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Abstract. Tailoring the dynamical behavior of wave-guide structures can provide

an efficient and physically elegant approach for optimizing mechanical components

with regards to vibroacoustic propagation. Architectured materials as pyramidal core

kirigami cells combined with smart systems may represent a promising way to improve

the vibroacoustic quality of structural components. This paper describes the design and

modelling of a pyramidal core with auxetic (negative Poisson’s ratio) characteristics

and distributed shunted piezoelectric patches that allow for wave propagation control.

The core is produced using a kirigami technique, inspired by the cutting/folding

processes of the ancient Japanese art. The kirigami structure has a pyramidal unit

cell shape that creates an in-plane negative Poisson’s ratio macroscopic behavior. This

structure exhibits in-plane elastic properties (Young’s and shear modulus) which are

higher than the out-of-plane ones, and hence this lattice has very specific properties

in terms of wave propagation that are investigated in this work. The short-circuited

configuration is first analysed, before using negative capacitance and resistance as

a shunt which provides impressive band gaps in the low frequency range. All

configurations are investigated by using a full analysis of the Brillouin zone, rendering

possible the deep understanding of the dynamical properties of the smart lattice. The

results are presented in terms of dispersion and directivity diagrams, and the smart

lattice shows quite interesting properties for the adaptive filtering of elastic waves at

low frequencies bandwidths.
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1. Introduction

Embedding smart materials in structures appears to be a very efficient way to provide

new functionalities to users. In this work we focus on the dynamical behavior of two-

dimensional waveguides which are designed such that they can bring new properties

in terms of elastic wave propagation, with a particular focus on the adaptivity of the

system. Structures with smart mechanical behavior are most of the time designed for

static and low frequency performances (see [1, 2, 3] among many others). Recently,

research activities have been developed to design new multi-functional structures that

integrate electro-mechanical systems able to control their vibroacoustic behavior over a

wide frequency band [4, 5]. However, there is still a lack of studies in open literature

related to the medium frequency (MF) optimization of the structural vibration. This

paper is related in particular to this topic, with a focus on the ability of controlling elastic

waves in auxetic lattices whose behavior is tuned with piezoelectric patches shunted

with electric circuits. The work shown in this paper offers a contribution towards the

solving of the challenges of the design and implementation of new classes of integrated

smart metacomposites capable of improving the engineering performance in terms of

mechanical and vibroacoustic behavior, as compared to strictly passive structures. We

are interested here on the class of metacomposites that combine two different aspects of

vibration control, namely the concept of periodic structures and the ability to change

the mechanical behavior of structures using smart materials.

Recent research works about periodic structures are often presented as inspired

by developments related to metamaterials, in particular within the context of light

propagation. Many research efforts have been undertaken to investigate ways to design

and construct photonic crystals exhibiting photonic band gaps that prevent light from

propagating in certain directions at specific frequencies, or able to propagate light

in anomalous and useful ways (i.e. negative refraction and artificial magnetism).

These concepts can be extended to acoustic or elastic waves, defining the so-called

phononic crystals which consists in periodic arrangement of the media in which the

waves propagates in order to build interferences and/or diffraction effects that radicaly

change the dispersion properties [6]. The position of the Bragg band gap in the frequency

domain is directly related to the spatial period of the crystal. This is interesting from

the designer’s point of view, but quite limited for practical applications in the audible

frequency range in which the wavelengths of interest may be of dozens of centimetres or

meters. An efficient way to eliminate this constraint consists in using locally resonant

unit cells. In such approach a new frequency gap is opened around the resonance

frequency, which may be tuned by changing the mass or stiffness of the resonator.

[7] had demonstrated that a resonant sonic crystal including rubber-coated lead balls

exhibits a low-frequency sonic band gap, and the resonance can provide a maximum

impedance mismatch to shield against airborne sound. The same effect can be obtained

using Helmoltz resonators as showed by Fang et al. [8, 9] or Hu [10]. Similar techniques

can be applied to control propagation of elastic waves in structures [11]. One of the ways
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to add a resonant system to the structure of interest without modifying substantially an

original design consists in using piezoelectric patches, which are shunted with RL circuits

[12]. The work of Hagood and Von Flotow [13] should be mentioned as a precursor in

this strategy, with practical design rules that still remain used today. The tunable

characteristics of shunted piezo-patches allow the equivalent mechanical impedance of

the structure to be tuned so that stop bands are generated over desired frequency

ranges. The presence of a resistance in the shunt circuit generates a damped resonance

of the electrical network. The resistance also allows the energy dissipation mechanism of

shunted piezos to be exploited, which dampens the amplitude of vibrations also outside

the stop bands. The original periodic shunting concept was numerically demonstrated

on rods and fluid-loaded axisymmetric shells in [4], before being extended to plates

[14, 15, 16], where the Bloch theorem was used to predict the dispersion properties of the

resulting periodic structure. This kind of approach inspired many recent contributions,

and the research work for developing tools that can help engineers to design such systems

is high [17, 18]. However, the main limitation of this approach is the narrow-band

effectiveness of the resonant circuits. An alternative originally proposed by Forward [19]

consists in using negative capacitance shunts. By tuning this capacitance in accordance

with the effective capacitance of the embedded patch, the total impedance of the shunt

circuit reduces to that of the remaining circuit, which opens the way to any arbitrary

frequency-dependent effective impedance, that finally provides the desired behavior to

the structure. Using this kind of approach for effective determination of the proper

electrical impedance requires the use of optimization algorithms [20, 21], hence allowing

the frequency bands of interest to be extended in very large ways. Although the

negative capacitance shunting strategy has been experimentally validated, it must be

used with caution since it requires active elements that can destabilize the structure

if improperly tuned [22, 23]. Efficiency band and stability can be improved by using

specific parameters and circuit architecture [24]. This strategy may be followed to

design new reconfigurable systems that can handle several functions with a single shunt

circuit, allowing for example an effective change from wideband absorption to wideband

reflection of elastic [25, 26, 27] or acoustic waves [28, 29]. Electrical shunts may also

reproduce physical phenomenon with analog components [30, 31]. These works all

contribute to the development of what has been called programmable matter by Toffoli

[32] to refer to an ensemble of computing elements arranged in space, now extended to

smart materials based on distributed piezoelectric actuators able to modify the inherent

vibroacoustic properties of a given structure.

Innovative manufacturing techniques have been recently developed for the

production of composite structures with complex shapes and functions [33, 34], and

the kirigami process is one of them. kirigami is the ancient Japanese art of folding and

cutting paper and has been applied to produce complex 3D cellular structures using

modular moulding techniques [35, 36, 37], foldable structures [38], robotic devices [39]

and nanoscale artificial materials [40]. The interest reader may find a review of origami

and kirigami engineering applications in [41]. Negative Poisson’s ratio (or auxetic)
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solids have been extensively studied during the past three decades [42, 43]. The term

auxetics covers a wide range of materials and structures exhibiting a negative Poisson’s

ratio. In cellular configurations, a negative Poisson’s ratio can be achieved in re-entrant

centre-symmetric (butterfly) honeycombs [44, 45], rotating rectangles and triangles [46],

as well as arrow-head [47] and star-shaped configurations [48]. The centre-symmetric

auxetic configuration has also been considered as a basis for gradient cellular structures

[49, 50]. In a more general way, strategies allowing tailoring of mechanical properties

[51] have reported for obtaining a Poisson’s ratio up to -1 in 2D [52] or 3D [53]. All

these configurations have been investigated in terms of manufacturing possibilities and

mechanical performances, mainly in the static domain. However, new research activities

in the areas of vibroacoustics of auxetic structures have been performed in recent years.

The negative Poisson’s ratio, which provides an unusual large volume deformation

during loading induces tunable wave propagation directivities not commonly observed

in classical systems. Recently, some kirigami auxetic cellular structures have also been

deeply investigated in terms of wave propagation [54] and the concept has been pushed

toward its limits with a null Poisson’s ratio that induces negative stiffness regime under

nonlinear deformation and high energy dissipation under cyclic loading [55]. Readers

may refer to the recent monograph that summarizes major landmark works in auxetics

research and development [56].

Among the properties of interest for wave propagation in smart periodic structures,

the directionality has been little investigated [54, 57]. However, the adaptive character

of the electrical shunts may be a very efficient way to force the waves to follow a path

of interest, for several purposes like isolation or energy harvesting. In this paper, we

numerically investigate a strategy for controlling directionality properties of a kirigami

auxetic lattice with the pyramidal topology described in [54]. Pyramidal lattices have

been developed in recent years as lightweight cores for energy absorption [58, 59, 60]

and unusual stretchable-bendable composites [61]. Concerning the kirigami pyramidal

lattice of reference [54], the unusual deformation properties and its wave propagation

characteristics are also due to the fact that the system is only partially auxetic [62], i.e.,

it exhibits auxetic behaviour only in the xy and yx planes. It is also worth noticing that

a theoretical negative Poisson’s ratio effect may be even induced in these structures if

a geometrical perturbation of the lattice architecture is applied [63]. Moreover, since

1987 it is known that it is not necessary to arrange auxetic structures by hand such

structures, even in the isotropic case, can be obtained by a spontaneous self-organization

of properly selected objects. Such objects can be hard, as in [64] or soft [65]. Obviously,

depending on the shape of the objects forming them, the obtained structures can be

auxetic or not, and can have various symmetries as illustrated, e.g. in [66].

The control is achieved through the use of shunted piezoelectric patches glued

onto a periodical distribution of auxetic composite cells. This combination of both

property induced by auxeticity and negative shunt circuit is analyzed in terms of wave

propagation properties. This controlling capability is obtained by correctly tuning

the parameters of the external circuit by which almost arbitrary effective structural
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impedance may be obtained. The particular bandwidth considered in this work (0 to

2.5 kHz) is typical of low frequency ranges excitations in most large scale airframe

and transport structures. As it will be clear from the numerical results shown in the

following paragraphs, the rich wave dispersion behaviour of this lattice in that particular

bandwidth makes it particularly suitable as an active material vibration control platform

for potential vibroacoustic applications at low frequencies. The paper is organized as

follows: section 2 presents the structure of interest, section 3 recalls the methodology

which has been applied here, section 4 provides the properties of the smart lattice when

all piezoelectric patches are short-circuited, section 5 is dedicated to the analysis of the

impact of a negative capacitance as shunt, section 6 considers the addition of a resistance

in the shunt circuit, and conclusions are derived about the properties in terms of wave

propagation of the smart kirigami auxetic lattice.

2. Description of the piezo-shunted kirigami auxetic lattice

In this section, the piezo-shunted kirigami auxetic lattice is described. Following the

concept introduced in [54], the lattice is composed by a periodic distribution of kirigami

-produced unit cells from kevlar/epoxy prepregs (Kevlar 49/914). Each cell includes

shunted piezoelectric patches located on the base of the structure, as shown in figure 1.

1
2

3

Figure 1. The piezocomposite periodic auxetic cell

The mechanical properties of the host structure material are a Young’s modulus

of 30 GPa, Poisson’s ratio of 0.4, loss factor of 10−3 and density equal to 1600 kg.m−3.

The unit cell is a 120×120 mm2 square, the legs are 17 mm width, 2.5 mm thick. The
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geometric configuration of the lattice was similar to the one shown in reference [54]. The

in-plane Poisson’s ratios νxy = νyx was -0.88, corresponding to a set of dimensionless

parameters θ = 25o and δ = 5.0. The piezoelectric patches are located at the bottom of

the legs, they are 17 mm width, 25 mm long and 0.2 mm thick. The angle formed by the

legs is such that the height of the central square is 25 mm. The piezoelectric ceramic is

Lead Zirconate Titanate (PZT-4) [67].

In the various configurations that will be investigated in this paper, the four patches

may have an off/on shunt a pure negative capacitance (called Cneg) or a negative

capacitance with resistance (called RCneg) circuit. The negative capacitance chosen

is related to the cell instability point: an increase of the absolute value of the shunt

capacitance results in a decrease of the effective cell stiffness until instability occurs.

Figure 2 illustrates the change in the value of the first complex eigenfrequencies of

the clamped-clamped cell when negative capacitance ratio α changes. This ratio is

defined as Cneg = −αCo where Co = 12.68 nF is the effective capacitance of the glued

piezoelectric patch. The figure shows that one of the eigenfrequencies becomes imaginary

for α = 1.61. This corresponds to the optimal point to tune the imaginary part of the

electrical impedance [20, 25, 26, 27, 24].

The shunt circuit may also include an electrical resistance to impact the frequency

efficiency of the system [24, 25]. In the following computations, both R = 0 (pure Cneg

circuit) and R = 500Ω are used. Investigations presented in the paper will include

results on the impact on the directivity of the lattice when dissipative elements are

included in the shunt circuit [25, 26]. In order to distinguish the various configurations,

the 4 branches of the unit cell are identified through cardinal directions (W, N, E, S).

The E direction is aligned with direction 1 in figure 1, and corresponds to the reference

axis for the angle ϕ that will be defined later. The N direction is aligned with direction

2 in figure 1. The lattice is obtained by repeating the unit cell in EW and NS directions,

as illustrated in figure 3.

3. Methods and indicators for the dispersion analyses of the smart lattice

The dispersion diagrams are evaluated using the approach described in [21]. The

computational method consists in reformulating the Floquet-Bloch theorem for

computing waves dispersion for periodically smart distributed mechanical systems

incorporating electronic components, damping effects or any frequency-dependent

characteristics. The finite element approach used in this work is based on a fully 3D

formulation of the periodic piezo elastodynamic problem introducing the wave number as

the unknown eigenvalue of the the Floquet-Bloch shift cell operator [68]. The mesh size

has been chosen to guarantee the convergence of the method in accordance to reference

[68]. Simulations are performed on the first Brillouin zone of the lattice [69]. The shape

of this zone changes, depending on the symmetry of the problem, which may be broken

when non identical shunt circuits are chosen in the various branches of the cell. In any

case, the whole Brillouin zone is investigated to understand properly the properties of
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Figure 2. Complex eigenfrequencies of clamped-clamped cell [rad.s−1] vs. negative

capacitance ratio α: ◦ real part, × imaginary part

the system in terms of wave propagation. Following this objective, the frequency ω is

fixed, together with the wave angle ϕ in the reciprocal space, and the wave number

k is computed through a generalized eigenvalue problem. The problem being damped

from the structural loss factor and by the piezoshunt coupling, k is complex. Its real

part corresponds to propagative component, while its imaginary part is related to spatial

attenuation. The wave number vector k has k cosϕ and k sinϕ components in the plane.

Finally, ω is varied on the frequency range of interest, and θ is varied to cover the first

Brillouin zone and the eigenvalue problem is solved for each configuration.

For each solution, the group velocity [70] is computed by

Cgn(ω, ϕ) = ∇kω =
〈〈S〉〉
〈〈etot〉〉

=
〈I〉
〈Etot〉

(1)

where 〈〈:〉〉 is the spatial and time average respectively on one cell and one period of

time, S is the density of energy flow, I the mean intensity and etot, Etot the total energy

and its time average on a period (see [70] for details).
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Figure 3. The piezocomposite lattice

Due to the geometry and physical complexity of the lattice, the eigenvalue solver

may return a very large number of solutions. Adequate filtering is necessary in order

to determine the outputs of interest for the understanding of the physical phenomenon

arising in this metacomposite. Hence two criteria are used for filtering the waves. The

first one restricts the analysis only to wave numbers with real parts inside the first

Brillouin zone, ie

Re(k) < τBZkBZ(ϕ) (2)

where kBZ(ϕ) is the length of the line investigated in the Brillouin zone at angle ϕ and

τ is a threshold. Due to the shape of the Brillouin zone (square or triangle depending

on the possible symmetry in the shunts),

kBZ(ϕ) =
π

L cosϕ
for ϕ ∈

[
0 ;

π

4

]
(3)

or

kBZ(ϕ) =
π

L cos(π/2− ϕ)
for ϕ ∈

[π
4

;
π

2

]
(4)

where L is the length of the square cell (120 mm for the considered case). τ should

theoretically have a value of 1, but numerical issues may provide wave number with real

parts slightly lower than kBZ(ϕ). This is the reason why in the numerical presented

hereafter, a value of τBZ = 0.99 has been used. The second criterion is related to

the evanescent nature of the waves of interest. In the work described in this paper,

both damping in the physical model of the structure and complex electrical impedance

used to shunt the piezoelectric patch provide complex wave numbers as solutions of the

eigenvalue problem [68]. The waves of interest for describing the dynamical behavior

of the smart kirigami lattice being those that can propagate over several wavelengths,

the highly evanescent waves may be removed from the dispersion diagrams. They are

computed and correspond to important signature of the structure, in particular for the

determination of the forced response of the system, but do not correspond to propagative
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effects of interest in this paper. The complexity of the wavenumber may be quantified

by the ratio of imaginary part to its real part, hence only waves that verify

|Imag(kn)|
|Real(kn)|

≤ τe (5)

are considered in the analysis. Real(·) stands for real part and Imag(·) for imaginary

part. In the results presented hereafter, a value of τe = 0.8 has been used. It should

be emphasized that this value is quite high since it corresponds to 96% of reduction

in amplitude after a single wavelength. A lower value of τe may be used to be more

selective on the waves of interest. Finally, high-order evanescent waves appearing in the

spectrum as quadruplets of eigenvalues (kn, k̄n, −kn, −k̄n) are also removed from the

analysis [70].

4. Short-circuited reference configuration

4.1. Dispersion along Γ−X direction of the short-circuited reference configuration

The dispersion curves of the system along the Brillouin zone Γ − X direction (i.e for

ϕ = 0) are shown in figure 4 for a closed circuit (ie, the piezo electrodes are in short

circuit). The figure shows the real part of the non dimensional wavenumbers defined

as
kn(ω, ϕ)

kBZ(ϕ)
when no filtering is applied. As expected, numerous solutions are found,

highlightning both the rich wave dispersion behaviour but also the complexity of the

involved analysis.

After applying the three filters with τBZ = 0.99 and τe = 0.8, the dispersion diagram

shown in figure 5 is obtained. It should be recalled that the calculations are performed

by making ω varying in the frequency range of interest, which explains the fact that the

dispersion curves do not reach the 0 and 1 values of the reduced wave number. A refined

frequency step in the analysis would bring the dispersion curves to the borders of the

domain. The links between the dots is done by tracking the shapes of the eigenvectors

using a correlation criteria [68]. The results show the complexity of the vibroacoustic

behavior of the system with three band gaps in the frequency range of interest, namely 0

to 2500 Hz. Between these band gaps, several waves are able to transport energy along

the lattice. All dispersion diagrams presented hereafter use the same filters.

The modes occurring with the highest wavenumber at low frequencies correspond

to an out-of-plane movement with propagation along the Γ − X axis, with the

transverse legs moving creating a macroscopic flexural effect that can be compared to

the first antisymmetric Lamb-wave mode (often called A0) associated with the largest

wavenumber in the low frequency band. An example is shown in figure 6, corresponding

to the red box in figure 5. It should be emphasized that all shapes presented in the figures

of this paper are associated to the propagation direction 1 (see figure 1 for the system of

reference), ie EW or ϕ = 0. Moreover, the terminology used for the discrimination refers

to this direction. In order to help readers to understand the behavior of the structure, in
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Figure 4. Dispersion analysis of the open circuit system along Γ − X (ϕ = 0) with

no filtering: real part of non dimensional wavenumber vs. frequency [Hz].

the corresponding figures, a color scale is used to show the distribution of modal kinetic

energy

enkin =
1

2
ρω2un · u∗

n (6)

where ρ is the density, un is the shape of mode n and u∗
n its conjugate.

In the same frequency range, in-plane shear motion of the cell can also be involved

in the movement. This movement is illustrated in figure 7, corresponding to the yellow

box highlighted in figure 5.

The last mode that is likely to occur in the same frequency range corresponds

to the second flexural mode with anti-symetrical movements of NS and EW legs. It

has the lowest wave number of the three described motions and may be interpreted

as analogous to the second antisymmetric Lamb-wave mode (A1) of an homogeneous

plate with a very low cut-off frequency (for an elastic plate, the cut-off frequency is

defined as the frequency above which higher modes like antisymmetric A1 or symmetric

S1 appear). The associated shape is shown in figure 8, corresponding to the green box

highlighted in figure 5.
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Figure 5. Dispersion analysis of the open circuit system along Γ − X (ϕ = 0)

with filtering: real part of non dimensional wavenumber vs. frequency [Hz]. Square

surroundings correspond to solutions whose shapes are shown in figures 6 to 12.

Figure 6. Shape of mode occurring at 110 Hz, with Real(kn) ≈ 0.7723
π

L
,

corresponding to red square in figure 5. Color scale corresponds to modal kinetic

energy density. Grey lines show the undeformed cell.
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Figure 7. Shape of mode occurring at 110 Hz, with Real(kn) ≈ 0.1751
π

L
,

corresponding to yellow square in figure 5. Color scale corresponds to modal kinetic

energy density. Grey lines show the undeformed cell.

Figure 8. Shape of mode occurring at 110 Hz, with Real(kn) ≈ 0.1751
π

L
,

corresponding to green square in figure 5. Color scale corresponds to modal kinetic

energy density. Grey lines show the undeformed cell.

These three modes may participate to the response of the lattice up to 460 Hz.

Between 460 and 650 Hz, a first band gap occurs, with a width to mean frequency ratio

equals to 34%. Then, two branches appear, one corresponding to the second flexural

mode (see figure 9, associated to cyan square in diagram 5) and to the first torsional

mode which is shown in figure 10, corresponding to blue square highlighted in figure 5.

A second band gap then occurs between 950 and 1680 Hz, corresponding to a width

to mean ratio equals to more than 55%, which is very high and may be efficiently used

for practical filtering applications.

Still going up in frequency range brings the second torsional mode, illustrated in

figure 11 and corresponding to purple square in figure 5. It may be emphasized that

this mode generates electric charges only in the W and E piezoelectric patches, the N

and S ones being almost unstrained. This point will explain some of the observations

described in section 5.
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Figure 9. Shape of mode occurring at 730 Hz, with Real(kn) ≈ 0.9053
π

L
,

corresponding to cyan square in figure 5. Color scale corresponds to modal kinetic

energy density. Grey lines show the undeformed cell.

Figure 10. Shape of mode occurring at 890 Hz, with Real(kn) ≈ 0.686
π

L
,

corresponding to blue square in figure 5. Color scale corresponds to modal kinetic

energy density. Grey lines show the undeformed cell.

Figure 11. Shape of mode occurring at 1870 Hz, with Real(kn) ≈ 0.3678
π

L
,

corresponding to purple square in figure 5. Color scale corresponds to modal kinetic

energy density. Grey lines show the undeformed cell.
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Close to the previous torsion dispersion line, the third flexural mode is observed,

as seen in figure 12, corresponding to the gray box highlighted in figure 5. It involves

strain mainly in N and S piezoelectric patches.

Figure 12. Shape of mode occurring at 1870 Hz, with Real(kn) ≈ 0.585678
π

L
,

corresponding to grey square in figure 5. Color scale corresponds to modal kinetic

energy density. Grey lines show the undeformed cell.

The last band gap occurring in the frequency range of interest starts around 1950

Hz up to the upper analysis frequency of 2500 Hz.

While the piezoelectric patch is short-circuited, its impact on the dynamical

behavior corresponds essentially to an added stiffness at the lower part of the legs.

Before discussing the effect of the shunt circuit (see section 5), the behavior of the

system in terms of directivity is addressed. A feature that is common to all the wave

modes shown above is the fact that the modal deformations are mostly confined to

bending and torsion of the ligaments, with global transverse flexural and shear modes.

These wave modeshapes are compatible with the mechanical behaviour of the lattice,

with the transverse stiffness (Young and shear modulus) significantly lower than the

in-plane uniaxial and shear stiffness [54].

4.2. Directivity of the short-circuited reference configuration

By considering only the propagation along Γ−X (ϕ = 0), the directivity properties of

the system can not be observed. A synthetic approach allowing the understanding of

the directivity properties of the smart lattice consists in using the evanescence criteria

which is computed for each configuration (ω, ϕ) as

Ind(ω, ϕ) = min

{
1,min

n

|Imag(kn)|
|Real(kn)|

}
, (7)

where n varies over all the computed waves. The saturation with unit value is used since

all wave numbers with higher imaginary part than real part are spatially attenuated very

rapidly. It should be emphasized that in this directivity analysis, no wave filtering is

applied: all possible waves (among which out-of-plane, in-plane, shear movements) are
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provided by the calculation and included in the analysis. As a consequence, when the

indicator Ind is close to 1, no wave can propagate in the system, whatever the excitation

is: only highly evanescent waves can be involved in the movement of the structure.

Figure 13 shows the directivity diagram. In the frequency range of interest, the

system exhibits a behavior with a reduced signature in terms of directivity: before 460

Hz, waves can propagate along any direction in the plane. The non-omnidirectional

character of the lattice can be observed starting from the second band gap observed

in figure 5: between 950 Hz and 1250 Hz, no wave can propagate along the ϕ = 0

direction, while the analysis performed for ϕ = 45◦ shows that the waves are not filtered

in this direction below 1250 Hz. Hence the system acts as a mechanical filter in this

band. Above 1250 Hz (and below 2500 Hz which is the maximum frequency used in the

analysis), the lattice is almost omnidirectional with the band gaps already commented

for ϕ = 0.

5. Analysis of the shunted device: pure Cneg case

In this section, a pure negative capacitance (Cneg) shunt is used and the dispersion

analysis is performed for two cases:

• case EW: only E and W patches are shunted (ie patches aligned with the ϕ = 0

direction, the NS patches are still short-circuited;

• case EWNS : all patches are shunted.

5.1. Dispersion along Γ−X direction of the lattice embedding a pure Cneg shunt

The figure 14 provides the dispersion diagrams of the three configurations (all patches

short-circuited, EW shunts and EWNS shunts).

As expected, the Cneg shunt has a strong impact on the dynamics of the lattice. In

the low frequency range, the in-plane shear mode presented in figure 7 is not changed

by the shunt since the piezoelectric patches are not strained (see yellow curve in the

reference diagram of figure 5). A similar effect may be observed on the first torsional

mode whose wavelength is long enough to generate almost no charge between the

electrodes (see initial blue curve in figure 5 and associated mode shape in figure 10).

All other branches are strongly affected by the shunt, whose main effect is to couple the

various modes involving strain in the lowest part of the legs of the kirigami structure.

The figure 15 illustrates this by showing the shape of the modified branch at 170 Hz,

involving coupling between the out-of-plane shear mode (see figure 6) and the first

bending mode shown in figure 8).

In the low frequency region, using only EW shunts provides almost the same effects

as if the full EWNS shunts would have been used (this comment is only valid for waves

propagating along Γ−X direction, see next section for other directions). The difference

between EW and EWNS shunts effects can be observed on the second torsional mode

and third flexural mode. The second torsional mode, as seen in purple curve in figure
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Figure 13. Directivity diagram of the short-circuited system. Distance from the

center is frequency. Color is Ind (blue: some waves can propagate in the lattice, red:

band gap).

5 and associated shape in figure 11), can be controlled only by NS shunts, since EW

shunts are not strained while NS ones are located in the area where the strain energy

is very high. This implies that the dispersion properties of this mode are impacted

only if NS patches are shunted. On the opposite, controlling the third flexural mode

(see gray box in figure 5 and shape in figure 12) requires EW shunts while NS shunts

have almost no effect, as seen in figure 14. The most interesting feature of the shunted

EWNS configuration lies in the fact that, despite the cancellation of the first band gap

due to strong modes coupling, the second and third ones are combined, resulting in a

large frequency band where no wave can propagate from 1100 Hz to more than 2500 Hz.

Further analysis has shown that the upper limit of the band gap in Γ−X direction was
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Figure 14. Dispersion analysis along Γ−X (ϕ = 0) of the shunted system with pure

negative capacitance (R = 0): real part of non dimensional wavenumber vs. frequency

[Hz]. Short circuit (black ◦ ), EW shunts (blue M), EWNS shunts (red �).

2900 Hz, corresponding to an impressive width to mean frequency ratio equals to 90%.

The thin pass band below 2kHz for the EW configuration may be used for frequency

filtering, providing that practical applications that would take advantage of this, involve

deformations of the cell in coherence with the second torsional mode.

5.2. Directivity of the lattice embedding a pure Cneg shunt

The radical changes in the dispersion properties due to the negative capacitance shunt

commented in the previous section imply strong evolutions of the directivity diagram,

as illustrated in figures 16 for EW shunt and 17 for EWNS shunt. When only the E and

W patches are shunted, the low frequency contents below 1000 Hz are highly dependent

of ϕ, meaning that the directional character of the lattice is strong. Above his value,

the band gaps are almost omnidirectional. The very selective character of the thin pass

band just below 2 kHz is confirmed in a quite omnidirectional way.

This characteristic is more marked for the fully shunted configuration: in this case,
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Figure 15. Shape of mode occurring at 170 Hz, with Real(kn) ≈ 0.3286
π

L
, for the

EW pure Cneg shunt configuration. Color scale corresponds to modal kinetic energy

density. Grey lines show the undeformed cell.

starting from 1kHz up to more than 2.5 kHz, no wave can propagate in the system,

meaning that a huge omnidirectional band gap has been obtained thanks to the Cneg

piezo-shunt embedded on the kirigami lattice. Many practical applications may take

advantage of this very large band gap.

6. Impact of resistance in the shunt circuit

The combination of the previous negative capacitance with a resistance in the shunt

circuit adds further dissipation to the system. Hence only some little changes may be

observed on the real part of the wave numbers, as shown in figure 18 for propagation

along Γ − X. This figure is based on the plot shown in figure 14 on which the new

computed wave numbers (including the resistance in the shunt) have been added.

On the other hand, when looking at the imaginary part of the wave numbers it

is quite evident to observe that the resistance in the shunt increases the value of the

damping by two orders of magnitude for almost all branches of the diagram compared

with the pure Cneg case, as shown in figure 19, on which the non dimensional value

of the imaginary part is obtained following the same strategy as for the real part.

Similar trends as those described in the previous section are observed: depending on

the correlation between the strain energy and piezoelectric patches’ locations, the shunt

has a variable degree of control of the modes. By using the full EWNS shunts one can
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Figure 16. Directivity diagram of the Cneg shunted lattice (only E and W patches

are shunted here). Distance from the center is frequency. Color is Ind (blue: some

waves can propagate in the lattice, red: band gap).

achieve the ability to control all the waves in the frequency band of interest.

This added damping will clearly act on the directivity of the system, by smoothing

the bounds of the gap, as it can be observed in figure 20, which shows the directivity

diagram for the RCneg EW shunted lattice. Comparing these results with the ones

in figures 13 and 16 it appears that in terms of directivity, the resistance somehow

deteriorates the performances of the negative capacitance, by removing the small gaps

in the low frequency range, and decreasing the value of the Ind criteria in the second

gap, even if for almost all points the decrease remains high with Ind higher than 0.3,

still corresponding to a relatively high spacial decay rate of the waves amplitudes.

Adding RCneg shunt on the S and N patches do not change fundamentally the
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Figure 17. Directivity diagram of the Cneg fully shunted lattice. Distance from the

center is frequency. Color is Ind (blue: some waves can propagate in the lattice, red:

band gap).

behavior of the smart lattice. As shown in figure 21, the trends are similar to the

previous case where only E and O patches were shunted. However it seems that a very

thin path opened on the whole frequency range (ie. with no band gap) may be obtained

for ϕ = π/4, while waves trying to propagate between 1 kHz and 2.5 kHz along other

directions are highly damped, which could be of interest for some practical applications.

Further investigations are however required to check the impact of the resistance value

on this interesting behavior.

Modifications of waves directivity by added dissipation into the system has already

been oberved in [68]. In these two works, dissipation modifies the 2D propagation maps

by creating specific frequency dependant directivity or as here opening a π/4 degree
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Figure 18. Dispersion analysis along Γ − X (ϕ = 0) of the shunted system with

resistance and negative capacitance (R = 500Ω): real part of non dimensional

wavenumber vs. frequency [Hz]. Short circuit (black ◦ ), EW Cneg (blue M), EWNS

Cneg shunts (red �), EW RCneg shunts (pink ♦), EWNS RCneg shunts (cyan +).

propagtion door on the whole frequency band of interest especially inside the bands

gaps. This phenomenum can be use for filtering vibration even if the damping may

induces a strong decay rate of the waves amplitudes.

7. Conclusions

The kirigami pyramidal auxetic active core described in this work has shown promising

properties in terms of wave propagation, especially at low frequency badwidths. Various

configurations have been investigated, corresponding to either short-circuited, EW or

EWNS shunts. Shifting from one configuration to another in a practical implementation

is very easy since only electrical shunts are involved. The behaviors observed are higly

dependent of the configurations, opening the path to systems embedding devices with

efficient adaptive filtering properties. Starting from a deep analysis of the short-circuited

configuration, the effect of the shunts has been found to be coherent with the physical
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Figure 19. Dispersion analysis along Γ − X (ϕ = 0) of the shunted system with

resistance and negative capacitance (R = 500 Ω): imaginary part of non dimensional

wavenumber vs. frequency [Hz]. Short circuit (black ◦ ), EW shunts (blue +), EWNS

shunts (red �).

principles which are involved.

The short-circuited configuration exhibits a behavior with a small directivity

signature. The non-omnidirectional character of the lattice can be observed starting

from the second band gap, and it has been observed that the waves are not filtered

if propagating at ϕ = 45◦ below 1250 Hz. Several band gaps are observed in this

configuration, but remain small in width compared with those that may be obtained

with the shunts.

The negative capacitance shunt provides very interesting features since, despite the

cancellation of the first band gap due to strong modes coupling, the upper band gaps

are combined, resulting in a huge frequency band where no wave can propagate from

1100 Hz to 2900 Hz. Also, a very selective thin pass band below 2kHz for the EW

configuration has been observed.

Adding a resistance in the shunt circuit somehow deteriorates the performances

of the negative capacitance by removing the small gaps in the low frequency range.
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Figure 20. Directivity diagram of the RCneg EW shunted lattice. Distance from the

center is frequency. Color is Ind (blue: some waves can propagate in the lattice, red:

band gap).

It provides however a quite interesting feature, namely the path at ϕ = 45◦ which is

extended to the whole frequency band of interest.
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Figure 21. Directivity diagram of the RCneg fully shunted lattice. Distance from the

center is frequency. Color is Ind (blue: some waves can propagate in the lattice, red:
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