maximized, C(1) =
0.47, C(2) = 0.24, C(3) = 0.53, C(4) = 0.35.

2 4 6 8 10 12 14 16 18 20 22

(a)

2 4 6 8 10 12 14 16 18 20 22

(b)

Fig. 2. An example of Region Splitting into (a) Ni = 2. (b) and Ni = 3 sub-regions.
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5 Experimental Results

We have tested our method on the data of the Pattern Recognition in Histopatho-
logical Images contest (ICPR 2010). Fig. 3 illustrates results of the proposed
scheme for image im8.tif of the data set. Figs. 3(a) and 3(b) illustrate the origi-
nal image and the principal image component, respectively. Fig. 3(c) illustrates
final results of the method with ground truth. Red boundaries correspond to
candidate regions that are detected as lymphocyte nuclei regions (see Section 3).
Blue boundaries correspond to candidate regions that are not detected as lym-
phocyte nuclei regions (see Section 3). Green and white squares are the centroids
of real lymphocyte nuclei and detected regions, respectively. Fig. 3(d) illustrates
final detection of the proposed method (white regions). The region that belongs
in [75,85] x [45,55] bound box has been successfully splitted into two sub-regions.
Table 2 depicts the Sensitivity and the PPV for each image of the tested data
set.

6 Conclusion

We have proposed an appearance and shape based method for automatic de-
tection of lymphocyte nuclei on histopathology images. We have used a mixture
of Gaussians for determining the probability distribution of the principal image
component and the TBM framework with a region splitting method to detect and
split the lymphocyte nuclei regions. The proposed algorithm gives high accuracy
results on the whole data set: Sensitivity of 0.938 and PPV of 0.807.

Image Sensitivity PPV

im1 0.968 0.815

im2 0.961 0.714

im3 0.900 0.720

im4 0.950 0.791

im5 0.965 0.933

im6 0.944 0.756

im7 0.928 0.928

im8 0.883 0.926

im9 0.941 0.592

im14 0.952 0.869
Table 2. Sensitivity and PPV.
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Fig. 3. (a) The original image. (b) The one channel image after PCA. (c) The final
detection with ground truth. (d) The final detected regions.
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